
Combining Form and Function:
Static Types for JQuery Programs∗

Benjamin S. Lerner, Liam Elberty, Jincheng Li, and Shriram Krishnamurthi

Brown University

Abstract. The jQuery library defines a powerful query language for web
applications’ scripts to interact with Web page content. This language
is exposed as jQuery’s api, which is implemented to fail silently so that
incorrect queries will not cause the program to halt. Since the correctness
of a query depends on the structure of a page, discrepancies between the
page’s actual structure and what the query expects will also result in
failure, but with no error traces to indicate where the mismatch occurred.
This work proposes a novel type system to statically detect jQuery errors.
The type system extends Typed JavaScript with local structure about the
page and with multiplicities about the structure of containers. Together,
these two extensions allow us to track precisely which nodes are active
in a jQuery object, with minimal programmer annotation effort. We
evaluate this work by applying it to sample real-world jQuery programs.

1 Introduction

Client-side web applications are written in JavaScript (JS), using a rich, but low-
level, api known as the Document Object Model (dom) to manipulate web
content. Essentially an “assembly language for trees”, these manipulations con-
sist of selecting portions of the document and adding to, removing, or modifying
them. Like assembly language, though, programming against this model is im-
perative, tedious and error-prone, so web developers have created JS libraries
that abstract these low-level actions into higher-level apis, which essentially
form their own domain-specific language.

We take as a canonical example of this effort the query portion of the popular
jQuery library, whose heavily stylized form hides the imperative dom plumbing
under a language of “sequences of tree queries and updates”. This query-language
abstraction is widely used: other JS libraries, such as Dojo, Yahoo!’s YUI, Em-
ber.js and D3, either embed jQuery outright or include similar query apis. (All
these libraries also include various features and functionality not related to doc-
ument querying; these features differ widely between libraries, and are not our
focus here.) JQuery in particular enjoys widespread adoption, being used in over
half of the top hundred thousand websites [4].

From a program-analysis standpoint, jQuery can also drastically simplify the
analysis of these programs, by directly exposing their high-level structure. In-
deed, “jQuery programs” are written so dramatically differently than “raw dom
∗ This work is partially supported by the US National Science Foundation and Google.

programs” that in this work, we advocate understanding jQuery as a language
in its own right. Such an approach lets us address two essential questions. First,
what bugs are idiomatic to this high-level query-and-manipulation language, and
how might we detect them? And second, if a jQuery-like language were designed
with formal analyses in mind, what design choices might be made differently?

Contributions This work examines query errors, where the result of a query
returns too many, too few, or simply undesired nodes of the document. We build
a type system to capture the behavior of jQuery’s document-query and manip-
ulation apis; our goal is to expose all query errors as type errors. (Our type
system is not jQuery-specific, however, and could be applied to any of the query
languages defined by JS libraries.) In designing this type system, we find a funda-
mental tension between the flexibility of jQuery’s apis and the precision of anal-
ysis, and propose a small number of new apis to improve that loss of precision.

At a technical level, this paper extends prior work [10, 15, 17] that has built
a sophisticated type system for JS, to build a domain-specific type language for
analyzing jQuery. Our type system enhances the original with two novel features:

– Multiplicities, a lightweight form of indexed types [26] for approximating the
sizes of container objects; and

– Local structure, a lightweight way to inform the type system of the “shape”
of relevant portions of the page, obviating the need for a global page schema.

Combined, these two features provide a lightweight dependent type system that
allows us to typecheck sophisticated uses of jQuery apis accurately and pre-
cisely, with minimal programmer annotation. Our prototype implementation is
available at https://jswebtools.org/jQuery/.1

We introduce a running example (Section 2) to explain the key ideas of our
approach (Sections 3 and 4), and highlight the key challenges in modeling a
language as rich as jQuery (Sections 5 and 6). We evaluate its flexibility using
several real-world examples (Section 7), and describe related work and directions
for future improvements (Sections 8 and 9).

2 Features and Pitfalls of the JQuery Language

JQuery’s query apis break down into three broad groups: selecting an initial set
of nodes in the page, navigating to new nodes in the document relative to those
nodes, and manipulating the nodes. These functions allow the programmer to
process many similar or related nodes easily and uniformly. To illustrate most of
these apis and their potential pitfalls, and as a running example, we examine a
highly simplified Twitter stream. A stream is simply a 〈div/〉 element containing
tweets. Each tweet in turn is a 〈div/〉 element containing a timestamp, an
author, and the tweet content:
1 We were unable to submit this artifact for evaluation per that committee’s rules,

because our fourth author co-chaired that committee.

https://jswebtools.org/jQuery/

〈div class=“stream”〉
〈div class=“tweet”〉

〈p class=“time”/〉 〈p class=“author”/〉 〈p class=“content short”/〉
〈/div〉
. . .

