
Zero Pre-shared Secret
Key Establishment in the presence of Jammers

Paper #1569170151

Abstract
We consider the problem of key establishment over

a wireless radio channel in the presence of a communi-
cation jammer, initially introduced in [17]. The com-
municating nodes are not assumed to pre-share any se-
cret. The established key can later be used by a con-
ventional spread-spectrum communication system. Our
approach is based on the novel concepts of intractable
forward-decoding and efficient backward-decoding. De-
coding under our mechanism requires at most twice the
computation cost of the conventional SS decoding and
one packet worth of signal storage. We introduce tech-
niques that applies key schedule to packet spreading and
develop a provably optimal key schedule to minimize the
bit-despreading cost. We also use efficient FFT-based
algorithms for packet detection. We evaluate our tech-
niques and show that they are very efficient both in terms
of resiliency against jammers and computationally. Fi-
nally, our technique has additional desirable features such
as the inability to detect packet transmission by non-
source nodes until the last few bits are being transmitted,
and the destination-specific transmissions. To the best of
our knowledge, this is the first solution that is optimal in
terms of communication energy cost with little storage
and computation overhead.
1 Introduction

Radio-Frequency wireless communication occurs
through the propagation of electro-magnetic waves over
a broadcast medium. Such broadcast medium is not only
shared between the communicating nodes but is also ex-
posed to adversaries. The resiliency to malicious be-
havior is obviously of significant importance for military
communication in a battle-field. It is also rapidely gain-
ing significance in civilian and commercial applications
due to the increased reliance on wireless networks for
connectivity to the cyber-infrastructure, and applications
that will monitor our physical infrastructure such as tun-
nels, bridges, landmarks, and buildings.

Jamming and anti-jamming techniques for the phys-
ical layer of wireless systems supporting mostly voice
communication have been extensively studied for sev-
eral decades [15]. However, it is only recently that the

popularity of multi-hop data networks with more sophis-
ticated medium sharing, coding, and application pro-
tocols opened the door for more sophisticated attacks
and resulted in the exploration of new resilience mech-
anisms. Emerging attacks include ultra low-power cross-
layer attacks that aim at disturbing the operation of net-
works by targeting control-mechanisms such as packet
routing, communication beacons or pilots, carrier sens-
ing mechanism, collision avoidance exponential back-
off mechanism, network topology, size of the conges-
tion control window, etc. For example, by transmit-
ting a few pulses at the right frequency, right time and
right location, an tremendously energy/computation effi-
cient attack can be implemented with off-the-shelf hard-
ware [4, 5, 12, 13, 19, 21].

1.1 Motivation
Spread Spectrum (SS) is one of the most efficient and

used mechanisms for building jamming-resilient commu-
nication systems. In [17], Strasser et al. recognized that
the control mechanism of the underlying SS can be tar-
geted. SS requires the communicating nodes to pre-share
a secret key that is used to generate a cryptographically-
strong pseudo-noise (PN) spreading sequence. In many
scenarios (e.g., large number of dynamically associat-
ing/diassociating nodes) this shared key has to be estab-
lished over an open channel. An adversary can there-
fore focus its jamming on the key establishment protocol.
This problem was introduced as the anti-jamming/key es-
tablishment circular dependency problem [17]. Strasser
et al. also propose a new mechanism called Uncoordi-
nated Frequency Hopping (UFH) to break this circular
dependency, however, at a high communication cost.

In this paper, we propose a novel approach for break-
ing the anti-jamming/key establishment circular depen-
dency with significant energy efficiency advantages over
UFH. Our mechanism relies on two main properties:
(1) intractable forward-decoding (preventing an adver-
sary from detecting or decoding an on-going communica-
tion), (2) efficient backward-decoding (allowing any re-
ceiver to decode the time-reversed signals). Note, that al-
though, the adversary can also decode the time-reversed
signal (and find out which random spreading sequence

was used), it is too late for him to jam by the time it re-
trieves the PN-sequence (See Figure 1). The basic idea
behind our scheme is that the sender spreads the packet
with a cryptographically-strong PN-sequence. The PN-
sequence is derived from a random key whose entropy
decreases as we get closer to the end of the message
transmission (See Figure 4). Decoding the time-reversed
version of the packet only requires the receiver to guess
one bit of the key at each stage of the decoding process.
Forward-decoding the packet requires guessing the whole
key initially, which is infeasible for the jammer to do (by
brute force) in time to jam the packet before the end of
the packet transmission. As communication progresses,
the entropy of the spreading sequence decreases, how-
ever, our scheme ensures that at each instant the time it
takes for a node to brute-force the PN sequence plus the
TX/RX turn-around time is larger than the time it takes
for the sender to send the remaining bits of the message.
This makes forward-decoding intractable.

The main advantage of our solution, in comparison
with UFH [17], is that it does not require more energy
for transmitting packets. It is in fact as energy efficient as
the conventional spread spectrum communication where
the communicating nodes pre-share a secret key. UFH, on
the other hand, requires on average n times more energy
then traditional spread spectrum, where n is the spread-
ing factor in the order of hundreds. We achieve this
communication-energy efficiency by slightly increasing
the receiver computation and storage cost. We show that
the computation/decoding cost is at most twice the com-
putation cost of conventional SS (See Theorem 3) and
the storage required is of one packet length. A secondary
advantage of our technique is delayed communication de-
tection, which makes it practically impossible for an ad-
versary to sense an on-going communication until it is
“almost” over. This stealthiness forces an adversary to be
an energy innefficient channel-oblivious jammer [2].

1.2 Related Work
Anti-jamming techniques were extensively studied for

decades [15]. Most of the earlier mechanisms focussed
on physical layer protection and made use of spread-
spectrum techniques, directional antennas, and coding
schemes. At the time, most wireless communication was
not packetized, or networked. Furthermore, the small size
of the networks then (mostly military), and the way they
were deployed allowed for pre-configuration with shared
secret keys to be possible.

