
Purifying Causal Atomicity

Benjamin S. Lerner and Dan Grossman

University of Washington
{blerner, djg}@cs.washington.edu

Abstract. Atomicity-checking is a powerful approach for finding subtle
concurrency errors in shared-memory multithreaded code. The goal is to
verify that certain code sections appear to execute atomically to all other
threads. This paper extends Farzan and Madhusudan’s recent work on
causal atomicity [1], which uses a translation to Petri nets to avoid much
of the imprecision of type-system based approaches, to support purity
annotations in the style of Flanagan et al. [2]. Purity avoids imprecision
for several key idioms, but it has previously been used only in the type-
system setting. Our work is (1) compositional : a different purity analysis
could be implemented with minimal extra effort, and similarly another
atomicity criterion could be checked without changing the purity anal-
ysis, and (2) a conservative extension: the analysis of any program that
does not use purity annotations is equivalent to the original analysis.

1 Introduction

Static analysis of lock-based shared-memory multithreaded programs is a valu-
able tool for finding programming errors or verifying their absence. An important
recent trend is toward analyzing higher-level concurrency properties. In particu-
lar, instead of detecting data races (e.g., a write to a thread-shared variable not
protected by a lock), we can verify that an entire code block is atomic: it ap-
pears to happen either all-at-once or not-at-all to any other thread. Atomicity is
a common requirement for code blocks, and the absence of data races is neither
necessary nor sufficient for atomicity.

Atomicity checking takes a multithreaded program with certain code sections
annotated that they should be atomic, which we write atomic { s }, and verifies
that s uses mechanisms such as locks correctly to achieve atomicity. Prior work
on static analysis for atomicity checking has used either type-and-effect systems
or model-checking techniques. Reachability queries over Petri nets, which our
work uses, represent a recent effort in the latter style.

The type-system approach [2–6] uses syntax-directed rules to assign each pro-
gram statement an atomicity based on Lipton’s theory of movers [7]. Though ef-
ficient, elegant, and relatively easy to prove correct, type systems are susceptible
to false positives (over-approximations) resulting from (1) the syntactic struc-
ture of the code, and (2) the thread-modular assumption that any other code in
the program might run in parallel with any atomic section. Model-checking ap-
proaches [8–11] can improve precision by modeling the whole program and track-
ing inter-thread dependencies through shared variables and locks. Using Petri

nets to model programs is particularly convenient because data- and control-
dependencies are modeled directly and atomicity checking can be formulated as
a query over the net’s state-space that existing tools can process.

Our work extends and adapts prior Petri-net work [1] to support purity an-
notations, which previously have been investigated only via type systems [2]. A
pure block pure { s } must either do no writes or terminate “abruptly” by exe-
cuting a break statement. As later examples will demonstrate, pure blocks let us
revise the definition of atomicity to allow several correct coding idioms that oth-
erwise would be considered non-atomic (i.e., atomicity-checking false positives).
However, a sound analysis must ensure pure blocks are, indeed, pure, meaning
they terminate abruptly or have no effect.

Our overall contribution is an atomicity checker supporting purity annota-
tions using Petri nets. This approach avoids the false positives from type sys-
tems and the false positives from idioms requiring purity. We have rigorously
defined our analysis for a small core programming language, implemented it (us-
ing CPN-Tools [12] for building and querying Petri nets), and checked many
examples including all examples in this paper. More specifically, our work has
produced the following insights, results, and contributions:

– We show that the Petri-net model of causal atomicity is strictly more pow-
erful than the type-system model of reducible atomicity. That is, every pro-
gram that type-checks under the system in [13] can pass as causally atomic
under the model in [1]. To our knowledge, this is the first formal treatment
relating the expressiveness of a type-system approach for atomicity checking
to a model-checking approach.

– We show how purity-checking can be encoded in a Petri net using several
key technical insights, such as maintaining lock-sets in thread-local storage
and using colored markings to track whether a pure block has done a write.

– We show that a single Petri net can compute both purity- and atomicity-
checking in a way that is a conservative extension of the atomicity analysis
(if a program has no pure-blocks, the checker is equivalent to prior causal-
atomicity checkers) and compositional (purity- and atomicity-checking are
essentially orthogonal, allowing variants of each to be developed indepen-
dently). Moreover, we show the combined analysis is more precise than the
union of the two analyses.

Space constraints compel only a high-level overview of our analysis, focusing
on how purity requires several novel extensions over the closely related work of
Farzan and Madhusudan [1]. A companion technical report [14] contains formal
definitions and proofs. Our implementation, including the full translation from
programs to Petri nets, is also available [15]. Section 2 explains the benefits
of purity and Petri nets via examples. Section 3 introduces our core language
and the basics of Petri nets. Section 4 defines our translation from programs
to Petri nets and an atomicity-checker over the resulting net. Section 5 briefly
describes our implementation. Section 6 formally describes how our approach is
more powerful than type systems with purity annotations.

