
Classification

Chris Amato
Northeastern University

Some images and slides are used from: Rob Platt, 
CS188 UC Berkeley, AIMA, Kevin Murphy



Supervised learning

Given:  Training set {(xi, yi) | i = 1 … N}, given a labeled set of input-output pairs D =
{(xi, yi)}i

Find: A good approximation to f : X → Y  Function approximation

Examples: what are X and Y ?

Spam Detection – Map email to {Spam, Not Spam} Binary Classification

Digit recognition – Map pixels to {0,1,2,3,4,5,6,7,8,9} Multiclass Classification

Stock Prediction – Map new, historic prices, etc. to (the real numbers) Regression



Supervised learning

Goal: make predictions on novel inputs, meaning ones that 
we have not seen before (this is called generalization)

Formalize this problem as approximating a function: f(x)=y

The leaning problem is then to use function approximation
to discover: f̂ (x) = ŷ



Linear	Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1 𝚺

f1
f2
f3

w1

w2

w3
>0?



Binary	Decision	Rule

§ In the space of feature vectors
§ Examples are points
§ Any weight vector is a hyperplane
§ Decision boundary:

§ One side corresponds to Y=+1
§ Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
...

m
on

ey

0 1
0

1

2

free

+1	=	SPAM

-1	=	HAM



Learning:	Multiclass	Perceptron

§ Start with all weights = 0
§ Pick up training examples one by one
§ Predict with current weights

§ If correct, no change!
§ If wrong: lower score of wrong 

answer, raise score of right answer



Problems	with	the	Perceptron

§ Noise: if the data isn’t separable, 
weights might thrash
§ Averaging weight vectors over time 

can help (averaged perceptron)

§ Mediocre generalization: finds a 
“barely” separating solution

§ Overtraining: test / held-out 
accuracy usually rises, then falls
§ Overtraining is a kind of overfitting



Fixing	the	Perceptron

§ Idea: adjust the weight update to mitigate these effects

§ MIRA*: choose an update size that fixes the current 
mistake…

§ … but, minimizes the change to w

§ The +1 helps to generalize

* Margin Infused Relaxed Algorithm



Minimum	Correcting	Update

min	not	𝜏=0,	or	would	not	have	
made	an	error,	so	min	will	be	
where	equality	holds



Maximum	Step	Size

§ In practice, it’s also bad to make updates that are too large
§ Example may be labeled incorrectly
§ You may not have enough features
§ Solution: cap the maximum possible value of 𝜏 with some 

constant C

§ Corresponds to an optimization that assumes non-separable 
data

§ Usually converges faster than perceptron
§ Usually better, especially on noisy data



Linear	Separators

§ Which	of	these	linear	separators	is	optimal?	



Support	Vector	Machines

§ Maximizing the margin: good according to intuition, theory, practice
§ Only support vectors matter; other training examples are ignorable 
§ Support vector machines (SVMs) find the separator with max margin
§ Basically, SVMs are MIRA where you optimize over all examples at once

MIRA

SVM



Kernels

What if the data is not linearly separable?

Consider features F(x):

If data is mapped to a sufficiently high-dimensional space, it is likely to 
become linearly separable



Kernels

Using kernels replaces x with F(x) (like typical feature expansion)

But for SVMs, this means replacing xj・xk with F(xj)・F(xk)

Using kernels functions lets us not calculate F(xj) and replace the 
dot product with K(xj,xk)

In our example, F(xj)・F(xk)=K(xj,xk)=(xj・xk)2

Note the dot product has the original dimensionality

The separator is linear in the high-dimensional space, but non-linear 
in the low-dimensional space



Classification:	Comparison	so	far

§ Naïve Bayes
§ Builds a model training data
§ Gives prediction probabilities
§ Strong assumptions about feature independence
§ One pass through data (counting)

§ Perceptrons / MIRA:
§ Makes less assumptions about data
§ Mistake-driven learning
§ Multiple passes through data (prediction)
§ Often more accurate



Decision Trees

A decision tree represents a function that takes input as a vector 
of attributes and returns a single output value (which could be 
discrete or continuous)

General idea: make a decision by using a sequence of tests 

Each internal node in the tree is a test on some input variables 
(e.g, features or attributes)