Reliable communication in the presence of adversaries
regained significant interest in the last few years. New at-
tacks and thus, needs for more complex applications and
deployment environments have emerged. Several specif-
ically crafted attacks and counter-attacks were proposed
for: packetized wireless data networks [12, 13], multi-
ple access resolution in the presence of adversaries [1–3],
multi-hop networks [12, 20, 21], broadcast communica-
tion [5, 6, 18], cross-layer attacks [13], and navigation

information broadcast [14]. While many recently pro-
posed countermeasure techniques can (and are assumed
to) be layered on a SS physical layer, it is usually taken
for granted that the communicating nodes pre-share a se-
cret key. Strasser et al. recognized this as a significant im-
pediment to the use of SS, even when the communicating
nodes possess public keys and certificates that potentially
allow them to setup a shared secret key [17]. They name
this phenomenon as the anti-jamming/key establishment
circular dependency problem.

Strasser et al. proposed UFH, a technique for estab-
lishing a symmetric secret key in the presence of adver-
saries. In UFH, the sending node hops at a relatively
fast rate (e.g., 1600 hops per second) over n channels.
It repeatedly sends fragments of the mutual authentica-
tion and key establishment protocol. The receiver hops
at a significantly slower rate. Although, the receiver does
not know the sender’s hopping sequence, statistically, it
can receive 1/n of the sent packets. The authors show
that an adversary has a very low probability of jamming
these packets. They build upon this basic mechanism to
construct a jamming-resilient mutual authentication and
key establishment protocol. Their paper introduced the
first reliable key establishment protocol for SS without a
pre-shared secret. However, unlike SS systems with pre-
shared keys, the proposed mechanism incurs an energy
increase by a factor of n due to the required redundancy
in packet transmissions (retransmissions of message frag-
ments that are not received). This is the closest work re-
lated to our paper. Our mechanisms retain the main ben-
efits of the original SS communication in terms of com-
munication energy (all transmitted energy is used in the
packet decoding process). It does incur a higher compu-
tation cost, which we show later is no more than twice the
cost of the traditional SS with pre-shared secret.

Other countermeasure techniques discard the possibil-
ity of using SS because of the narrow RF bands available
to ad hoc networks, or because of the absence of a pre-
shared key [1, 8]. These techniques are much less energy
efficient then SS. Note that SS can still be used in nar-
row band if the signal is spread in time at no additional
energy cost. The catch here is that the data rate is re-
duced by the spreading factor. The data rate reduction is
not necessarily a limitation as two nodes can have mul-
tiple simultaneous communications as in Code Division
Multiple Access systems. Thus, this mechanism has the
potential of achieving an overall higher network through-
put (see [7] for the theoretical derivation of the capacity
region of CDMA systems). Our goal in this paper is to
enable SS even in the absence of a pre-shared key.
1.3 Contributions

The contributions of this paper are both conceptual
and algorithmic:
• Zero communication-energy overhead key estab-

lishment of a shared key without pre-agreed knowl-
edge (in comparison with conventional SS with pre-

shared keys): a novel approach based on intractable
forward-decoding and efficient backward-decoding.

• Undetectable communication until end of transmis-
sion (delayed detection). This forces the jammer
to become an energy-inefficient channel-oblivious
jammers [2].

• A destination-oriented scheme that prevents effi-
cient simultaneous-attacks of multiple receivers.

• Computationally efficient end of the message detec-
tion (a FFT-based technique), and message extrac-
tion (a key-scheduling algorithm requiring at most
twice the cost of conventional spread spectrum de-
coding to guess the key and despread the packet).

2 Setup Model
In this section, we describe the basic communication

model and the adversary model considered in our study.
2.1 System Model

We consider a wireless communication network where
several nodes are trying to establish pairwise-shared se-
cret keys that would enable SS communication. Our
model and the problem formulation is very similar
to [17]. We focus on a pair of communicating nodes
along with a jammer, all sharing one radio-frequency
channel. The jammer’s objective is to prevent the es-
tablishment of a secret key between the communicat-
ing nodes, because once this key is established, the
communicating nodes can use conventional SS making
them resilient to jamming. Our main objective is to
devise a jammer-resilient message-delivery mechanism
with no pre-shared information. This mechanism will
be used, by a Mutual Authentication and Key Agree-
ment Protocol (MAKAP), to deliver few messages and
establish a key for future SS communication. We con-
sider the same MAKAP as [17], namely Elliptic Curve
Diffie Hellman (ECDH), because of the small num-
ber of messages exchanged (i.e., 2) and their short
length. Our method uses Direct-Sequence SS (DSSS),
but it easily generalizes to Frequency-Hoping SS (FHSS).

Assumption:
• We assume that there exists a trusted Certificate Au-

thority (CA) that issues digital certificates attesting
each user’s public key 1.

• Anything that is known to the receiver about the pro-
tocol and the sender is known to the jammer.

2.2 Adversary Model
We consider an adversary that is co-located with the

sender and the receiver, that can jam, replay previously
collected messages, insert fake messages or modify bits
of the message. The primary goal of the adversary is to

1Note, that given the energy, computation, and storage effi-
ciency of our techniques, if no certification authority is avail-
able, we can consider using our scheme to transmit all packet
without ever establishing a key.

prevent successful reception of the sender’s message by
the receiver. However, in an attempt to do so, a jammer
may simply increase the delay of the message extraction
process or cause denial of service (DoS) attack on the re-
ceiver side. So, it’s secondary goal may very well be to
increase the computation and energy cost of the receiver
while minimizing its own jamming cost. We define jam-
mer’s performance as the trade-off function relating the
packet loss rate with the total jamming cost. Our clas-
sification of the adversary attacks is inspired by the ac-
tive attack categorization of [16] and the attacker model
of [17]. However, the specific attacker strategies we de-
signed and implemented for evaluation of our scheme are
protocol-specific. In Section 5, we also present the em-
pirical optimal jammer strategy and show that it is cost
inefficient under TREKS.

Assumption

• We ignore potential gains of configuring the physi-
cal layer parameters such as physical distance, an-
tenna gains, and coding schemes. These parameters
can be independently optimized.

