Classification

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt,
CS188 UC Berkeley, AIMA, Kevin Murphy

Supervised learning

Given: Training set {(xi, yi)1i =1 ...N}, given a labeled set of input-output pairs D =

{(xi, yi)}i
Find: A good approximation to f: X - Y Function approximation

Examples: what are Xand Y ?

Spam Detection — Map email to {Spam, Not Spam} Binary Classification
Digit recognition — Map pixels to {0,1,2,3,4,5,6,7,8,9} Multiclass Classification

Stock Prediction — Map new, historic prices, etc. to (the real numbers) Regression

Supervised learning

Goal: make predictions on novel inputs, meaning ones that
we have not seen before (this is called generalization)

Formalize this problem as approximating a function: f(x)=y

The leaning problem is then to use function approximation

Va\

to discover: f(x)=y

Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) =) w; - fi(z) =w- f(x)

If the activation is:

= Positive, output +1

= Negative, output -1

)X

Binary Decision Rule

= In the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane

= Decision boundary:
»= One side corresponds to Y=+1

>
2
» Other corresponds to Y=-1 =
: +1 = SPAM
w
1
BIAS : =3
free : 4
money : 2 1= HAM OO ; ,
ree

Learning: Multiclass Perceptron

Start with all weights = 0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)
If correct, no change!

If wrong: lower score of wrong
answer, raise score of right answer

wy = wy — f(x)

Problems with the Perceptron

= Noise: if the data isn’t separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

* Mediocre generalization: finds a
“barely” separating solution

= Qvertraining: test / held-out o
accuracy usually rises, then falls training

= Overtraining is a kind of overfitting
test
held-out

iterations

accuracy

Fixing the Perceptron

» |dea: adjust the weight update to mitigate these effects

= MIRA*: choose an update size that fixes the current

mistake...
= ... but, minimizes the change tow

1 /112
min 5%:||wy_wy||

wye - f(2) = wy - f(2) + 1

= The +1 helps to generalize

* Margin Infused Relaxed Algorithm

Guessed y instead of y* on
example z with features f(x)

Wy = fwly — 7f(x)
Wy = w;* + 7f(x)

Minimum Correcting Update

. 1 /112
i 52wy — wi

: 2
min |||

(wys +7f) - f = (wy —7)- f+1
__ (wymwg) - f 1
2f - f

Wy = wly — 7f(x)
Wy = w?;* + 7f(x)
wy*-f
=
;_/ /Tl
T=20

min not T=0, or would not have
made an error, so min will be
where equality holds

Maximum Step Size

» |n practice, it's also bad to make updates that are too large

Example may be labeled incorrectly
You may not have enough features

Solution: cap the maximum possible value of T with some
constant C

7 = min (wy—wy*)-f-|-170
2f - f

Corresponds to an optimization that assumes non-separable
data

Usually converges faster than perceptron
Usually better, especially on noisy data

Linear Separators

= Which of these linear separators is optimal?

Support Vector Machines

Maximizing the margin: good according to intuition, theory, practice

Only support vectors matter; other training examples are ignorable
Support vector machines (SVMs) find the separator with max margin
Basically, SVMs are MIRA where you optimize over all examples at once

MIRA

1
2
wy - f(x) > wy - f(z;) + 1

min =||jw — w'||?
w

SVM

1
2
Vi, y wyr - f(x;) > wy - f(x;) + 1

min =||w||?
w

Kernels

What if the data is not linearly separable?
Consider features F(x): f =x> f,=x> f,= J2x.x,

If data is mapped to a sufficiently high-dimensional space, it is likely to
become linearly separable

159, ©
! s
’0 o ‘e .
051 . * « °
& L]
- ' e °: o . (
w 0 9 . . . D
* * L] L] 2.5
. e ® e * 9 -
"05 1 .. hd 2
. J ~ . ~
__ . Lo 15
.l y \ 1 x_:
0 §°P0 P %0 @ %% 0.5
1.5 4= v — v —

-1.5 -1 0.5 0 0.5 1 1.5

Kernels

Using kernels replaces x with F(x) (like typical feature expansion)

But for SVMs, this means replacing x; * x« with F(x)) * F(x«)

Using kernels functions lets us not calculate F(x;) and replace the
dot product with K(x;,x«)
In our example, F(x)) * F(xx)=K(xj,x«)=(Xj * Xk)?