Each leaf is a return value



Decision tree example

Deciding to wait for a table at a restaurant (binary classification task)

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example Attributes Target
Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T
X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T
X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F
X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F
X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)

Chapter 18, Sections 1–3 13



Decision tree example

One solution (Stuart Russell’s) with Wait=T

Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

Chapter 18, Sections 1–3 14



Decision tree expressiveness

Decision trees can express any function of the input attributes

E.g., for Boolean functions, truth table row → path to leaf (ands along path, ors over 
paths): 

Trivially, there is a consistent decision tree for any training set w/ one path to leaf for 
each example (unless f nondeterministic in x) but it won’t generalize well

Prefer to find more compact decision trees 

Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B
F F F
F T T
T F T
T T F

F

F F

 T

 T  T

Trivially, there is a consistent decision tree for any training set
w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

Prefer to find more compact decision trees

Chapter 18, Sections 1–3 15



Hypothesis spaces

How many distinct decision trees with n Boolean 
attributes?



Hypothesis spaces

How many distinct decision trees with n Boolean 
attributes?

= number of Boolean functions 

= number of distinct truth tables with 2n rows 



Hypothesis spaces

How many distinct decision trees with n Boolean 
attributes?

= number of Boolean functions 

= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 
18,446,744,073,709,551,616 trees



Hypothesis spaces

More expressive hypothesis space

– increases chance that target function can be expressed (yay!)

– increases number of hypotheses consistent w/ training set (boo!)

⇒ may get worse predictions

Can’t solve this problem optimally!



Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree 

Decision tree learning

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default

else if all examples have the same classification then return the classification
else if attributes is empty then return Mode(examples)
else

best←Choose-Attribute(attributes, examples)
tree← a new decision tree with root test best
for each value vi of best do

examplesi← {elements of examples with best = vi}
subtree←DTL(examplesi,attributes− best,Mode(examples))
add a branch to tree with label vi and subtree subtree

return tree

Chapter 18, Sections 1–3 23



Choosing an Attribute

Idea: a good attribute splits the examples into subsets that are 
(ideally) “all positive” or “all negative” 

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24



Choosing an Attribute

Idea: a good attribute splits the examples into subsets that are 
(ideally) “all positive” or “all negative” 

Patrons? is a better choice—gives information about the 
classification 

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification

Chapter 18, Sections 1–3 24



Information

Use information theory (in particular, entropy or information gain) to 
choose attributes

The more clueless I am about the answer initially, the more information is 
contained in the answer 

Scale: 1 bit = answer to Boolean question with prior ⟨0.5,	0.5⟩

Information in an answer when prior is ⟨P1,…, Pn⟩ is 

H (〈P1,...,Pn 〉) = −∑i Pi log2 Pi



Information

An attribute splits the examples E into subsets Ei,	each of which (we hope) 
needs less information to complete the classification 

Let Ei have pi positive and ni negative examples

⇒ H(⟨pi/(pi+ni), ni/(pi+ni)⟩) bits needed to classify a new example 

⇒ expected number of bits per example over all branches is

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit 

⇒ choose the attribute that minimizes the remaining information needed 

(pi + ni )
i
∑ / (p + n)H (〈pi / (pi + ni ),ni / (pi + ni )〉)



Example

Decision tree learned from the 12 examples: 

Substantially simpler than “true” tree—a more complex hypothesis isn’t justified by 
small amount of data 

Example contd.

Decision tree learned from the 12 examples:

No  Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree—a more complex hypothesis isn’t jus-
tified by small amount of data

Chapter 18, Sections 1–3 27



Regression trees

Can split on continuous features

For regression, can generate a regression tree with functions 
of attributes at leaves



Regression trees

One method is to use axis parallel splits to partition the space based on 
each variable

Can represent function as

where Rm is the mth region wm is the mean response for the region and 
vm encodes the choice of variables and split

f (x) = E[y | x]=
m=1

M

∑wmI(x∈Rm ) =
m=1

M

∑wmφ(x,vm )



Generalization and overfitting

There may be many extraneous features (e.g., rolling a die 
when considering color, weather, size, etc.)