2

2 Atomicity Analyses by Example

2.1 Reducible atomicity via type systems

Lipton’s theory of movers [7] categorizes state- atomic {
t = balance;

acquire(m);

if (t > 10)

then balance := 0

else balance := t-10;

release(m);

}

Fig. 1. Bank withdrawal

ments by how they can be reordered relative to
other threads’ statements without affecting the
final result. For example, a lock acquisition com-
mutes with a subsequent operation in another
thread, as no other thread can use the lock just ac-
quired; we say acquisitions are right movers. Clas-
sifying variable accesses depends on their race-
freedom: if no race exists, the access can commute
in both directions; if there is a race it cannot com-
mute. Sequences of statements with zero or more right-movers followed by at
most one non-mover followed by zero or more left-movers always can be reduced
to a serial execution; this property is called reducible atomicity.

Flanagan and Qadeer [3] use a type-and-effect system to define a static anal-
ysis that checks for reducible atomicity. For example, for the code in Figure 1,
where t is a local variable and balance is a global variable normally protected
by lock m, the type system can determine the atomic-block is incorrect. Swapping
the first two statements fixes the error and atomicity-checking succeeds.

Reducible atomicity has two key limitations later examples demonstrate.
First, type-checking follows the syntactic structure of the code, which leads
to brittle results: clearly equivalent programs can differ in whether atomicity-
checking succeeds. Second, atomicity-checking one thread does not examine the
code in other threads to determine more precisely what effects might be observed.

2.2 Causal atomicity via Petri nets

One limitation of mover-based systems comes from over-approximating the ef-
fect of variable accesses. In Figure 1, a race condition exists where another
thread could change balance between the two accesses; this race makes atomic-
ity checking fail. However, if some program invariant prevents the race condition
(sometimes called “higher-order locking”), then the code is actually atomic.

This weakness is the strength Thread 1 Thread 2 Thread 3

s := X atomic { t := Y

X := 1;

Y := 2

}

Fig. 2. Causally but not reducibly atomic

of the Petri-net approach of causal
atomicity [1]. By examining the
state space of whole-program be-
haviors, it can use additional con-
text to see if the code in Figure 1
is atomic. As an extreme example,
checking causal atomicity always succeeds if there is only one thread. More re-
alistically, it can detect that the program in Figure 2 is causally atomic, despite
the data races on X and Y. As Section 4 explains, by translating the program to
an appropriate Petri net, we can check that neither one of the other threads can
tell that it observed an intermediate state of the atomic block.

3

2.3 Pure-reducible atomicity

Several well-known idioms, such as double-checked locking and waiting on con-
dition variables, are not reducibly atomic.1 But no intermediate states of these
idioms are observable, and their behavior in all cases is indistinguishable from
cases where they are indeed reducibly atomic. For these idioms, this more “ab-
stract” approach to atomicity suffices to show program correctness; conversely, if
a correctness property fails under this broader notion, it also fails under reducible
atomicity. We can make this observation precise using the notion of purity.

In Figure 3, the variable x is atomic { block {
pure { if (x != null) then { break } };
acquire(l);

if (x == null) then { x := newX };
release(l);

}}
Fig. 3. Double-checked locking: pure-
reducibly atomic, but not reducible

read without holding the protect-
ing lock l, a potential race con-
dition and therefore an “atomic”
operation using reducible atomic-
ity. The critical section guarded
by l is also an “atomic” opera-
tion; the sequence of two atomic
operations is not atomic. However, consider all ways this code can actually run:
If the first if-test succeeds, the code breaks and skips the remaining code; this
code path is indeed atomic. Otherwise, the if-statement does nothing and is fol-
lowed by the critical section. Crucially, in this latter case, the entire pure block
modifies no state. So if control reaches the pure block’s end, the block is equiva-
lent to a no-op, and a no-op followed by an atomic operation is atomic. Flanagan
et al. [2] generalized this observation into the notion of pure-reducible atomicity
(the authors used the term “abstract atomicity”): If a pure block always either
breaks or modifies no state, then atomicity checking can treat it as a no-op.
(Note: Without the guard protecting x := newX, the code still is pure-reducibly
atomic, though it is not atomic when run. As noted above, pure-reducible atom-
icity guarantees correctness only when the abstract and concrete behaviors of
the program coincide, which is not true here.)

In the example above, the purity annotation
atomic {
acquire(l);

pure { while (x) {
release(l); acquire(l)

}}
...body...

release(l);

}
Fig. 4. Simple wait loop

ensures that pure code changes no shared state.
In general, it must ensure also that no locks are
changed (no initially-held locks are left released,
nor initially-unheld locks acquired). In Figure 4,
the code acquires lock l and waits until x becomes
false; we model wait as a release/acquire pair.
Such code is never reducibly atomic. But each loop
iteration is pure, and every execution of the atomic block is equivalent to one
where the loop condition is false even before the block begins: such an execution
acquires the lock, skips the loop, executes the body and releases the lock, which
is an atomic sequence (assuming body is atomic). Unfortunately, the code must
be rewritten to accomodate the syntactic restrictions of the type-system before it
will validate as pure-reducibly atomic. As the authors noted, not all uses of wait
can be so reorganized, even when such uses should be pure-reducibly atomic.
1 It is well known that the double-checked locking idiom is incorrect under many

relaxed memory-consistency models [16]; we assume sequential consistency here.