• Our model does not consider the case where the jam-
mer can block the propagation of the radio signal.

• We assume that the adversary cannot tunnel the
channel signals for remote brute-forcing before the
end of the packet transmission (few milliseconds).

Taxonomy of the Attacks

1. Jamming: The attacker can jam the communication
link in various ways, such as sending a high-power
pulse either at periodic intervals, continuously, or
in a memoryless fashion [2]. The goal is to distort
packets or cause failure of packet decoding.

2. Replay Attack: The attacker can replay previously
captured communication messages. The goal is to
increase the computation cost of (1) packet decod-
ing, and (2) signature verification.

3. Targeted Modification: The attacker can modify
some bits of the message by focusing the jamming
energy on some portion of the message. This attack
is unlikely in a deterministic way, since it is infeasi-
ble for a jammer to detect on-going communication
under our mechanism until last few bits of the mes-
sage are sent.

4. Denial of Service: The attacker inserts partial or
complete messages to overwhelm the receiver’s (1)
packet decoding, and (2) signature verification pro-
cesses. Note that this is a stronger jammer then the
replay jammer.

In Section 5, we will dicuss and analyze the impact of
specific jammers tailored for our approach.

3 Time-Reversed Message Extraction and
Key Scheduling (TREKS) in DSSS

TREKS is a communication approach based on
zero pre-shared key spread spectrum(ZPKS), specifically
DSSS in this paper. We will first present the core idea
of zero pre-shared key DSSS and its efficiency again
jamming. Then we propose a novel key scheduling
scheme, which enables efficient backward-decoding, and
thus making TREKS optimal in terms of both communi-
cation energy cost and computation and storage cost.

3.1 Zero pre-shared key DSSS
Sender S, receiver R, and jammer J all share the same

channel. Let M denote the message that S wants to trans-
fer to R, l the length of M in bits. Prior to the start of
transmission, S randomly generates a secret key K of k
bits. Unlike conventional DSSS, K is not known to any-
one but S when communication occurs. S uses K to gen-
erate a cryptographically strong PN-sequence and uses it
to spread M. Although, PN-sequence cryptographically
generated from keys (e.g., seeding a symmetric encryp-
tion algorithm such as AES or DES) are not optimal in
terms or orthogonality, they have a very satisfactory per-
formance and have been used in many military spread
spectrum communications system [15].

In conventional DSSS, S and R pre-share the secret
key. R keeps attempting to despread incoming signals
with pre-shared key until she detects the beginning of
the message, then she starts forward-decoding the whole
message. In zero pre-shared key DSSS, R needs to first
identify the key K chosen by S. Without knowing K, R
does not even know when such DSSS communication
occurs, so she needs to brute force all possible keys on
each chip of the incoming signal until she finds a key that
could properly decode the incoming signal. Given key
size as k bit, the complexity (brute force) of exploring
the key space is O(2k). Obviously, this is impractical for
real-time communication when no information is avail-
able about the start of a packet. In Section 3.3, we show
how backward-decoding with a key schedule makes our
approach efficient for real-time communication.

3.2 Jamming resiliency
We first demonstrate the fundamental strengths of the

proposed approach from the energy efficiency against
jammers and key recovery intractability.
3.2.1 Communication energy efficiency

We present the way the packet data bits are spread and
how the total energy per packet is preserved. We also
show that the cost for the jammer to counter the effect
of spreading requires an energy increase by a factor of n.
Let us first introduce some terminology:
• d ∈ {+1,−1}: data bit being sent, both 0 and 1 are

equally probable, otherwise the data can be com-
pressed and might also be used by the adversary.

• d̂ ∈ {+1,−1}: estimated data bit on receiver side.

• n: Spreading factor.

• pni∈{1,...,n} ∈ {−1,+1}: ith chip of cryptographi-
cally designed spreading sequence unknown to the
adversary.

• Eb: energy per transmitted bit (w.l.o.g, assume that
we are sending one bit per unit of time).

• ui = d
√

Eb
n pni: chip signals transmitted by sender.

Note that the energy2 per bit remains equal to Eb.
We consider a Binary Phase Shift Keying modula-
tion, but the results generalize to other modulations.

• J: jammer energy per unit of time.

• Ii∈{1,...,n}: adversary’s transmitted signals indexed at
the chip level. The mean square of Ii is J

n which
corresponds to J amount of energy per bit.

• vi: received signals indexed at chip level.

• BER(Eb,J,m): Bit Error Rate at receiver side when
sender is using Eb Joules per bit, adversary J Joules
per bit, and transmitter spreading by factor m.

THEOREM 1. Spreading a signal by a factor n À 1 al-
lows, the communicating nodes to counter an n-times
stronger jammer at no extra-energy cost for the sender:
PROOF. Since, we are only interested in the impact of
jamming, we normalize the path loss and antenna gains
to 1. For simplicity, we ignore thermal (white) noise. The
same result still holds in the general case. Let vi denote
the received signal indexed at the chip level:

vi = ui + Ii

= d

√
Eb

n
pni +

√
J
n

ri

where ri is the jamming chip with unit mean square.
Consider the following decoding technique3:

d̂ = 1 iff
n

∑
i=1

vi pni > 0

The Bit Error Rate of the despread signal, BER(Eb,J,n)

= Pr[d̂ = 1 and d =−1]+Pr[d̂ =−1 and d = 1]

= 2∗Pr[
n

∑
i=1

vi pni > 0 and d =−1]

= 2∗Pr[d

√
Eb

n

n

∑
i=1

pni pni +

√
J
n

n

∑
i=1

ri pni > 0 and d =−1]

= 2∗Pr[−
√

Eb

n

n

∑
i=1

pni pni +

√
J
n

n

∑
i=1

ri pni > 0 and d =−1]

= 2∗Pr[−
√

Ebn+

√
J
n

n

∑
i=1

ri pni > 0]∗Pr[d =−1]

= Pr[
n

∑
i=1

ri pni >

√
Eb

J
n]