〈/div〉

Selecting Nodes The jQuery $ function is the entry point for the entire api.
This function typically takes a CSS selector string and returns a jQuery object
containing all the elements in the document that match the provided selector:

1 $("*.time").css(’color’, ’red’); // Colors all timestamp elements

But the power and flexibility of this method may lead to silent errors. How do we
assure ourselves, for example, that $("*.time") matches any elements at all?

Navigating Between Nodes JQuery supplies several methods for relative move-
ment among the currently selected nodes. These methods operate uniformly on
all the nodes contained in the current collection:

1 // Returns a collection of the children of aTweet:
2 // a timestamp, an author, and a content node
3 $(aTweet).children();
4 // Returns all the children of all tweets
5 $(".tweet").children();
6 // Returns the authors and contents of all tweets
7 $(".tweet").children().next();
8 // Returns the empty collection
9 $(".tweet").children().next().next().next().next();

10 // Meant to colorize contents, but has no effect
11 $(".tweet").children().next().next().next().css("color", "red");

The first two examples are straightforward: requesting the children() of a
node returns a collection of all its children, while calling children() on several
nodes returns all their children. The next example (line 7) shows jQuery’s silent
error handling: calling next() on a collection of timestamps, authors and con-
tents will return a collection of the next siblings of each node, even if some nodes
(here, content nodes) have no next siblings. In fact, jQuery does not raise an
error even when calling a method on an empty collection: on line 9, after the
third call to next(), there are no remaining elements for the final call. The final
example highlights why this might be a problem: The programmer intended to
select the contents nodes, but called next() once too often. The call to css()
then dutifully changed the styles of all the nodes it was given—i.e., none—and
returned successfully. This is another important error condition: how can we
assure ourselves that we haven’t “fallen off the end” of our expected content?

Manipulating Content The purpose of obtaining a collection of nodes is to manip-
ulate them, via methods such as css(). These manipulator functions all follow
a common getter/setter pattern: for example, when called with one argument,

css() returns the requested style property of the given node. When supplied
with two arguments, it sets the style property of the given nodes.

Note carefully the different pluralities of getters and setters. Getters implic-
itly apply only to the first node of the collection, while setters implicitly apply
to all the nodes of the collection. This can easily lead to errors: while in many
cases, the order of elements in a collection matches the document order, and
while in many other cases, the collection only contains a single element, neither
of these conditions is guaranteed. How can we assure ourselves that the collection
contains exactly the node we expect as its “first” child?

JQuery provides a general-purpose each() method, that allows the program-
mer to map a function over every node in the collection. (This is useful when
the necessary computation requires additional state that cannot be expressed as
a simple sequence of jQuery api calls.) This api is one of the few places where
it is possible to trigger a run-time error while a jQuery function is on the call
stack, precisely because the programmer-supplied function is not jQuery code.
How can we assure ourselves that the function calls only those methods on the
element that are known to be defined?

Chaining JQuery’s api revolves around the chaining pattern, where practically
every method (that is not a getter) is designed to return a jQuery object: manip-
ulation apis return their invocant, and navigation apis return a new collection
of the relevant nodes. This allows for fluid idioms such as the following, simpli-
fied code that animates the appearance of a new tweet on Twitter (the precise
arguments to these functions are not relevant; the “style” of api calls is):

1 $(aTweet).fadeIn(...).css(...).animate(...);
Each call returns its invocant object, so that subsequent calls can further manip-
ulate it. Modeling this idiom precisely is crucial to a useful, usable type system.

Choosing a Type System Though jQuery dynamically stifles errors, in this
paper we argue that query errors are latent and important flaws that should
be detected and corrected—statically, whenever possible. Accordingly, we aim
to develop a type system that can capture the behaviors described above, and
that can catch query errors without much programmer overhead. In particular,
we would like type inference to work well, as any non-inferred types must be
grudgingly provided by the programmer instead.

Because the behavior of a query depends crucially on the query parameters,
the navigational steps, and any manipulations made, it would seem reasonable
that the type of the query must depend on these values too, leading to a depen-
dent type system whose types include strings and numbers to encode the query
and its size. Unfortunately, in general, type inference for dependent type systems
is undecidable, leading to large annotation or proof burdens on the programmer.

However, as we will see below, a type system tailored for jQuery can forego
much of the complexity of general-purpose dependent types. By carefully re-
stricting our use of strings, and by approximating our use of numbers, we can
regain a “lightweight” dependently typed system with sufficient precision for our
purposes, and that still enjoys decidable type inference in practice.