4

Thread 1 Thread 2 Thread 3 Thread 4

s := X atomic { t := Y Z := 5

X := 1;

pure { while (Z != 5) skip };

Y := 2

}

Fig. 5. Pure-causally atomic, but not reducibly, pure-reducibly or causally atomic

2.4 Pure-causal atomicity

In the rest of this paper, we show that combining the advantages of pure- re-
ducible atomicity and causal atomicity yields a system that can validate all the
above examples as well as examples no previous work can, under a definition we
call pure-causal atomicity.

In the same way causal atomicity can validate programs more precisely than
reducible atomicity, so pure-causal atomicity can validate programs more pre-
cisely than pure-reducible atomicity. The program in Figure 5 highlights these
differences. Looking at the first three threads, and ignoring the access to Z for
a moment, we see the same example as in Figure 2, so we know this cannot
be pure-reducibly atomic. Since it has a loop that may repeatedly access Z, a
shared variable modified in the fourth thread, we know this cannot be causally
atomic. Yet this is a realistic scenario: one producer thread (thread 4, above);
two consumer threads (threads 1 and 3); and a thread which produces some
output, waits for an input, and produces more output (thread 2). Under our
system, this code does validate as pure-causally atomic: all iterations through
the loop are pure, and hence can be skipped.

3 Preliminaries

3.1 The General Approach

We explain our checker for pure-causal atomicity in stages. We present the core
language in Section 3.2, and the essential concepts of Petri nets in Section 3.3.
Our approach is based heavily on causal atomicity [1], so we begin by explaining
that system’s design. Causal atomicity first inductively translates programs from
the source language into a Petri net that models the control flow and inter-thread
contention over shared variables and locks, and abstracts other details (such as
the values of variables). The precise notion of causal atomicity is then expressible
as a decidable property of traces over that Petri net. Finally, this property can be
directly computed using colored reachability, a standard analysis over Petri nets
supported by existing tools. We present the translation of programs to Petri nets
in Section 4.1, the definition of causal atomicity in Section 4.2, and the coloring
rules in Section 4.3.

Our notion of pure-causal atomicity extends each of these three stages. First,
we extend the translation function to support pure annotations (Section 4.4).
We then refine the key property over traces to incorporate the results of the

5

P ∈ Prog ::= ·
∣∣ T ||P

T ∈ Thread ::= s

s ∈ Stmt ::= x := e
∣∣ s ; s

∣∣ if e s s
∣∣ loop s

∣∣ atomic s
∣∣ skip∣∣ acquire l

∣∣ release l
∣∣ block s

∣∣ break ∣∣ pure s

e ∈ Exp ::= c
∣∣ x

∣∣ p(ē)

x ∈ V ar

c ∈ Const = Z] B
p ∈ Prim = ArithPrim] LogicPrim

l ∈ Lock

Fig. 6. Syntax of our language

purity analysis (Section 4.5). Finally, we extend the coloring rules to implement
this refined definition (Section 4.6).

3.2 The language

Figure 6 defines the syntax of our language. Most of the statement forms (skip,
if, etc.) have standard semantics. A loop repeats infinitely, and requires a break
statement to abruptly exit by jumping to the end of the nearest enclosing block

statement. We define while (e) { s } def= block loop { if (e) then s else break }.
A program is a fixed number of threads, which we denote by T to distinguish

them from substatements. The language also has two hooks for our analyses: a
pure { s } statement indicates s should be pure, while an atomic { s } statement
indicates s should be atomic. Both annotations have no runtime effect but are
verified statically. Purity requires that on normal termination a code block not
perform any variable writes or leave any locks modified (i.e., an unmatched
acquire or release).

The semantics of break statements is to terminate the current block. As
such, using break within a pure block transfers control outside the block; such
“abruptly” exiting paths are not checked for purity, thereby permitting pure
blocks to cause side-effects on abrupt termination (as in the desugaring of the
while loop in Figure 5 above), and are key to purity’s utility.

3.3 Petri Nets

A Petri net [17] is a triple N = (P, T, F), with P a set of places, T a set of
transitions, and F a flow relation F ⊆ (P × T) ∪ (T × P). For our purposes,
transitions model instructions in a program, and places model resources such as
variables, locks, or the current program position within each thread.

Places can be marked with tokens, which are drawn from a finite set of colors.
The assignment of tokens to places is called a marking. We will restrict ourselves
to nets where in all reachable markings each place has at most one token. A
transition t is enabled when all its pre-conditions (all places p for which an arc

6

(p, t) exists) are marked. When enabled transitions fire, they remove the tokens
on their pre-conditions and place new, possibly differently-colored, tokens on
their post-conditions (all places p with an arc (t, p)). Starting from some initial
marking M0, a sequence of transitions t1, t2, . . . is called a firing sequence if tran-
sition ti is enabled in marking Mi−1 and, after firing, produces marking Mi; each
marking Mi is reachable from M0. For our purposes, as transitions correspond to
instructions in the program, firing sequences correspond to execution schedules
of the program. Moreover, a marking summarizes the state of the program: the
current program positions for each thread, the sets of locks currently held, and
various state properties on variables. An example Petri net constructed by our
analysis is drawn in Figure 8 on page 9; not shown is the marking, which includes
the variable places and one program counter at some point in each thread.