2Energy is equal to the signal mean square.
3Note that we are assuming that the receiver knows the bit

synchronization. This is a common assumption in analyzing SS
systems. We will see in Section 4 how this is achieved.

where pni is a random variable independent from the
adversary’s ri choices. Therefore, ∑n

i=1 ri pni is the sum
of n random variables of equal probability taking values
{−1,+1}. The distribution of the sum can be derived
from the Binomial distribution. For n À 1, this distri-
bution can be approximated by a Normal distribution of
zero mean and variance n: N(0,n). Thus,

BER(Eb,J,n) =
∫ ∞

n
√

Eb
J

1√
2πn

e−
x2
2n

dx

=
∫ ∞

√
Ebn

J

1√
2π

e−
x2
2

dx (1)

Eq. (1) indicates that when the spreading factor is in-
creased by a factor c, the adversary needs to scale its jam-
ming energy J by a factor c to maintain the same BER.
On the transmitter side, since the energy per bit is kept
constant, transmitter still spends the same amount of en-
ergy while being resilient to c times more jamming.

3.2.2 Computational infeasibility for jammer
In order to jam, in a cost efficient way, the adversary

needs to identify the spreading key. As shown above, the
complexity of finding the key is O(2k). If k is designed
such that identifying the key takes significantly more time
then the packet transmission, even if the jammer even-
tually finds the key, he missed the chance to jam the
transmission. We call this intractable forward-decoding,
which is illustrated in Figure 1.

3.2.3 Limitations
Intractable forward-decoding is based on the fact of

zero pre-shared secret, which also applies to the message-
decoding process at the receiver. Since the receiver needs
to try 2k possibilities for spreading key on each incom-
ing chip signal, it causes a considerably high computa-
tion overhead. This is a major limitation of the basic zero
pre-shared key DSSS (ZPKS) scheme.

In the following section, we introduce a novel spread-
ing key scheduling scheme, which builds upon ZPKS and
enables both intractable forward-decoding and efficient
backward-decoding. This drastically reduces the com-
putation overhead for the receiver from O(2k) to O(2k)
while the jamming resiliency remains the same.

3.3 Key scheduled reverse-time decoding
3.3.1 Key Size vs. jamming resiliency

Before delving into the details of our key scheduling
scheme, we first show how the key-entropy is reduced as
the transmission gets closer to the end but still requires
the same effort from an adversary to identify the key.
THEOREM 2. Let Ttrans(l) denote the transmission time
of l bits, Ts(k) the time required to brute force all possible
k bit keys. Given a message M and key size k, if it is secure
to spread M with a k bits key, it is secure to spread the last
|M|
2i bits with k− i bit key, where i≤ log2 (|M|).

PROOF. We first show that it is secure to spread the sec-
ond half of M with k− 1 bit key Since it is secure to

Figure 1. Message delivered before key is brute forced
by adversary.

spread M with a k bits key, we have

Ttrans(|M|) ¿ Ts(k)

Ttrans(
|M|
2) =

1
2

Ttrans(|M|)

¿ 1
2

Ts(k) = Ts(k−1) (2)

Eq. (2) shows that it is secure to encode |M|
2 bits with

k− 1 bit key. Therefore, even if we use a 1-bit weaker
key to encode the second-half of M, we can guarantee
that the whole message can still be delivered before the
jammer brute forces all possible keys. By induction, it is
easy to get that Ttrans(

|M|
2i)¿ Ts(k− i). Thus, it is secure

to spread the last |M|2i bits with k− i bit key.
The intuition behind Theorem 2 is that as transmission

goes on, less time is left for jammer to find out the key,
so it is safe to use a slightly weaker key to encode the rest
of the message 4.

3.3.2 Spread key scheduling
Based on Theorem 2, we introduce a key schedul-

ing scheme to TREKS. As shown in figure 2, instead
of spreading the complete the message with a fixed key,
we partition the message into k segments (note that the
segments are transmitted in a continuous way), where k
is the key size. We call each segment “schedule”. The
size of ith segment Mi is d |M|2i e. At the start of spread-
ing process, we use full length key to spread M1. Every
time when we finish encoding one segment, we set the
most significant bit of the key to a known value and re-
sumes encoding the next segment with this 1-bit weaker
key. We repeat this process until the last schedule, which
is encoded with only 1 bit key. Here it is easy to see that
the message length l has to be at least 2k so that the key
size k could be decreased to 1 bit as schedule goes on.
For simplicity of presentation, we assume that l = 2k at
this moment. We will show how to loose this constraint
in later section. Algorithm 1 outlines the message seg-
mentation and key scheduling scheme.

4Additional measures can be taken to prevent overlap be-
tween weakened key spaces.

Symbol Definition
M message to be transferred
K secret key
l length of message in bits
k size of secret key in bits
K[m . . .n] part of the K from mth bit to nth bit
M[m . . .n] part of the M from mth bit to nth bit
Ki key used in schedule i
Mi message segment belonging to schedule i
Ni size of rest of message at the start of schedule i

Table 1. Summary of the notations.

Algorithm 1: Sender encoding message with key schedule.

1. N1 ←M
2. for i = 1 . . .k do

Ki ← K[i . . .k]
Mi ← Ni[1 . . .d |Ni |

2 e]
cryptographically generate PNi from Ki
encode Mi with PNi
Ni+1 ← Ni[|Mi|+1 . . . |Ni|]

Intractable forward-decoding: Based on theorem 2,
the key size at each schedule is large enough for the size
of corresponding message segment. Thus, the property of
intractable forward-decoding is maintained.
Efficient backward-decoding: Due to the decreasing
key entropy, it becomes easier for the receiver to identify
the key as the transmission is closer to the end. Specifi-
cally, in order to detect the last message segment, the re-
ceiver just needs to attempt two keys. Once the receiver
detects the potential end of message, he starts guessing
the keys for previously received signals following the key
scheduling scheme in reverse time. In order to guess the
key for each previous schedule, receiver only needs to
try two keys, because the bit difference for two adjacent
schedules is only 1 bit. So the receiver needs to try up to
2 ∗ k keys to find out all the k key bits, which is signifi-
cantly lower then the O(2k) guesses of the basic scheme.