Decision tree algorithms can overfit in this case

Use decision tree pruning to reduce overfitting

Why not just stop early?

Idea: generate tree and then examine nodes from leaves to 
root and check with irrelevance (using information gain)



Decision tree pruning



Decision tree summary

Decision trees can be easy for humans to understand 
(unlike representations like neural nets)

Can mix continuous and discrete variables

Scale well to large datasets

Not as accurate as many other approaches

Tree structure can change drastically with small input 
changes (unstable or high variance)



Bias and Variance

Ideally, methods would have low bias and low variance, but 
this is difficult to attain



Bias

The bias of an estimator

I.e., the difference between the expected and the true value

An unbiased estimator has a bias of 0

bias(θ̂(⋅)) = EP(D|θ*) θ̂(D)−θ *⎡⎣ ⎤⎦



Bias-Variance Tradeoff

Can	calculate	the	MSE	of	an	estimate:

So,	MSE=	variance	+	bias2

For	MSE,	but	often	important	to	consider	when	choosing/designing	
methods!

EP(D|θ*) θ̂ −θ *⎡⎣ ⎤⎦
2

= E [(θ̂ −θ )+ (θ −θ*)]2⎡⎣ ⎤⎦

= E (θ̂ −θ )2⎡⎣ ⎤⎦ + 2(θ −θ*)E θ̂ −θ⎡⎣ ⎤⎦ +

= E (θ̂ −θ )2⎡⎣ ⎤⎦ + (θ −θ*)2
(θ −θ*)2



Bias-Variance Tradeoff

Ridge	regression:	true	function	is	solid	green

left=20	fits,	right=average	fit
top=strong	regularization,	bottom=weak	regularization

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

ln(λ) = 5

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

ln(λ) = 5

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

ln(λ) = −5

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

ln(λ) = −5



Ensemble learning

Ensemble learning considers a collection (or ensemble) of 
hypotheses and combine their predictions

Example: consider an ensemble of K=5 classifiers 
(hypotheses). If we use majority voting, at least 3 would 
have be incorrect to misclassify an example. If each is 
independent(?) and has an error of p, the probability that 
many are wrong becomes very small



Ensemble learning

Ensembles also expand the hypothesis space

Combine 3 linear threshold hypotheses and classify when all 3 
are positive

+
+ +

+
+
+++++

+ +

+
+

–––
–

–
–
– –

–
–

–
–
–

–

–

–
–

– – ––
– –

––
– –

– ––
–

–

–– –

–

––
–
–

–



Bagging

Train M different trees on different subsets of the data (chosen randomly 
with replacement)

Compute

For regression:

For classification: voting

This is called bagging (bootstrap aggregating)

This reduces the variance and overfitting, but often results in many similar 
trees (many are highly correlated)

f (x) =
m=1

M

∑ 1
M

fm (x)



Random forests

Similar to bagging, but reduce the correlation between trees

Randomly chose a subset of variables and data

Again, use averaging or voting over trees

Relatively simple to implement, but can be slow to train

Often works very well and is widely used (e.g., Microsoft 
kinect)



Boosting

Use a weighted training set where each example has a weight, wj ≥ 0

Boosting is an ensemble learning method that uses a weighted training set

Starts with wj = 1

Generates a hypothesis,	h1

Increase weights on misclassified examples, decrease on correct ones

Generate next hypothesis and continue for K steps

Use the K hypotheses to classify by weighted majority (based on how well 
they perform on the training set)



Boosting

Boosting methods can use weak learning algorithms, which perform only slightly 
better than random guessing

If the input learning algorithm is a weak learning algorithm, boosting can boost the 
accuracy of the original algorithm by using the ensemble

AdaBoost can classify the training data perfectly with a large enough K

h

h1 = h2 = h3 = h4 =



AdaBoost

Can use decision stumps (decision trees with only a root node) as 
weak learners

For the restaurant example:

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 20 40 60 80 100
Pr

op
or

tio
n 

co
rr

ec
t o

n 
te

st
 se

t

Training set size

Boosted decision stumps
Decision stump

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0  50  100  150  200

Tr
ai

ni
ng

/te
st

 a
cc

ur
ac

y

Number of hypotheses K

Training error
Test error