The neighborhood of a transition is defined as the union of its pre- and post-
conditions. If the neighborhoods of two transitions t1, t2 are disjoint, the tran-
sitions are said to be independent, denoted t1It2. Intuitively, if t1It2, the firing
of one transition cannot immediately influence the firing of the other, and once
both transitions have fired consecutively, the marking of the net is guaranteed to
be the same regardless of the firing order. All transitions that are not indepen-
dent are called dependent, denoted t1Dt2. For our purposes, as places correspond
to variables, locks and program positions, dependencies between transitions cor-
respond to control- and data-dependencies in the program. It is this notion of
dependence that gives rise to the definition of causal atomicity. Given a firing se-
quence, the dependence relation captures exactly which scheduling interactions
between threads matter, and which are artifacts of the current schedule.

To abstract away from firing sequences and capture the dependence notion
directly, define a trace of a Petri net as a triple (E ,�, λ), where E is a set of
events corresponding to the firing of transitions, λ : E → T labels an event with
the transition that fired, and � is a partial order on events that respects the
dependence relation. Specifically, if λ(e1)Dλ(e2), then e1 � e2 ∨ e2 � e1, and
if e1≺· e2, then λ(e1)Dλ(e2), where e1≺· e2

def= e1 � e2 ∧ @e.e1 ≺ e ≺ e2. These
definitions imply that firing sequences are linearizations of traces; they are one
particular ordering that respects dependencies. Furthermore, all firing sequences
corresponding to the same trace lead to the same marking (i.e., program state).

4 Atomicity checking via Petri nets

4.1 Causal atomicity: Building the net

Figure 7 shows part of the translation function TRANS(s) from program state-
ments into Petri nets. Circles represent places, boxes represent transitions, and
arrows represent the flow relation (ignore for now the dashed lines). “Circle-
boxes” represent subnets of the Petri net generated by recursive calls to TRANS,
and depict a key structural property of the translation: any statement or ex-
pression yields a subnet beginning with a unique place pin and ending with
some number of arcs out of some number of transitions; this structure is induc-
tively maintained by the translation. Our translation is value-insensitive. For

7

atomic S

x p(e
1
, ..., e

n
)c

release l

loop S if e S S’x := e S ; S’

skipacquire l

TRANS(e)

write

x
1 x

n

...

TRANS(S)

TRANS(S’)

TRANS(S)
T(e)

e = T e = F

TRANS(S) TRANS(S’)

TRANS(S)skip

l
open

acq

read

x
i

TRANS(e
n
)

TRANS(e
1
)

...

c

p
inp

in

p
in

p
in

p
in

p
in

p
in

p
in

l
i
-held

l
i
-other

l
open

rel

p
in

l
i
-held

l
i
-other

Fig. 7. The TRANS function for basic constructs in our language. Dashed lines and
the li-held and li-other places will be used later.

example, TRANS(if (e) then S else S′) first translates the guard expression,
TRANS(e). The two transitions e = T and e = F are thereby enabled, and pre-
cisely one of them, chosen nondeterministically, fires, at which point the token is
passed into TRANS(S) or TRANS(S′). The outgoing arcs of the if statement
are the union of the outgoing arcs of both branches.

While translating statements encodes the control flow, we must also encode
all resources—variables and locks—that the program uses. For each variable v
we construct an array of variable places vi for each of the n threads 1 ≤ i ≤ n,
each marked with a single token. Crucially, reading a variable v in thread i
depends only on the place vi, while writing to v depends on every place v1, . . . , vn.
This ensures all writes are causally related and read-write conflicts are faithfully
reproduced, while multiple read events are causally independent. To model lock
operations, a single place lopen is produced for every lock l, marked with a single
token. Acquiring a lock removes the token, while releasing a lock replaces it. The
natural behavior of the net therefore models the mutual exclusion of locks—see
the TRANS case for lock acquisition. Later we will revise this encoding slightly
to support the needs of purity checking.

The complete translation for a given program P = T1|| · · · ||Tn, then, trans-
lates each thread, the variable places and the lock places as above, and adds an
ERROR place to be described below. We mark every variable place, every lock
place, and the entry point of each thread to initialize the net. An example of
this translation, showing the (unmarked) net corresponding to the program in
Figure 2, is shown in Figure 8.

8

4.2 Defining causal atomicity

The essence of atomicity is that all instruc-

y1

y2

y3

t1

t2

t3

s1

s2

s3

begin

1

X:=1

2

Y:=2

end

X

s:=X

Y

t:=Y

x1

x2

x3

Fig. 8. Translation of Figure 2

tions in an atomic block must appear to
happen indivisibly to all other threads. As
such, given a trace with two events in an
atomic block in some thread T (i.e., events
whose labels are transitions in TRANS(T)),
no event in some second thread T ′ (i.e.,
events labeled by transitions in TRANS(T ′))
should be causally “between” the two. Such
events would show a data dependence (or
antidependence) flowing out of and back
into the supposedly atomic block, violat-
ing its atomicity.