Note the dot product has the original dimensionality

The separator is linear in the high-dimensional space, but non-linear
In the low-dimensional space

Classification: Comparison so far

= Nalve Bayes
* Builds a model training data
= Gives prediction probabilities
= Strong assumptions about feature independence
* One pass through data (counting)

= Perceptrons / MIRA:

» Makes less assumptions about data

= Mistake-driven learning

* Multiple passes through data (prediction)
» Often more accurate

Decision Trees

A decision tree represents a function that takes input as a vector
of attributes and returns a single output value (which could be
discrete or continuous)

General idea: make a decision by using a sequence of tests

Each internal node in the tree is a test on some input variables
(e.qg, features or attributes)

Each leaf is a return value

Decision tree example

Deciding to wait for a table at a restaurant (binary classification task)

Example Attributes Target
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X T| F | F T | Some| $3% F T | French| 0-10 T
X9 I | F F T | Full $ F F Thai | 30-60 F
X3 F| T | F F | Some| $ F F | Burger| 0-10 T
X4 I | F T T | Full $ F F Thai | 10-30 T
X5 I | F T F Full | $$% F I | French| >60 F
Xs F| T | F T | Some| $9% T T | Italian | 0-10 T
X~ F| T | F F | None| $§ T F | Burger| 0-10 F
X3 F| F | F T | Some| $$ T T | Thai | 0-10 T
Xy F| T | T | F | Ful $ T F | Burger| >60 F
X1 r| T T T | Full | $%% F T | Italian | 10-30 F
X1 F| F | F F | None| § F F | Thai | 0-10 F
X9 T | T | T T | Full $ F F | Burger| 30-60 T

Decision tree example

One solution (Stuart Russell’'s) with Wait=T

Patrons?
None ome Full
WaitEstimate?
>60 30-6
Alternate?
I\VWS
Reservation? Fri/Sat?

No / \ Yes

Hungry’?

0-10

Aternate"

No Yes No
Bar? Raining?

-

Decision tree expressiveness

Decision trees can express any function of the input attributes

E.g., for Boolean functions, truth table row — path to leaf (ands along path, ors over

paths):
A B AxorB
F
F F F PN

F
= F F
- s o e
Trivially, there is a consistent decision tree for any training set w/ one path to leaf for
each example (unless fnondeterministic in x) but it won’t generalize well

Prefer to find more compact decision trees

Hypothesis spaces

How many distinct decision trees with n Boolean
attributes?

Hypothesis spaces

How many distinct decision trees with n Boolean
attributes?

= number of Boolean functions

= number of distinct truth tables with 2" rows

Hypothesis spaces

How many distinct decision trees with n Boolean
attributes”?

= number of Boolean functions
= number of distinct truth tables with 2" rows = 2*

E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees

Hypothesis spaces

More expressive hypothesis space

— increases chance that target function can be expressed (yay!)
— increases number of hypotheses consistent w/ training set (boo!)

— may get worse predictions

Can'’t solve this problem optimally!

Decision tree learning

Aim: find a small tree consistent with the training examples

ldea: (recursively) choose “most significant” attribute as root of (sub)tree

function DT L(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(ezamples)
else
best <— CHOOSE-ATTRIBUTE(attributes, examples)
tree <—a new decision tree with root test best
for each value v; of best do
examples; < {elements of ezamples with best = v;}
subtree <— DTL(examples;, attributes — best, MODE(examples))
add a branch to tree with label v; and subtree subtree
return tree

Choosing an Attribute

ldea: a good attribute splits the examples into subsets that are
(ideally) “all positive” or “all negative”

000000 000000
000000 000000
Patrons? Type?
NOWNW FrencW\Thai Burger
0000 00 o ©O 00 00

Choosing an Attribute

ldea: a good attribute splits the examples into subsets that are
(ideally) “all positive” or “all negative”

000000 000000
000000 000000
Patrons? Type?
None Some Full French ltalian Thai Burger
0000 00 O © 00 o0
OO 000 O @ 00 0

Patrons? is a better choice—qgives information about the
classification

Information

Use information theory (in particular, entropy or information gain) to
choose attributes

The more clueless | am about the answer initially, the more information is
contained in the answer

Scale: 1 bit = answer to Boolean question with prior (0.5, 0.5)

Information in an answer when prior is (Pi,..., Px) IS

H(P,...PY)=—-2, Plog, P

Information

An attribute splits the examples E into subsets E;, each of which (we hope)
needs less information to complete the classification

Let E: have p; positive and n; negative examples
= H({(pi/(pi+ni), nil(pi+ni))) bits needed to classify a new example
= expected number of bits per example over all branches is
2.(pi+n) [(p+mH(p; [(p;+n).n | (p+ 1))
For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

= choose the attribute that minimizes the remaining information needed

Example

Decision tree learned from the 12 examples:

Patrons?