3.4 Further improvements and discussion
3.4.1 MAC-masked key scheduling

In the key scheduling scheme presented above, the
last scheduled key Kk is always either 0 or 1 for any
sender/receiver pair. Hence, the jammer could jam with
a PN-sequence generated by 0 or 1 key, which is likely
to compromise the last message fragment. Once the end
of the message is jammed and the receiver is not able to
detect it, the reverse decoding cannot start. In order to
tackle this issue, we take the receiver’s MAC address to
mask the key at each schedule. The revised key schedul-
ing strategy is illustrated in figure 3. The key Ki used to
encode Mi is generated by replacing the most significant

Figure 2. TREKS with key scheduling.

Figure 3. MAC-masked key scheduling.

Figure 4. Key scheduling with linear tail.

i− 1 bits of the receiver’s MAC address with the most
significant i− 1 bits of K. It is easy to see that the hard-
ness of the key inferring remains the same. Whereas, the
last scheduled key is different across different receivers.
Thus, the jammer can only target one receiver at a time.
The potential jamming attack mentioned earlier becomes
a destination-oriented attack.
3.4.2 Key scheduling with linear tail

Consider a key size of k = 20, the jammer needs to
explore 220 keys. Even for a chip rate of 100Mcps (10ns
chip duration), it is infeasible for a field deployed device
to brute force the key transmission of few milliseconds
(e.g., 1ms for 1000 bits spread with n = 100). However,
as mentioned at the end of 3.3.2, we assumed that l = 2k

so that key size can be decreased down to 1 bit by kth

schedule, and the total message length l for k = 20 would
be 1M bits. Obviously this is too large for a message size.

We also observed that If Ttrans(|M|) ≤ Tδ, where Tδ is
the radio turn around time of the jammer, it is impossible
for the jammer to jam M. In this case, when the jammer
detects the transmission and switches to a transmit mode,
the message has already been delivered. Take 802.11 as
an example, the radio turn around time is 10us. Consider
a spreading factor n = 100, chip rate of 100Mcps, then
we have Ttrans(1) = 1us. So for the last 10 bits of the
message, the sender can weaken the key at a linear rate of
1 key bit per packet bit. Therefore, only the first 10 bits
of the key need to be scheduled. Thus, the message size
becomes 10 + ∑9

i=0 2i = 1033 bits, which is a reasonable
size. Note that if Tδ allowed for only the transmission of
a smaller number of bits, we can linearly weaken the key
by more then one key-bit per transmitted bit. This slightly
increases the computation cost of key inferring but only
on a small number of bits. The revised key scheduling
algorithm is illustrated in Figure 4.

Next, we present the efficient backward decoding al-
gorithm, its computation complexity and briefly discuss

Figure 5. Workflow of TREKS Message Decoding

the key establishment protocol under TREKS.
4 Efficient Backward-Decoding
4.1 Overview of TREKSDecoding

MAC-masked TREKS enables efficient backward-
decoding. The backward-decoding is best described as
a two-phase phenomenon [See Figure 5]:
• Phase-I: Finding End of the Message(EoM) by

computing the cross-correlation between received
spread signal and the PN-sequence generated with
receiver’s MAC address.

• Phase-II: Inferring the key in time-reversed fashion,
which is used to despread the message.

Symbol Definition
m message sent by the sender, as z segments
Seg[i] Segments of a message, where 1≤ i≤ z
K[i] Key used to generate spread PN-sequence, 1≤ i≤ z
Ki Possible set of keys, 1≤ |Ki| ≤ 2,

that receiver tries to despread Seg[i] with.
S[i] Real-time Signal that is sampled at the receiver side.
PEoM[i] Array of possible EoM indices.
M[i] Array of extracted complete messages.
GetBu f f er(.) Gets the next n∗ l chips from the signal stream for sampling.
DotProd(.) Dot product of two vectors (correlation function).
FFT (.) Fast Fourier Transform.
IFFT (.) Inverse Fast Fourier Transform.
Fast Correlate(.) Calculating Convolution between a short and a long signal.
Key In f er(.) Function to infer the key.
Peak Detection(.) Function to detect peaks at Seg[i], 1≤ i≤ z
Despread(.) Standard Spread Spectrum function to despread received signal.
Signature Veri f y(.) Function to verify the sender.

Table 2. Additional notations

4.2 Finding the EoM (Phase-I)
As shown in Figure 5, Phase-I consists of two steps,

(a) sampling and buffering, and (b) FFT EoM detection.
When new signal samples arrive, the receiver enqueues
them into a FIFO. At any instance, the receiver only have
to keep 2n∗ l chips in his buffer because after finding the
EoM, he will have to traverse at most n ∗ l length before
he recovers the message. We compute cross-correlation
to achieve bit synchronization, a very common practice in
SS systems [15]. However, calculating cross correlation
is computationally expensive. We optimize this calcula-
tion (a) by using FFT, which reduces the cost of com-
puting cross correlation from 2n2l to nl log(nl), and (b)

process a batch of n ∗ l chips at once during FFT com-
putation unlike conventional SS systems that process n
chips (spread of a bit) at a time. As illustrated in Algo-

Algorithm 2: Finding the End of the Message (EoM)

1. Old Buffer = GetBuffer(S);
2. for each buffer of length (n∗ l) do

Current Buffer = GetBuffer(S);
Set k = MAC ADDRESS(Rcvr);
Corr[1 : n∗ l]=Fast Correlate(Current Buffer,k);
for each j ∈ {1, · · · ,n∗ l} do

If Corr[j] > threshold then
push j into PEoM[];

If PEoM[] is empty
Old Buffer = Current Buffer;

Else
Buffer = concat(Old Buffer,Current Buffer);
Key Infer(Buffer,PEoM);

Fast Correlate(Buff,key){
Temp Key[1:n*l] = Zeros;
Temp Key[1:n] = key;
Input1 = FFT(Buff);
Input2 = FFT(Temp Key); //Pre-computed
Corr[1:n*l] = IFFT(Input1*Input2′);
return Corr;}

rithm 2, our FFT detection process iterates over each chip
in the buffer to find the EoM. One challenge is that there
might be more than one candidate for EoM, i.e., multi-
ple values of the correlation vector may pass the thresh-
old test to produce false positives. Thus, we enqueue all
possible EoMs into PEoM[], and pass it to Phase-II for
further processing. We pick threshold value empirically
by observing TREKS performance over large number of
simulation runs, details of which is given in Section 5.