Comparisons with other query languages Describing jQuery as “a query
language” invites comparison with other tree-query languages, most notably
XPath and XQuery [23, 24], and the programming languages XDuce [11] and
CDuce [2]. We compare our approach with XDuce and CDuce more thoroughly
in Section 8; for now, we note that unlike XML databases that conform to schemas
and from which strongly-typed data can be extracted, HTML pages are essentially
schema-free and fundamentally presentational. JQuery therefore adopts CSS se-
lectors, the language used to style web pages, as the basis of its query language.

3 Multiplicities

In this and the following section, we describe the novel features of our type
system, and build up the central type definition in stages. Our system is an
extension of Typed JavaScript [10], which provides a rich type system includ-
ing objects types respecting prototype inheritance, (ordered) intersection and
(unordered) union types, equi-recursive types, type operators and bounded poly-
morphism. The type language, including our new constructs, is shown in Fig. 1;
we will introduce features from this type system as needed in our examples below.

Each of the three phases of the jQuery api described above induces a char-
acteristic problem: in reverse order, ensuring that

1. Callback code only calls appropriate methods on the provided elements,
2. Precisely the intended target element is the first element of the jQuery object,
3. Navigation does not overshoot the end of known content, and
4. Selectors return the intended elements from the page.

Warmup The first challenge is a traditional type-checking problem, and one
that is well handled by existing Typed JavaScript. We simply must ensure that
the supplied callback function has type SomeElementType -> Undef, provided we
know which SomeElementType is expected by the current jQuery object. This
leads to a (very simplistic) first attempt at “the jQuery type”:

1 type jQuery = µ jq :: * => * .
2 Λ e :: * . {
3 each : [’jq〈’e〉] (’e -> Undef) -> ’jq〈’e〉
4 }

In words, this defines jQuery to be a type constructor (of kind * => *, i.e., a
function from types to types) that takes an element type (line 2) and returns an
object with a field each (line 3), which is a function that must be invoked on a
jQuery object containing elements of the appropriate type (the type in brackets)
and passed a single callback argument (in parentheses) and returns the original
jQuery object. So that the type of each can refer to the overall jQuery type,
we say that jQuery is in fact a recursive type (line 1). The ’e type parameter
records the type of the elements currently wrapped by the jQuery object.

α ∈ Type and multiplicity variables
κ ∈ Kind ::= *

∣∣ M〈*〉
r ∈ RegEx ::= regular expressions
τ ∈ Type ::= α

∣∣ Num
∣∣ r ∣∣ True

∣∣ False
∣∣ Undef

∣∣ Null
∣∣ > ∣∣ ⊥∣∣ ref τ

∣∣ [τ]τ × · · · → τ
∣∣ τ+τ ∣∣ τ&τ ∣∣ µα.τ ∣∣ {? : τ, s : τ, . . .}∣∣ ∀α ≤ τ.τ ∣∣ ∀α :: κ.τ

∣∣ Λ α :: κ.τ
∣∣ τ〈τ〉 ∣∣ τ〈m〉∣∣ τ @ CSS selector

m ∈ Mult ::= M〈τ〉
∣∣ 0〈m〉

∣∣ 1〈m〉
∣∣ 01〈m〉

∣∣ 1+〈m〉
∣∣ 0+〈m〉

∣∣ m1 ++m2

l ∈ LS ::= (〈Name〉 : 〈ElementType〉
classes=[...] optional classes=[...] ids=[...]

l...)∣∣ <Name>
∣∣ <Name>+

∣∣ ...

Fig. 1: Syntax of types, multiplicities and local structure

The Need for More Precision The next two challenges cannot be expressed
by traditional types. We need to keep track of how many elements are present
in the current collection, so that we know whether calling a getter function like
css() is ambiguous, or whether calling a navigation function like next() has run
out of elements. (We defer the challenge of knowing exactly what type comes
next() after a given one until Section 4; here we just track quantities.)

3.1 Defining Multiplicities

JQuery’s apis distinguish between zero, one and multiple items. To encode this
information, we introduce a new kind that we call multiplicities, written M〈*〉,
with the following constructors:

m ∈ Mult ::= M〈τ〉
∣∣ 0〈m〉

∣∣ 1〈m〉
∣∣ 01〈m〉

∣∣ 1+〈m〉
∣∣ 0+〈m〉

∣∣ m1 ++m2

The first of these constructors (M) embeds a single type into a multiplicity; for
brevity, we often elide this constructor below. The next five assert the presence
of zero, one, zero or one, one or more, or zero or more multiplicities. These
multiplicities can be nested, but can be normalized by simple multiplication: for
instance, 01〈1+〈τ〉〉 = 0+〈τ〉. (In words, zero or one groups of one or more τ is
equal to zero or more τ .) The normalization table is listed in Fig. 2a.