None ome Full
Hungry?
Yes No
Type?
French ltalia Tha Burger
Fri/Sat?

No Yes

Substantially simpler than “true” tree—a more complex hypothesis isn't justified by
small amount of data

Regression trees

Can split on continuous features

For regression, can generate a regression tree with functions
of attributes at leaves

Regression trees

One method is to use axis parallel splits to partition the space based on
each variable

Can represent function as fx)=E[ylx]=>w,IxeR,)=Dw,0(X,v,)

where R is the mth region wi, is the mean response for the region and
vm encodes the choice of variables and split

Xlgtl

‘ ‘] e I W
5. e

Ry X <ty Ry R

Generalization and overfitting

There may be many extraneous features (e.g., rolling a die
when considering color, weather, size, etc.)

Decision tree algorithms can overfit in this case
Use decision tree pruning to reduce overfitting

Why not just stop early?

ldea: generate tree and then examine nodes from leaves to
root and check with irrelevance (using information gain)

Decision tree pruning

4.5

25

4.5

3.5

25

unpruned decision tree
CO0CO0COCOOCOCO0COCOOCOOLOOLOLOULOSOOOOL00

COCO0COCOOCOCOOCOCOOCOQIQPIOO0 versicolor
COCO0COCOCCOCOOCOCOCCOOOOOCO00 o ot
0OCO000CO0COCO0COCO0CONOONOO0 s6t0ea
COCO0COCOOCOCOOCO0OOCOHHOOOOL0 O virginica

COCO0COCOOCOCOOCOCOOCOOPOOOOOOTIOOOOOOO00
COCO0COCOCCOCOCCOCOOCOOSOOOOO0ILOO0000000
COCO0COCOOCOCOOCOCOOCOOLOOLOLOUSOSOOOOL00
cococcocoococoococoocooooooooo QOCOUOO00
cxx:o:xxx:o:xxx:o:xxxxyx,oo<>o<><>o<>o <><><>o<><><><>o§>>

OOOO00000

COOCOCO0 oovoooo<><><><><><><><>
oo"ouoo'*ouco"ov QOO0 0
COOCO0 CO0TDOL DQOOOOOOOTIGOOOOOOO00
oo::o:xxx:o:xxxxx: LoooaodOOO0000n0000000000
COCO0CO000COCO0 00 OGOO0OOO0OOOO0O0000
COCO0COCOOCOCO0M LUSHLOOLOOLOLOIOOOOOOOO00
COCO0COCOOCOCO0 0 0000Q0QIQOO0OO0O00
COCOCCOCO0COCO0 0 OO0 0000adOSOOC0000
101 101 101 1000 0QBO00000aHOSOOOOO00

QOO QOO0
(e osvinialelolelaleleletoleloleloteTe)

OO000000
DaQOGOOOC00
0000000000
1 1 1 1 —t 3 1 1AAAAAAAAAA

4 45 S 55 6 6.5 7 75 8
x

pruned dacision tree
COCO0COCO0COCOOCOOOOTCOOLOLOOO0 O
COCOCCOCOOCOCOOCOCOVCOOPOOOOO0 versicolor

OO((XXX)CO()(1()()()(XX)()()OOOO(}OOOOOO O setosa
COCOCCOCO0COCO0COCODCOOOOOOOL0 o viroini
COCO0COCO0CO0O0COCODCOHIOOOOOO virgnica

u;::o:xxx;o::w:xx:ux:o:x:oooooooooooooooooooo
COCO0COCOOCOCO0COCOOCONOVOOOOOOCOC0000000
o-ovo COCO0CO0 oucovoocoooooooooooooooooooo

COOCOCOOCO0 COOCOQOCOOLOOOOOOOOO00
m:,o'x,o:,<y:cxx:o::ux:ornwooooooooooooooooooo
00 COOCO0O0! COVOOCOOOOOOOOOOOOOOOOOOO
CO000CO0O0CO000 QOO0 0
COCO0COCOOCO0O0 QOO OO0V COOCOOO0OO00
COCO0COCO0COCO00nnn0OnOOOOO00000000000000
©O000CO0O0CO000) QOO0 LOOLOOOOO00
CO0O0COCOOCO000 101 QLOCOOLOQOOCOCOOL00
COCOCCOCOOCOCO0TDNN QOO0 OO0O0
0000000000000 LOD LeZetoTeroTeleloTetoleTetote oo oo Ted