4.3 Message Extraction (Phase-II)
Phase-II consists of Step-3 and Step-4 as shown in

Figure 5. In Step-3, we infer the key by finding the le-
gitimate EoM out of all PEoM found in Phase-I. For each
PEoM, we begin time-reversed key inferring. At each
stage of the process, we try two possible choices for the
key-bit. Algorithm 3 illustrates this process. For a certain
guess, if more than 50% of the total bits are detected in a
segment, then we confirm the value at the corresponding
key bit position and move onto the next. Otherwise, we
abort the key inferring. Hence, we get Theorem 3.
THEOREM 3. The computational cost of TREKS mes-
sage despreading is at most twice the computational cost
of conventional SS systems with a pre-shared key.
PROOF. For each segment, the receiver attempts to de-
spread the bits with two potential keys. Therefore each
bits is despread twice. Leading to a computational cost
of twice a conventional spread-spectrum. Note, that this
cost can be reduced by eliminating one of the two keys
after attempting only few bits of a packet.

In Phase-II, another optimization we employ is that af-
ter we find the EoM, instead of computing FFT each time
to synchronize with the bits of the message, we compute
the dot-product between n chips and the PN-sequence.

The abortion of key inferring process implies a packet
loss otherwise we despread the message using the key in-
ferred [Step-4]. We discuss the choice of the threshold
values used in Algorithm 2 in Section 5.

Algorithm 3: Message Extraction

1. Key Infer(Buffer,PEoM){
for each possible EoM j ∈ PEoM do

PeakPos = n+j; //EoM = Buffer[n+j]
endIndx = PeakPos-n; //End of Seg[z-1]
for each p ∈ {1, · · · ,z} do

startIndx = endIndx−|Seg[z]|+1;
CntOfSucc = 0;
for each key candidate k ∈ Kz−p do

succ = Peak Detection(k,Buffer,
startIndx, endIndx);

CntOfSucc = CntOfSucc + succ;
If(CntOfSucc==1)

K[p] = k;
Else

Abort Key Infer(Buffer,PEoM);
endIndx = startIndx;

m = Despread(Buffer[j− (n∗ l)+1, j],K[]);
Enqueue m into M[];}

2. Signature Verify(M[]);

Peak Detection(key, Buf, startIndx, endIndx)
{

ExpNumofPeaks = (endIndx - startIndx)/n;
CntOfPeaks = 0;
for each d ∈ {1, · · · ,ExpNumOfPeaks} do

P=DotProd(key,Buf[startIndx,startIndx+n]);
If P > threshold then

CntOfPeaks = CntOfPeaks+1;
startIndx = startIndx+(d ∗n)−1;

If CntOfPeaks > 50%*ExpNumOfPeaks
succ = 1;

Else
succ = 0;

return succ;
}

Signature Authentication and Key Establishment
At the end of Algorithm 3, depending on the type of jam-
mer and its strategy, a receiver might end up recovering
more than one message, namely the jammer messages. In
that case, the receiver has to verify the sender using some
kind of mutual authentication and identification mecha-
nism. TREKS uses 160 bit Elliptic Curve based Digital
Signature Algorithm (ECDSA) to authenticate the nodes
and their data sent over the channel. A 160-bit ECC key
provides the same level of security as that of a 1024-bit
RSA key [9], which is sufficiently secure for the pur-
poses of a session-based encrypted message transmission
of TREKS. The choice of the key establishment proto-
col for TREKS need not be a specific key establishment
protocol. The choice of the key establishment protocol is
already discussed extensively in [17]. So, we will use the
same protocols of [17].

5 Performance Evaluation
We evaluate the performance of TREKS in terms of

the Packet Loss Rate (PLR) as a function of communica-
tion/jammer energy, computation cost, and storage cost.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-20 -15 -10 -5 0 5 10 15

B
it

E
rr

or
 R

at
e

(B
E

R
)

Signal to Noise Ratio (SNR) in dB

(a) SNR vs. BER

t=1
t=2.5

No

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -15 -10 -5 0 5 10 15

P
ac

ke
t L

os
s

R
at

e
(P

LR
)

Signal to Noise Ratio (SNR) in dB

(b) SNR vs. PLR

t=2.5
t=1
No

Figure 6. SNR vs. (a) BER (b) PLR with (Threshold =
t*avg, t=1, t=2.5) and without (No) TREKS.

Based on Theorem 1, we can focus on two communica-
tion jammers: (1) additive white gaussian jammer (whose
energy is reduced by a factor n) evaluated in Section 5.1,
and (2) jammers spreading a signal with the destination
MAC address evaluated in Section 5.2. Since, the ad-
versary does not know the beginning of the transmission,
he is forced to operate as a memoryless jammer with a
rate λ. We use MATLAB to simulate the communication,
jamming, and message extraction.

Simulation Setup: All the graphs are based on 10K
simulation runs of each setting of parameters under our
model. The variables that constitute our simulation are:

Spreading Factor, n 100
Packet Size, l 1033 bits
Key Size, n 19

Jammer Power to Signal Power Ratio, JSR [1..100]
Normalized Signal Power 0 dBW

Noise Power -20 dBW
Table 3. Parameters for Simulation.