Formally, let eT denote that event e oc-
curs in thread T , and let S be the subnet from translating some atomic block
in a program P . Then S is causally atomic2 if there does not exist a trace where

∃eT
1 , e

T ′

2 , eT
3 ∈ E . e1 ∈ START(S) ∧ e1 � e2 � e3 ∧ @eT ∈ END(S) . e1 � e � e3

where START(S) and END(S) are the sets of events labeled by the first and
last transitions that can possibly fire in S, and T and T ′ are distinct threads.

4.3 Computing causal atomicity: coloring the net

Rather than check for causal atomicity violations by generating and examining
an infinite number of traces (which is not an algorithm), we examine the state
space of possible markings of the net. Specifically, we can use colored tokens
to encode our definition to see if causality flows across threads in an unaccept-
able way, and query whether a particular (bad) coloring is possible. We simply
give each mark a color drawn from the set {A,B, Y,R }, and change colors as
transitions fire:

– Initially, all tokens are colored A (achromatic).
– On entry to an atomic block in thread T , the mark may be turned B (blue).

This corresponds to event eT
1 above, and means we guess this block may

in fact be non-atomic. Any transition in thread t with any B inputs will
propagate B to all outputs.

– If a transition in another thread T ′ has a B input, it will turn all outputs Y
(yellow); this corresponds to event eT ′

2 . Any transition not in thread T with
any Y inputs will propagate Y to all outputs.

– Finally, if a transition in thread T sees a Y input, it turns the mark R (red);
this is the final event eT

3 , denoting an atomicity violation. If the end of the
atomic block is reached (event eT) and the color is not R, this trace does
not show an atomicity violation (we guessed wrong turning the token B).

2 This is a slightly different formulation than the definition in [1], but we prove the
two equivalent in our companion technical report [14].

9

If there is no trace where the token is turned B at the start of some atomic block
and turns R by the end, then the program is causally atomic. This algorithm will
always terminate, as our state space—the set of reachable markings—is finite
(recall we constructed our net such that markings are simply subsets of the net’s
places), and there exist efficient algorithms to answer these reachability queries
lazily, without computing the entire state space.

To see these rules in action, consider how they might apply to the net in
Figure 8. Initially all marks start uncolored; when the begin transition fires,
the mark in thread 2 turns blue. When thread 2 executes X := 1, the place x1 is
marked blue as well. Suppose that thread 1 now starts and fires X; its token (and
that of x1) would turn yellow. However, there is no other transition in thread 2
that will access x1, so there is no way for the yellow token to turn red. Similar
arguments can be made for other execution orders.

4.4 Pure-causal atomicity: Enhancements for purity

The translation described so far checks causal atomicity, but contains no way to
check for or exploit purity in the program. We now show how to encode a purity
analysis as a query over Petri nets, using its results to improve the atomicity
queries, and moreover querying both purity and atomicity with the same net.

Figure 9 depicts the rest of the TRANS function. First, for each lock l,
acquire and release operations now not only access a global place lopen, but
also shuttle a mark between two thread-local places, li-held (only marked when
lock l is held by thread i) and li-other (marked otherwise). These two places
permit a thread to examine the set of locks it currently holds, without any
causal dependencies on other threads (i.e., without accessing any “thread-shared”
places); this property will be crucial for purity checking. Next, block statements
define a target for the non-local jump behavior of break statements; this is
depicted in our diagrams by the horizontal dashed arrow of break (and those of
all inductive calls to TRANS). All blocks need to provide is a place for those
arcs to target; this place then outputs via a normally-terminating arc.

Almost all the increased complexity comes from the translation of pure state-
ments. We need to ensure that:

– On any control-flow path that reaches the end of the pure block, the thread
does no writes, any locks released are (re)acquired, and any locks acquired
are released. Otherwise a purity violation is reported.

– On any control-flow path that reaches a break statement before the end of
the pure block, any causal-atomicity checking (for an atomic block in this or
any thread) is performed as usual, possibly reporting an atomicity violation.

– On any control-flow path that reaches the end of the pure block, the pure
block’s actions must not lead to an atomicity violation. These are exactly
the false positives we avoid via purity annotations.

To encode these three issues, entry to TRANS(pure s) makes a nondeterminis-
tic 3-way choice. If the purity transition fires, the subsequent execution of the

10

Snapshot L for thread 1: ensures that
 (old-L’1-held = L1-held) ∧ (old-L’1-other = L1-other)

L1
other

L1
held

copy
L1-held

oldL1
held

copy
L1-other

oldL1
other

SN
A

P-
SH

O
T

L1
held

L1
other

AND AND

ERROR

AND

Check L for thread 1: ensures that
 ((old-L’1-held = L1-other) ∨ (old-L’1-other = L1-held)) ⇔ ERROR

AND

C
H

EC
K

oldL1
held

oldL1
other

begin-pure

end-pure

TRANS(S)

Snapshot L, 1Snapshot N, 1 ...