101 101 QCOCOOLOOOOCOOLOL00

QOO0 OLOOO0O00
1000000000000 0000O00
OOOOOOO0OOOCOOOO000
QOOCOOLOOOOCOCOOL00
QOO OO0OOOCOOCOOO0OO0O0
Leleteleielolotelotoleloolenololotole

4 45 5 55§ 6 6.5 7 75 8

Decision tree summary

Decision trees can be easy for humans to understand
(unlike representations like neural nets)

Can mix continuous and discrete variables
Scale well to large datasets
Not as accurate as many other approaches

Tree structure can change drastically with small input
changes (unstable or high variance)

Bias and Variance

Low Variance High Variance

Low Bias

High Bias

ldeally, methods would have low bias and low variance, but
this is difficult to attain

Bias

The bias of an estimator

bias(8()) = B .| O(D)— 6]

|.e., the difference between the expected and the true value

An unbiased estimator has a bias of O

Bias-Variance Tradeoff

Can calculate the MSE of an estimate:
EP(DIO*)[é_Q*:r = E[[(é—§)+(§—9*)]2:|
= E[(6-0) |+20-09E|[-0 |+ (9-06*)
E|(6-8) |+@ -0+

So, MSE= variance + bias?

For MSE, but often important to consider when choosing/designing
methods!

Bias-Variance Tradeoff

n(\) = 5 In(\) = 5
157 1
1t
051 .
0.5¢ ‘.\ "4 A
< &
of 0 . o
Q’.~ ”'4
—05 0 5 §.. - 'f
1} '
15 1 :
0 0.2 0.4 0.6 0.8 1
In(A) = -5
157 17
¥ -
11 by \‘ '," \-
os 0.5¢ A /
O “ 'l
\ y
0f 0 \‘ "'
05 \ J/
' 0.5} % J
—VU. “ P
=17 \N ‘/
15 e -1 : AW : -
. 02 04 06 0.8 1 0 0.2 0.4 0.6 0.8 1

Ridge regression: true function is solid green
left=20 fits, right=average fit

top=strong regularization, bottom=weak regularization

Ensemble learning

Ensemble learning considers a collection (or ensemble) of
hypotheses and combine their predictions

Example: consider an ensemble of K=5 classifiers
(hypotheses). If we use majority voting, at least 3 would
have be incorrect to misclassify an example. If each is
independent(?) and has an error of p, the probability that
many are wrong becomes very small

Ensemble learning

Ensembles also expand the hypothesis space

Combine 3 linear threshold hypotheses and classify when all 3
are positive

\
\

Bagging
Train M different trees on different subsets of the data (chosen randomly
with replacement)
Compute
&1
For regression: f(X)= Eﬁfm(x)
m=1
For classification: voting
This is called bagging (bootstrap aggregating)

This reduces the variance and overfitting, but often results in many similar
trees (many are highly correlated)

Random forests

Similar to bagging, but reduce the correlation between trees
Randomly chose a subset of variables and data

Again, use averaging or voting over trees

Relatively simple to implement, but can be slow to train

Often works very well and is widely used (e.g., Microsoft
Kinect)

Boosting

Use a weighted training set where each example has a weight, wj = 0
Boosting is an ensemble learning method that uses a weighted training set
Starts with wj= 1
Generates a hypothesis, &1
Increase weights on misclassified examples, decrease on correct ones
Generate next hypothesis and continue for K steps

Use the K hypotheses to classify by weighted majority (based on how well
they perform on the training set)

Boosting

1 ., =

[]
[]

] []

§
(AN A SR

h

Boosting methods can use weak learning algorithms, which perform only slightly
better than random guessing

If the input learning algorithm is a weak learning algorithm, boosting can boost the
accuracy of the original algorithm by using the ensemble

AdaBoost can classify the training data perfectly with a large enough K

AdaBoost

Can use decision stumps (decision trees with only a root node) as
weak learners

For the restaurant example:

1 h 1
P —— T T WA = 095 -
095 it | 2
) 2z 09 -
s 0.9 1 L
§ 085 1 Training error 5 0.8 1
3 0.8 - Test error -------- £ 0.75 1 A
£ 075 4 % 074 [..F
'§ 0.7 - '«g 0.65 - ,\I," Boosted clljecisiqn stltlmps
= 4\ ecision stump --------
0.65 A g 0.6 1\
0.6 A~ 0.55 -
’ ' ' ' ' 0.5 : : : . :
0 50 100 150 200 '
0 20 40 60 80 100

Number of hypotheses K ..)
Training set size