The remaining multiplicity, the sum m1 ++m2, asserts the presence of both
m1 and m2, and is useful for concatenating two jQuery collections. Sum mul-
tiplicities do not normalize multiplicatively the way the previous ones do, but
they can be approximated additively: for example, 1〈τ1〉 ++ 01〈τ2〉 <: 1+〈τ1+τ2〉.
In words, if we have one τ1 and zero or one τ2, then we have one or more τ1s or
τ2s (this union type is denoted by the plus symbol); the full rules are in Fig. 2b.
This loses precision: the latter multiplicity also describes a collection of several

·〈·〉 0〈τ〉 1〈τ〉 01〈τ〉 1+〈τ〉 0+〈τ〉
0 0〈τ〉 0〈τ〉 0〈τ〉 0〈τ〉 0〈τ〉
1 0〈τ〉 1〈τ〉 01〈τ〉 1+〈τ〉 0+〈τ〉
01 0〈τ〉 01〈τ〉 01〈τ〉 0+〈τ〉 0+〈τ〉
1+ 0〈τ〉 1+〈τ〉 0+〈τ〉 1+〈τ〉 0+〈τ〉
0+ 0〈τ〉 0+〈τ〉 0+〈τ〉 0+〈τ〉 0+〈τ〉

(a) Normalization for simple multi-
plicities

bm ++nc 0〈τ1〉 1〈τ1〉 01〈τ1〉 1+〈τ1〉 0+〈τ1〉
0〈τ2〉 0〈>〉 1〈τ1〉 01〈τ1〉 1+〈τ1〉 0+〈τ1〉
1〈τ2〉 1〈τ2〉 1+〈τ3〉 1+〈τ3〉 1+〈τ3〉 1+〈τ3〉
01〈τ2〉 01〈τ2〉 1+〈τ3〉 0+〈τ3〉 1+〈τ3〉 0+〈τ3〉
1+〈τ2〉 1+〈τ2〉 1+〈τ3〉 1+〈τ3〉 1+〈τ3〉 1+〈τ3〉
0+〈τ2〉 0+〈τ2〉 1+〈τ3〉 0+〈τ3〉 1+〈τ3〉 0+〈τ3〉

(b) Simplification of sum multiplicities, where
τ3 = τ1+τ2, and m and n are normalized

Fig. 2: Normalization and simplification for multiplicities: simplifying sums as-
sumes that the arguments have first been normalized

τ2s and zero τ1s, while the original sum does not. Our type-checking algorithm
therefore avoids simplifying sums whenever possible.

Note that while types describe expressions or values, multiplicities do not
directly describe anything. Instead, they are permitted solely as arguments to
type functions:2 they are a lightweight way to annotate container types with a
few key pieces of size information. In particular, they are easier to use than
typical dependent types with arbitrary inequality constraints, as they can be
manipulated syntactically, without needing an arithmetic solver.

We can now use these multiplicities to refine our definition for jQuery:

1 type jQuery = µ jq :: M〈*〉 => * .
2 Λ m :: M〈*〉 . {
3 each : ∀ e <: Element .
4 [’jq〈0+〈’e〉〉] (’e -> Undef) -> ’jq〈’m〉
5 css : ∀ e <: Element .
6 ([’jq〈1〈’e〉〉] Str -> Str &
7 [’jq〈1+〈’e〉〉] Str*Str -> ’jq〈1+〈’e〉〉)
8 }

The kind for jq has changed to accept a multiplicity, rather than a bare type.
The type for each has also changed to recover the type e describing elements,
which we bound above by Element. Multiplicities also give us sufficient precision
to describe the type of css(): it is an overloaded function (i.e., it can be invoked
at more than one type, which we model using intersection types τ1&τ2 [18]) where
the getter must be invoked on a jQuery object containing exactly one element,
and where the setter must be invoked on a jQuery object containing at least
one element. This completely solves the ambiguity problem: a getter cannot be
ambiguous if it is invoked on exactly one target.