Translation of PURE { S }
ERROR is globally unique
Places for locks are not shown

check-locks

Check L, 1 Check N, 1...

ERROR

check-purity

skippurity atomicity

start-snap

end-snap

oldL1
held

oldL1
other

oldN1
held

oldN1
other

p
in

out

TRANS(S)

Translation of BLOCK { S }

cleanup

break

p
in

Translation of break

oldL1
held

oldL1
other

oldN1
held

oldN1
other

...

Fig. 9. The rest of the TRANS construction to implement purity checking of locksets
and variable accesses. Each lock place L and Li-other starts off marked.

block will fail if the block is not pure (succeeding “vacuously” if a break state-
ment is reached) and no atomicity checking is done. If the atomicity transition
fires, the subsequent execution of the block will do normal atomicity checking
(succeeding “vacuously” if the end of the block is reached without executing a
break statement). If the skip transition fires, control transfers immediately to
the end of the pure block.

The skip option is what allows the purity option to maintain no informa-
tion with regard to atomicity checking. Since the purity option ensures no path
to the end of the pure block can affect or be affected by another thread, no tran-
sitions that occur along such a path can themselves lead to a violation of causal
atomicity. However, we cannot completely ignore control paths that happen to
include pure blocks that do not execute break statements. For example, code of
the form x := 1; pure{...}; y := x might lead to an atomicity violation; the skip
option covers such cases.

11

Let us now focus on how we actually check for purity when the purity
transition is fired. To handle variable mutations, we initialize the color of the
token to a “known good” state, and update it to record a “potential problem”
once a write occurs. On exiting a pure block normally, only the known-good
color can continue, while the other leads to ERROR. If the block breaks, however,
this color check is bypassed, matching our definition that abrupt termination
can mutate state. More formally, the color checks ensure that all mutations are
post-dominated by a break statement.

To handle lock manipulations, we take a “snapshot” of the set of held locks
just before executing the body of the pure block, and “check” that the same
locks are held on normal termination. Two points are crucial to the correctness
of these constructions: first, we are guaranteed that precisely one token is present
on either li-held or li-other, and therefore precisely one transition is enabled
in the snapshot construction. The snapshot maintains this property for its two
output places, old-li-held and old-li-other, and therefore precisely one of the four
transitions is enabled in the check construction. Second, when a pure block is
contained within a loop (for instance, loop { block { pure { break } } }), we must
ensure break statements clean up the snapshots’ tokens before exiting the pure
block; this explains the rest of the construction for break in the diagram.

4.5 Defining pure-causal atomicity

As described above, four potential kinds of traces are possible: a trace may fire
purity and so check the body for purity; a trace may fire atomicity and exit
abruptly, and so check the program for causal atomicity; a trace may fire skip
and model the normal termination of the body, and so check the program for
causal atomicity; or a trace may fire atomicity and exit normally, in which case
the results are unneeded (any real errors will be found either by purity checking
or by abrupt termination; the remainder are false positives)3.

To formalize pure-causal atomicity, we again want no event to come “be-
tween” two events in an atomic block, but now we need to reason solely about
the proper kinds of traces. Therefore, define a non-pure trace as one where

∀e ∈ TRANS(pure s) . λ(e) = skip∨
λ(e) = atomicity ∧ @e′ ∈ CURRENT(pure s, e) . λ(e′) = tcheckPurity

where CURRENT(pure s, e) is the set of events in one contiguous execution
TRANS(pure s) that contains the event e. This definition selects the non-
“vacuous” traces, exactly those which fire the atomicity or skip transitions
and, when executing the body of a pure block, excecute a break statement.

3 There is a subtlety involving infinite traces, which may run forever without termi-
nating or breaking (for example, pure {X := 42; loop { skip } }, which is not pure
but will neither terminate nor break). To soundly reject such programs, we prag-
matically require that some final transition always be reachable from every place in
a pure block, which still permits all purity idioms we have so far encountered.

12

Only in these traces will our conclusions about pure-causal atomicity be valid.
Formally, let P be a program, and let S be the subnet from the translation of
some atomic block in P . Then S is pure-causally atomic if there does not exist
a non-pure trace where

∃eT
1 , e

T ′

2 , eT
3 ∈ E . e1 ∈ START(S) ∧ e1 � e2 � e3 ∧ @eT ∈ END(S) . e1 � e � e3

Note that the definition of purity used by pure-causal atomicity is conserva-
tive: writing c to x when x already holds c changes no state but is considered
impure (recall, our translation does not model the values of variables); addition-
ally, breaking unnecessarily after a pure but atomic action may lead to atomic-
ity violations. A more robust notion of purity would only change the translation
slightly, and not change the definition of pure-causal atomicity.