5.1 TREKS vs. Gaussian Jammers
We consider the case where the sender and the receiver

communicate under a white Gaussian jammer. From The-
orem 1 this corresponds to interferers not using the desti-
nation MAC address. Their interference results in Gaus-
sian noise of energy reduced by a factor n.
5.1.1 Packet Loss Rate (PLR)

The PLR under our model implies one of the follow-
ing: (a) Key Infer Failure, (b) EoM missing, and (c) High
BER (over 15% [13]). Figure 6 shows the PLR and the
BER in TREKS system as a function of an increasing
SNR and two detection thresholds. Note that due to the
imperfect synchronization and EoM recovery, we only
obtain a gain of 15−17 dB (i.e., 20 to 50 resiliency gain).
5.1.2 False Positives

The number of False Positives (FP) encountered dur-
ing the FFT EoM detection process directly impacts the
performance of TREKS in terms of computational delay.
In fact, we use the PLR and the number of FPs observed
while running TREKS at a fixed noise level of 0dB, to
choose the peak detection threshold used in Algorithm-2.

We define the threshold as t ∗ avg where avg repre-
sents the average of the correlation vector produced by
function fast correlate(.) of Algorithm-2 and t represents
the multiplier. Based on the results from Table 4 and 5,

we chose t to be 2.5 because of the much smaller FP rate
even if we loose about 2dB of jammer resiliency.

SNR (dB) t=1.0 t = 2.0 t = 2.3 t = 2.5 t = 3.0
−10 11.79% 1.48% 0.94% 0.58% 0.22%
−5 11.80% 1.48% 0.94% 0.58% 0.22%
0 11.79% 1.47% 0.96% 0.59% 0.22%
5 11.79% 1.51% 0.98% 0.61% 0.23%

10 11.78% 1.57% 1.01% 0.64% 0.25%

Table 4. False Positives (FP)

SNR (dB) t=1.0 t = 2.1 t = 2.3 t = 2.5 t = 2.9
−10 19.00% 48.00% 49.50% 47.50% 64.50%
−5 0.00% 0.20% 0.50% 1.50% 4.00%
0 0.00% 0.00% 0.00% 0.00% 0.00%

Table 5. Packet Loss Rate (PLR).

Figure 7 shows that we detect all of the FPs from
PEoMs by the first iteration (stage) of the key in f er() in
Algorithm 3 for threshold value of 2.5. Thus FP does not
impact TREKS computationally by much.
5.1.3 Computation Cost

Operation Using GPU Lab Computer
FFT benchmark 1ms 28ms
Key Inferring - 1ms

Signature Verification - 1ms
Table 6. TREKS Computation Cost.

Table 6 shows the computation cost of TREKS per-
formed in our lab computer versus using a GPU NVidia
GeForce 8800 GTX, we can accelerate the FFT com-
putation by 28 times [10]. The specification of our
lab computer is a 32-bit Intel(R) Core(TM)2 CPU 6400
@2.13GHz with 3GB memory. It clearly shows that with
appropriate off-the-shelf hardware, TREKS can operate
in real time with its total execution time under 3ms. We
used OPENSSL-0.9.8 version to calculate the benchmark
for verifying 160-bit ECC-DSA [11].
5.1.4 Storage Cost

The storage cost of TREKS accounts for (a) the to-
tal number of messages recovered at the end of message
extraction, and (b) the size of the FIFO used in buffering
the signal samples in Algorithm-2. Even if a jammer in-
jects j packets, we only have to store at most (j+1)∗ l/8
bytes, and the size of current bu f f er in Algorithm-3 is
also n∗ l samples (assuming two 16 bits -I, and Q- values
per sample) only. Hence, the storage cost of TREKS is
4∗n∗ l +(j +1)∗ l/8 bytes, clearly within the realms of
possibility with today’s computer hardware.

5.2 TREKS vs. non-continuous Jammers
We consider a discretized time with timeslots of dura-

tion n∗ l chips. We define two different kinds of jammers
that take parameters λ and JSR. λ represents the proba-
bility that a jammer sends a jamming message at a given
timeslot (this corresponds to discretization of a Poisson
memoryless jammer to a Bernoulli jammer), and JSR is

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

S1 S2 S3 S4 S5 S6 S7 S8 S9

P
er

ce
nt

ag
e

of
 F

P
s

D
et

ec
te

d

Key Inferring Stages

(b) FP Detection Stage Distribution (Threshold 2.5)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

S1 S2 S3 S4 S5 S6 S7 S8 S9

P
er

ce
nt

ag
e

of
 F

P
s

D
et

ec
te

d

Key Inferring Stages

(a) FP Detection Stage Distribution (Threshold 1)

Figure 7. Distribution of the FP detection stage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ac

ke
t L

os
s

R
at

e
(P

LR
)

Jammer Power to Signal Power Ratio(JSR)

a. PLR as a function of Budget (Random Jammer)

Budget=1
Budget=5

Budget=10
Budget=15
Budget=20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ac

ke
t L

os
s

R
at

e
(P

LR
)

Jammer Power to Signal Power Ratio(JSR)

b. PLR as a function of Budget (MAC Jammer)

Budget=1
Budget=5

Budget=10
Budget=15
Budget=20

Figure 8. Jammer performance under fixed budget.

the jammer to signal power ratio. The cost of the jam-
mer is λ ∗ JSR, and his goal is to maximize the PLR for
a given budget. Note that because the adversary does not
know when transmissions are happening, the cost of the
jammer should be further scaled by a factor µ which cor-
responds to the data transmission rate. In the following
we consider the best case for the jammer where µ = 1.
The jammer could also send partial messages but this can
be independently addressed with appropriate interleaving
and coding [13]. Hence, we consider following jammers:

• (Random) Jammer-1: Inserts an l-bit message,
each bit spread with a random PN-sequence.

• (MAC) Jammer-2: Inserts an l-bit message, each
bit spread with the PN-sequence generated using the
MAC address of the receiver as the seed.

Consider a data message; it randomly overlaps with two
consecutive timeslots (TS). There are four possible sce-
narios based on if the first, second or both TS are jammed.

• Scenario-1: Only the first TS is jammed.
Impact: Key inferring.

• Scenario-2: Only the second TS is jammed.
Impact: EoM detection.