Additionally, it partially resolves the “falling-off” problem: with the addi-
tional machinery of Section 4, we can ensure that $(aTweet).children().next()
.next().next() will have type jQuery〈0〈Element〉〉, which means that attempt-

2 This is exactly analogous to the distinction between types and ordinals in indexed
types [1, 26], or between types and sequence types in XDuce [11]; see Section 8.

m1<:m2 0〈τ〉 1〈τ〉 01〈τ〉 1+〈τ〉 0+〈τ〉
0〈τ〉 3* 3 3

1〈τ〉 3 3 3 3

01〈τ〉 3 3

1+〈τ〉 3 3

0+〈τ〉 3

M-Typ
τ <: τ ′

M〈τ〉 <: M〈τ ′〉

M-Sums
(m1 <: m3 ∧m2 <: m4) ∨

(m1 <: m4 ∧m2 <: m3)
m1 ++m2 <: m3 ++m4

M-Sum-L
bm1 ++m2c <: m3

m1 ++m2 <: m3

M-Sum-R
m1 <: m2 ∨m1 <: m3

m1 <: m2 ++m3

Fig. 3: Subtyping rules for simple multiplicities (left) and sums (right). ∗ This
case actually allows τ to differ in m1 and m2

ing to call css() will result in a static type error: intuitively, 0〈Element〉 is not
a subtype of 1〈’e〉 for any possible type ’e.

3.2 Subtyping Multiplicities

To make our notion of multiplicities sufficiently flexible, we need to define a “sub-
multiplicity” relation, analogous to subtyping, that defines when one multiplicity
is more general than another. The definition is largely straightforward: most of
the primitive constructors should clearly subtype covariantly, e.g., 1〈τ〉 <: 1〈τ ′〉
if τ <: τ ′, and 1〈τ〉 <: 01〈τ〉. The one exception is that 0〈τ1〉 <: 0〈τ2〉 for any
types, since in both cases we have nothing.

Sum multiplicities are trickier to subtype. In particular, unlike the simpler
multiplicities, the size of a sum is not immediately obvious; instead both argu-
ments must be normalized, and then the whole sum simplified. The rules for
sum multiplicities are shown in Fig. 3. Our typechecker uses M-Sums instead
of M-Sum-L if possible, to avoid the loss of precision in normalizing sums.

4 Local Structure

Given multiplicities from the previous section, we now must assign types to the
navigation functions (e.g., next()) and the jQuery $ function itself such that they
produce the desired multiplicities. One heavyweight approach might be to define
a full document schema, as in XDuce [11], and then the types for navigation
functions are easily determined from that schema (the selection function is still
non-trivial). But this is impossible for most web content, for two reasons. First
and foremost, a page may include arbitrary third-party content, and thus its
overall schema would not statically be known. Second, even if all HTML were
well-formed, HTML markup is not schematically rich: many tags define generic
presentational attributes (e.g., “list item”, “paragraph”, or “table cell”), rather
than semantic information (e.g., “tweet author”, or “timestamp”).

Clearly, global page structure is too onerous a requirement. But abandoning
all structure is equally extreme: certainly, developers expect the page to possess
some predictable structure. In this section, we propose a lighter-weight, local

alternative to global page schemas, and explain what changes are needed in our
type language to incorporate it. We then explain how to use this local structure
to give precise types to the jQuery navigation apis. Finally, we show how to
obtain local structure types from the type of the $() method itself.

4.1 Defining Structure Locally
Local structure allows developers to define the shape of only those sections of
content that they intend to access via jQuery. For instance, our running example
would be defined as follows:

1 (Tweet : DivElement classes = [tweet] optional classes = [starred]
2 (Time : PElement classes = [time])
3 (Author : PElement classes = [author] optional classes = [starred])
4 (Content : PElement classes = [content short]))
5 (Stream : DivElement classes = [stream]
6 <Tweet>+) // One or more Tweets as defined above

This local structure declaration defines five types: Tweet, Time, Author,
Content, and Stream. Moreover, these declarations imply several local invari-
ants between code and element structure:
– Each type implies structural information about an element: for example, a

Tweet is a DivElement that is required to have class .tweet.
– Type membership can be decided by the declared classes: for example, at

runtime, every element in the document with class .tweet is in fact a Tweet,
and no other elements are permitted to have class .tweet. Any class by
itself suffices to assign a type to an element: for example, Content elements
can be identified by either .content or .short.

– Classes need not be unique: starred identifies either Authors or Tweets.
(This weakens the previous invariant slightly; a single class now may identify
a set of types, all of which include that class in their declarations.)

– “Classes” are mandatory: Content elements will have both .content and
.short classes. (Combined with the previous invariants, for example, all
elements with class .content are Contents and therefore will also have class
.short.) “Optional classes” and “ids” may or may not be present on elements
at runtime.

The full syntax of local structure declarations is given in Fig. 1. Besides the ex-
plicit structure seen above, we support two other declarations. First, for legibility
and reuse, types may be referenced by name from other structures: a Stream
consists of one or more Tweets, as indicated by reference <Tweet> and the repeti-
tion operator.3 Second, the ... construction (not used in this example) indicates
the presence of one or more subtrees of no interest to the program’s queries (for
instance, a document might contain elements for purely visual purposes, that
need never be selected by a query).
3 We do not yet support the other regular expression operators * and ?, though they

pose no fundamental difficulty.