4.6 Computing pure-causal atomicity: Coloring the net

To extend our analysis to support purity, tokens in our net actually have a
color drawn from the set {A,B, Y,R }×{n, o, b,m }. The first component tracks
causal atomicity and is propagated using the rules described above. The second
component tracks purity and its integration with pure-causal atomicity. Initially,
all tokens are colored n (not in pure). On entry into a pure block, one of three
transitions must be taken (all rules leave the first component unchanged):

– If skip fires at the start of the block, the purity color is left at n.
– If atomicity fires, the purity color is changed to m (must break), indicating

this must be a non-pure trace. Since we are checking atomicity, we permit
all the color changes described in Section 4.3. If there is a violation of causal
atomicity, at least one variable or lock place must be colored R; we therefore
add a transition from every variable or lock place to ERROR, coloring it R
when the input place turns R. If we get to the check-purity transition, the
trace succeeds vacuously, as it was not properly a non-pure trace (in the
sense above), and no conclusions can be drawn. To handle this possible non-
termination of the trace, we disable the transitions to ERROR until all pure
blocks have terminated, at which time we are correct to report the violation.

– Finally, if purity fires at the start of the block, we turn the mark o (okay).
This trace checks for purity, so we disable the atomicity coloring rules—the
only way this trace can reach ERROR is if the block is not causally pure.
The color o remains unchanged until a variable write, at which point it
turns b (bad). When the block terminates normally, the checkpoint confirms
that the locks have not been changed, and turns ERROR R otherwise. When
check-purity is reached, a b token turns R and flows to ERROR, while an
o token causes the trace to abort (purity checking succeeded on this trace,
but all further atomicity checking is invalid since we ignored potential causal
dependencies).

Similar to our informal justification for the causal-atomicity coloring rules above,
the purity coloring rules for purity n and m pick out precisely the non-pure traces
such that the atomicity colors again correspond to these events; additionally the
coloring rules for o and b identify any purity violations.

13

5 Implementation

We built a prototype checker for the algorithm presented above, using CPN-
Tools [12, 18]. Our toolchain accepts a program in a concrete syntax resembling
Figure 6 and compiles it to a set of Petri nets, each designed to test a single
atomic block of the source program. These nets are each read by CPN-Tools,
which in turn constructs the state-space model. Each net contains the pure-
causal atomicity reachability query, written in Standard ML using the library
functions exported by the tool. If any of the nets satisfy the query, i.e., ERROR is
colorable with a red token, then the source program is not pure-causally atomic.
If all nets fail the query, the source program is pure-causally atomic.

Our implementation verifies all the examples in this paper as atomic (except
the first, which is correctly rejected as not atomic), and correctly rejects variants
of the examples that break atomicity. As in [1], we leave the extending of our
approach to full-scale languages to future work, but we see no new fundamental
problems. The toolchain and examples are available from our website [14, 15].

6 Expressiveness of pure-causal atomicity

The preceding sections have defined our pure-causal atomicity analysis, and ex-
plained how we compute the results for a given program. We showed in Sec-
tion 2.4 that pure-causal atomicity can check examples no prior system could.
The following two results show our translation to Petri nets also does not deem
any programs non-atomic that the type-system approache validates. We state
the formal results here, and sketch the essential ideas of the proofs. Properly
formalizing these results requires a full definition of the type systems for purity
and (pure-)reducible atomicity (see the technical report [14] for full details):

Theorem 1. For every reducibly-atomic program P that has no pure blocks, all
atomic blocks in P are causally atomic when translated into Petri nets.

Sketch of Proof. By structural induction on each statement s in P ; we strengthen
the induction to show that if s type-checks as reducibly atomic (recall the type
system ascribes a mover to every statement, not just atomic blocks) and all
substatements of s are causally atomic, then s itself is causally atomic. We show
the most interesting case here, of sequencing two statements.

By construction, every transition in TRANS(s) has a neighborhood consist-
ing solely of places in s’s thread, variable places (if it is a variable access) or lock
places (if it is a lock operation). Therefore, causal dependencies between threads
can only occur through actual contention over shared resources.

Consider the sequence s1; s2 appearing in the source program. Assume in-
ductively that both statements type-check, that their individual translations are
causally atomic, and that s1; s2 type-checks as atomic. We proceed by contra-
diction, assuming that s1; s2 is not causally atomic when translated into a Petri
net. It follows that if the TRANS(s1; s2) is to not be causally atomic, then there
must be some events eT

1 ∈ TRANS(s1), eT
3 ∈ TRANS(s2), and some other event

eT ′

2 such that e1 � e2 � e3. Pick e1 to be the last event in TRANS(s1) to still

14

be causally before e2, and pick e3 to be the earliest event in TRANS(s2) after
e2. (We know e1 and e3 cannot both be in the same substatement, or else that
substatement would not be causally atomic, contradicting our earlier assump-
tion.) By the above paragraph, if all three events are causally dependent and
in different threads, then they must access locks or variables. Suppose all three
events access the same lock (the variable case is similar). Then we know e1 must
be an acquire, and the lock must be held at least until e2. If so, then e2 cannot
happen between the two events, because no other thread can manipulate a lock
while it is held. We therefore have a contradiction: no such event e2 can exist. ut
Theorem 2. For every pure-reducibly atomic program P , all pure blocks in P
are actually pure and all atomic blocks in P are pure-causally atomic when
translated into Petri nets.