• Scenario-3: Both TS are jammed.
Impact: Key inferring and EoM detection.

• Scenario-4: None of the TS are jammed.
Note that Scenario-4 implies no packet loss since

there is no overlapping between the jammer and the data
packet. Hence, we only show Scenarios-1,2, and 3 in Fig-
ure 9(a). In Figure 9(b), we compare Scenarios-3 and 4
and show that there is no incentive for the jammer to in-
crease its JSR if its only objective is to increase the FPs.
For a given λ (jamming rate), the expected PLR is

E[PLR] = E1 ∗λ(1−λ)+E2 ∗λ(1−λ)+E3 ∗λ2 +E4 ∗ (1−λ)2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ac

ke
t L

os
s

R
at

e
(P

LR
)

Jammer Power to Signal Power Ratio(JSR)

a. PLR due to different jammers (n=100)

(Random) Scenario-1
(Random) Scenario-2
(Random) Scenario-3

(MAC) Scenario-1
(MAC) Scenario-2
(MAC) Scenario-3

 0.004
 0.005
 0.006
 0.007
 0.008
 0.009
 0.01

 0.011
 0.012
 0.013

 0 10 20 30 40 50 60 70 80 90 100

F
al

se
 P

os
iti

ve
s

(F
P

)

Jammer Power to Signal Power Ratio(JSR)

b. FP due to different jammers (n=100)

(Random) Overlap
(Random) No Overlap

(MAC) Overlap
(MAC) No Overlap

Figure 9. Jammer performance comparison.

where E1,E2,E3,and E4(= 0) are the expected PLR for
above defined Scenarios-1,2,3 and 4 respectively.

Figure 8 shows the expected PLR for Scenarios-1,2,3
and 4. Depending on the budget, the jammer maxi-
mizes its impact on the receiver (PLR). We observe that
Jammer-1 and Jammer-2 attain their optimum approxi-
mately when 10≤ JSR≤ 15. Even in the best case for the
jammer (µ = 1), the jammer needs to spend 10 times more
energy to reduce the throughput to 30%. For µ = 0.1, the
jammer would need to spend 100 more energy then the
communicating to reduce the throughput to 30%.

6 Conclusion
We introduce a method for achieving SS anti-jamming

without a pre-shared key. Our method has zero energy
overhead in comparison with conventional SS commu-
nication. Our proposal relies on an intractable forward-
decoding and efficient backward-decoding mechanism.
We propose several algorithms to optimize the decoding
and show that the computational cost of despreading is
bounded by twice that of conventional SS communica-
tion. Our method has additional benefits such as mak-
ing the communication undetectable until it is too late
for an adversary to act. The proposed method is also
destination-oriented preventing smart-jammers from si-
multaneously impacting multiple receivers.

7 References
[1] B. Awerbuch, A. Richa, and C. Scheideler. A

jamming-resistant mac protocol for single-hop
wireless networks. In ACM PODC, 2008.

[2] E. Bayraktaroglu, C. King, X. Liu, G. Noubir,
R. Rajaraman, and B. Thapa. On the performance
of ieee 802.11 under jamming. In Infocom, 2008.

[3] M. A. Bender, M. Farach-Colton, S. He, B. C. Kusz-
maul, and C. E. Leiserson. Adversarial contention
resolution for simple channels. In SPAA, 2005.

[4] T. Brown, J. James, and A. Sethi. Jamming and
sensing of encrypted wireless ad hoc networks. In
ACM MobiHoc, 2006.

[5] A. Chan, X. Liu, G. Noubir, and B. Thapa. Control
channel jamming: Resilience and identification of
traitors. In IEEE ISIT, 2007.

[6] J. Chiang and Y.-C. Hu. Cross-layer jamming detec-
tion and mitigation in wireless broadcast networks.
In MobiCom, 2007.

[7] T. M. Cover and J. A. Thomas. Elements of Infor-
mation Theory. Wiley, 2006.

[8] S. Gilbert, R. Guerraoui, and C. Newport. Of ma-
licious motes and suspicious sensors: On the ef-
ficiency of malicious interference in wireless net-
works. In OPODIS, 2006.

[9] B. Gupta, S. Gupta, and S. Chang. Performance
analysis of elliptic curve cryptography for ssl. In
MobiCom, 2002.

[10] http://www.cv.nrao.edu/ pdemores/gpu/. Gpu
benchmarking.

[11] http://www.openssl.org/. Openssl toolkit.

[12] M. Li, I. Koutsopoulos, and R. Poovendran. Opti-
mal jamming attacks and network defense policies
in wireless sensor networks. In INFOCOM, 2007.

[13] G. Lin and G. Noubir. On link layer denial of ser-
vice in data wireless lans. Wirel. Commun. Mob.
Comput., 2005.

[14] K. B. Rasmussen, S. Capkun, and M. Cagalj. Sec-
nav: secure broadcast localization and time syn-
chronization in wireless networks. In MobiCom,
2007.

[15] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K.
Levitt. Spread spectrum communications; vols. 1-3.
Computer Science Press, Inc., NY, 1986.

[16] W. Stallings. Cryptography and Network Security.
Prentice Hall, Inc., NJ, 2006.

[17] M. Strasser, C. Popper, S. Capkun, and M. Cagalj.
Jamming-resistant key establishment using uncoor-
dinated frequency hopping. In ISSP, 2008.

[18] P. Tague, M. Li, and R. Poovendran. Probabilistic
mitigation of control channel jamming via random
key distribution. In PIMRC, 2007.

[19] P. Tague, S. Nabar, J. Ritcey, D. Slater, and
R. Poovendran. Throughput optimization for mul-
tipath unicast routing under probabilistic jamming.
In PIMRC, 2008.

[20] P. Tague, D. Slater, G. Noubir, and R. Poovendran.
Linear programming models for jamming attacks on
network traffic flows. In WiOpt, 2008.

[21] W. Xu, K. Ma, W. Trappe, and Y. Zhang. Jam-
ming sensor networks: attack and defense strate-
gies. IEEE Network, 2006.