Incorporating Local Structure as Types From the perspective of our type
language, Author is essentially a refinement of the PElement type: in addition
to the tag name, we know more precisely what selectors might match it. To
record these refinements, we add to our type language a new CSS refinement type
constructor: Author = PElement @ div.stream>div.tweet>p.time+p.author,
that includes both the base element type (PElement) as well as precise informa-
tion (the CSS selector) indicating where Authors can be found relative to other
known local structures.

To be useful, we must extend the subtyping relation to handle these CSS
refinement types. First, note that the refinements may be dropped, so that
τ @ s <: τ . For example, Author <: PElement. Second, we must decide when
one CSS refinement is a subtype of another. Lerner [12] showed that set opera-
tions on CSS selectors are decidable; in particular, it is decidable whether for all
documents, the nodes matched by one selector are a subset of the nodes matched
by another. Accordingly, τ1 @ s <: τ2 @ t holds whenever τ1 <: τ2 and s ⊆ t.

4.2 Using Local Structure

The CSS refinement types above exploit only part of the information available
from local structure definitions. In particular, they do not capture the struc-
tural relations between elements. For instance, the Twitter stream definition
above also implies that:

– A Tweet’s children are each of Time, Author and Content. A Tweet’s parent
is a Stream.

– A Stream’s children are all Tweets; a Stream’s parent is unknown.
– Times, Authors and Contents have no children, and have a Tweet parent.
– A Time has an Author as its next sibling, and has no previous sibling.
– An Author has a Time and a Content as its previous and next siblings.
– A Content has an Author as its previous sibling, and no next sibling.

These are precisely the relationships needed to understand the navigation func-
tions in jQuery. Accordingly, we define four primitive type functions, @children,
@parent, @next and @prev, whose definitions are pieced together from the local
structure: in our example,

– @children(Tweet) = 1〈Time〉 ++ 1〈Author〉 ++ 1〈Content〉, and @parent(Tweet) =
1〈Stream〉.

– @children(Stream) = 1+〈Tweet〉 and @parent(Stream) = 01〈Element〉.
– @parent(Time) = 1〈Tweet〉, @next(Time) = 1〈Author〉, @prev(Time) =

@children(Time) = 0〈Element〉, and likewise for Author and Content.

These functions clearly must be primitives in our system, since they are decidedly
not parametric, and inspect the structure of their argument.

We may now enhance our jQuery type with navigation functions:

1 parent : ∀ e <: Element, [’jq〈1+〈’e〉〉] -> ’jq〈1+〈@parent〈’e〉〉〉,
2 children : ∀ e <: Element, [’jq〈1+〈’e〉〉] -> ’jq〈1+〈@children〈’e〉〉〉,
3 next : ∀ e <: Element, [’jq〈1+〈’e〉〉] -> ’jq〈1+〈@next〈’e〉〉〉,
4 prev : ∀ e <: Element, [’jq〈1+〈’e〉〉] -> ’jq〈1+〈@prev〈’e〉〉〉,

These types, however, are not quite precise enough: if we have a jQuery
object containing a single item, asking for its parent should return at most one
item, but the types here ensure that we return many items instead. Worse, we
may introduce imprecisions that easily could be avoided. In particular, suppose
a developer defines two local structures:

1 (A : DivElement classes = [a]
2 (B : DivElement classes = [b]))
3 (C : DivElement classes = [c]
4 (D : DivElement classes = [d]))

JQuery supports an add function, which concatenates two collections into one
for further processing across their combined elements. An appropriate type for
this function is

1 add : ∀ n <: 0+〈Element〉 . [’jq〈’m〉] ’jq〈’n〉 -> ’jq〈’m ++ ’n〉

which neatly expresses the “combination” effect of the method. Using this func-
tion and the the rules above, the following code only typechecks under a loose
bound (comments beginning with a colon are type assertions):

1 var bAndD = /*:jQuery〈1+〈B〉 ++ 1+〈D〉〉*/$(".b").add($(".d"));
2 var bdParents = bAndD.parent();

The type for parent() above requires its receiver to have type jQuery〈1+〈’e〉〉.
The typechecker must therefore normalize 1+〈B〉 ++ 1+〈D〉 to 1+〈B+D〉. Then,
@parent receives B+D as its argument, and returns 1+〈A+C〉. The resulting multi-
plicity describes one or more As or Cs, but we might have done better: because
bAndD is known to include both Bs and Ds, the code above returns one or more
As and one or more Cs. Therefore, we define @parent (and the other primitive
navigation type functions) over multiplicities directly, rather than over types:

1 parent : ∀ n <: 1+〈Element〉, [’jq〈’n〉] -> ’jq〈@parent〈’n〉〉
2 children : ∀ n <: 1+〈Element〉, [’jq〈’n〉] -> ’jq〈@children〈’n〉〉
3 next : ∀ n <: 1+〈Element〉, [’jq〈’n〉] -> ’jq〈@next〈’n〉〉
4 prev : ∀ n <: 1+〈Element〉, [’jq〈’n〉] -> ’jq〈@prev〈’n〉〉

Now @parent can be passed the original sum multiplicity without approximation,
and its returned multiplicities can be correspondingly more precise; the same
holds for the other three functions.

This extra precision is particularly crucial when one of the multiplicities
degenerates to zero. Consider the following short program:

1 var ts = /*:jQuery〈1+〈Time〉〉*/ ...;
2 var cs = /*:jQuery〈1+〈Content〉〉*/ ...;
3 var tsAndCs = /*:jQuery〈1+〈Time〉++1+〈Content〉〉*/ ts.add(cs);
4 var tsOrCs = /*:jQuery〈1+〈Time+Content〉〉 */ tsAndCs; // looser type
5 var prevTsAndCs = tsAndCs.prev(); // Can be jQuery〈1+〈Author〉〉
6 var prevTsOrCs = tsOrCs.prev(); // Must be jQuery〈0+〈Author〉〉

The combined collection ts.add(cs) can be given two types: one using sum-
multiplicities and one using a normalized multiplicity with a union type. When
calling @prev(1+〈Time〉++1+〈Content〉), @prev can distribute over the sum and
since we know that there exists at least one Content element, the result must
contain at least one Author. But when calling @prev(1+〈Time+Content〉), we
might have a collection containing only Time elements and so the result collec-
tion may be empty.

4.3 Creating Local Structure with the @selector Function

The last remaining challenge is to ascribe a type to the $ function itself. We
start with two concrete examples, and then explain the general case. Finally,
we explore some subtleties of our design.

CSS and the @selector Function Consider determining which local struc-
tures matches the query string "* > .author". We examine the local structure
for types that mention the class .author, finding just one in this case, namely
Author = PElement @ div.stream > div.tweet > p.time + p.author. We
must then check whether the offered selector * > .author and the structure’s
selector div.stream > div.tweet > p.time + p.author can ever describe the
same element: this is an intersection test over selectors, and can be done eas-
ily [12]. In fact, * > .author does intersect with Author’s selector (because all
Authors do have a parent element). Finally, recall that the local structure invari-
ants in Section 4.2 implicitly assert that, by omission, all other local structures
are asserted not to have class .author, and are therefore excluded. We can
therefore conclude @selector〈"div > .author"〉 = 1+〈Author〉.

On the other hand, consider the selector "div.author". We know that
"div.author" does not intersect with Author (because an element cannot match
both "div" and "p"), nor with anything else (because nothing else has class
".author"), so @selector〈"div.author"〉 = 0〈Element〉.

As with the primitive navigation type functions, we can encapsulate this
reasoning in another primitive function, @selector. Here we must pass the
precise string value of the selector to the type function, so that it can be examined
as needed. We exploit Typed JS’s refined string types: rather than grouping
all strings together under type String, Typed JS uses regular expressions to
define subtypes of strings [9]. (In fact, String is just an alias for the regular

expression /.*/, which matches all strings.) In particular, string literals can
be given singleton regular expression types matching only that string, and so
pass the string value into our type function.4 Therefore, we might give the $
function the general type

1 $: ∀ s <: /.*/ . ’s -> jQuery〈@selector〈’s〉〉

The full algorithm for @selector, then, parses the string argument as a CSS
selector. When it fails, it simply returns 0〈Element〉. It next searches through
the local structure definitions for candidates with matching class names, and
intersects the query selector with the selectors compiled from the candidates’
local structure declarations (using the approach in [12]). The returned type of
@selector is the union of those local structure types whose selectors intersect the
query string. (But see Section 5 below for which multiplicity it should return.)

Note that we never expose the parsing and interpretation of strings as CSS
queries directly, but only the result of comparing strings to the selectors induced
by local structure. We also do not add type constructors to our type language
that mimic CSS selector combinators; we instead use only the refinement types
shown above. We chose this design to keep our type system loosely coupled
from the precise query language being used; our only requirement is that query
intersections and containment be decidable. If jQuery used another language,
perhaps more expressive than CSS, we would only need to replace the CSS selec-
tor intersection and containment algorithms, and not need to change any other
aspects of our type system.