Sketch of Proof. The proof is very similar to that of the previous theorem, by
structural induction on statements s in P ; we strengthen the induction to show
that if (1) s type-checks as pure-reducibly atomic, (2) all pure blocks in s are
indeed pure (proven separately; see [14]), and (3) all substatements of s are
pure-causally atomic, then s itself is pure-causally atomic. We sketch the key
new case handling pure blocks.

Assuming that a pure block s = pure { s′ } is pure-reducibly atomic, suppose
that TRANS(s) is not pure-causally atomic; we show this leads to a contradic-
tion. Looking at the typing rules for pure-reducible atomicity, we are guaranteed
by (1) that s′ itself is pure-reducibly atomic; by (2) we know that s′ is indeed
pure and, using (3), by induction we therefore know TRANS(s′) is pure-causally
atomic, i.e., there does not exist a non-pure trace where events e1 and e3 in
TRANS(s′) satisfy the condition in pure-causal atomicity. Therefore, if there is
a violation of the pure-causal atomicity of TRANS(s), at least one of e1 and e3
must correspond to transitions not in s′.

Examining the construction of TRANS(pure s′), we see that the only tran-
sitions not in TRANS(s′) are part of the constructions we introduced to check
purity. Crucially, each of these transitions is causally dependent only on other
transitions in the current thread (this is why we needed the li-held and li-other
places to be thread-local—the snapshot and checkpoint constructions can access
them without any dependence on other threads); said another way, they are
independent of all other threads. As a consequence, no event corresponding to
these transitions can create a causal dependence with other threads, contradict-
ing our assumption that TRANS(s) is not pure-causally atomic. ut

7 Conclusion

We have defined a new notion of pure-causal atomicity, and shown that it extends
both causal atomicity and pure-reducible atomicity in expressive power. It uses
a non-trivial encoding of purity checking in Petri nets, and shows how to incor-
porate purity checking nearly orthogonally to atomicity checking. We formally
show that causal atomicity is a conservative extension of reducible atomicity,
and that pure-causal atomicity likewise extends pure-reducible atomicity.

15

References

1. Farzan, A., Madhusudan, P.: Causal atomicity. In: Computer Aided Verification.
(2006) 315–328

2. Flanagan, C., Freund, S.N., Qadeer, S.: Exploiting purity for atomicity. Software
Engineering, IEEE Transactions on 31(4) (2005) 275–291

3. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming language
design and implementation, New York, NY, USA, ACM Press (2003) 338–349

4. Flanagan, C., Freund, S.N., Lifshin, M.: Type inference for atomicity. In: TLDI
’05: Proceedings of the 2005 ACM SIGPLAN international workshop on Types in
languages design and implementation, New York, NY, USA, ACM Press (2005)
47–58

5. Sasturkar, A., Agarwal, R., Wang, L., Stoller, S.D.: Automated type-based anal-
ysis of data races and atomicity. In: PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming, New
York, NY, USA, ACM (2005) 83–94

6. Wang, L., Stoller, S.D.: Static analysis of atomicity for programs with non-blocking
synchronization. In: PPoPP ’05: Proceedings of the tenth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, New York, NY, USA,
ACM (2005) 61–71

7. Lipton, R.J.: Reduction: a method of proving properties of parallel programs.
Commun. ACM 18(12) (1975) 717–721

8. Flanagan, C.: Verifying commit-atomicity using model-checking. In: SPIN. (2004)
252–266

9. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for
concurrent objects. Inf. Comput. 160(1-2) (2000) 167–188

10. Hatcliff, R.J., Dwyer, M.B.: Verifying atomicity specifications for concurrent
object-oriented software using model-checking. In: Verification, Model Checking,
and Abstract Interpretation. (2004) 175–190

11. Lodaya, K., Mukund, M., Ramanujam, R., Thiagarajan, P.S.: Models and logics
for true concurrency. Technical Report IMSc/90/12, The Institute of Mathematical
Sciences, Madras, INDIA (1990)

12. Jensen, K., Kristensen, L., Wells, L.: Coloured petri nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer 9(3, 4) (June 2007) 213–254

13. Flanagan, C., Qadeer, S.: Types for atomicity. In: TLDI ’03: Proceedings of the
2003 ACM SIGPLAN international workshop on Types in languages design and
implementation, New York, NY, USA, ACM Press (2003) 1–12

14. Lerner, B., Grossman, D.: Purifying causal atomicity. Technical report, University
of Washington Computer Science and Engineering (2008)

15. Lerner, B.: http://www.cs.washington.edu/homes/blerner/index.html

16. Pugh, W.: http://www.cs.umd.edu/~pugh/java/memoryModel/

17. Jensen, K.: Coloured Petri nets (2nd ed.): basic concepts, analysis methods and
practical use: volume 1. Springer-Verlag, London, UK (1996)

18. http://wiki.daimi.au.dk/cpntools/cpntools.wiki

16

http://www.cs.washington.edu/homes/blerner/index.html
http://www.cs.umd.edu/~pugh/java/memoryModel/
http://wiki.daimi.au.dk/cpntools/cpntools.wiki