Applying @selector to Overly-Broad Queries Defining the @selector func-
tion entails two crucial choices: how many items should it return when the query
matches local structures, and how flexible should it be in matching selectors to
local structure? The former question is quite subtle, and we address it in Sec-
tion 5. The latter is more a matter of programmer expectations, and we can
resolve it relatively easily.

In our Twitter stream example, what should the query $("div > p") return?
It does not mention any local structure classes or ids, so we have three options:

1. We might return 0+〈PElement @ div > p〉, because nothing in the selector
matches any of the required classes or ids of the local structure.

2. We might return 1+〈Time + Author + Content〉, because each of these three
structure definitions match the query selector, even though none of the re-
quired classes are present in the query.

3. We might return the “compromise” union 0+〈Time + Author + Content +
(PElement @ div>p)〉, because the query might return either any of the de-
clared structures, or any other 〈p/〉 elements with 〈div/〉s as parents.

4 Note: we do not require the argument to the $() function to be a string literal; the
types here admit any string expression. We attempt to parse that type as a CSS
selector, and such precise types often only work to literals. Since in practice, the
arguments we have seen usually are literals, this encoding most often succeeds.

Of the three options, the third is clearly the least appealing, as it is tantalizingly
useful (including Time, Author and Content), while still not guaranteeing any-
thing about the returned values’ multiplicity or type. The second is the most
precise and useful, but it is incorrect: there might well be other elements match-
ing div > p that are not part of a Tweet structure. As a result, the only sound
multiplicity we can return in this case is the first one, which has the side benefit
of highlighting, by its obtuseness, the imprecision of the query selector.

Unfortunately, several of the examples we evaluated used queries of this vague
and overly-broad form! An amateur jQuery programmer, upon reading these
examples, might infer that query brevity is preferred over precision. To accom-
modate these examples, we define our selector function to return the first—
sound—option above by default, but currently we provide a command-line flag
to implement the second (unsound but useful) option instead. (But see Section 5
below for a non-flag-based solution.) We view the need for this option as an un-
fortunate symptom of web developers’ current practice of writing jQuery code
without co-developing a specification for that code.

5 Type-system Guarantees and Usability Trade-offs

JQuery provides four apis for querying: $ itself, that selects nodes in the doc-
ument; find(), that takes a current query set and selects descendant nodes;
filter(), that selects a subset of the current query set; and eq(), that selects
the nth element of the current query set. Each of these might return zero items
at runtime, so the most natural types for them are:

1 $: ∀ s <: String . ’s -> jQuery〈0+〈@selector〈’s〉〉〉
2 filter : (∀ e <: Element, [’jq〈0+〈’e〉〉] (’e -> Bool) -> ’jq〈0+〈’e〉〉) &
3 (∀ s <: Str, [’jq〈’m〉] ’s -> ’jq〈0+〈@filter〈’m, ’s〉〉〉)
4 find : ∀ s <: Str, [’jq〈’m〉] ’s -> ’jq〈0+〈@filter〈@desc〈’m〉, ’s〉〉〉
5 eq : ∀ e <: Element, [’jq〈1+〈’e〉〉] Num -> ’jq〈01〈’e〉〉

(In these types, @filter is a variant of @selector, and @desc is the transitive
closure of @children.) But these types are inconvenient: because they all include
0, their return values cannot be chained with methods that require a non-zero
multiplicity. Note that these zeroes occur even if the query string matches local
structure. This is particularly galling for the $ function, as after all, if a query
string can match local structure definitions, then surely the developer can expect
that it will actually select nodes at runtime! Worse, using this type effectively
marks all jQuery chains as type errors, because the first api call after $() will
expect a non-zero multiplicity as input. Likewise, developers may often expect
that their filter() or find() calls will in fact find non-zero numbers of nodes.

Despite their precision, our types seem to have lost touch with developers’
expectations. It appears the only way to make our types useful again is to change
them so they no longer reflect the behavior of jQuery! What guarantee, then,
does our type system provide, and how can we resolve this disparity between
“expected” and actual jQuery behavior?

5.1 Type-system Guarantees

We have described our type system above as capturing jQuery’s behavior “pre-
cisely”, but have not formalized that claim. Recall that the traditional formal
property of soundness asserts that a type system cannot “lie” and affirm that an
expression has some type when in fact it does not, or equivalently, affirm that
an expression will execute without error at runtime when in fact it will. Such
soundness claims are necessarily made relative to the semantics of the underlying
language. But jQuery is a language without a formal semantics, so what claims
besides soundness can we make about our approach?

Our type system is based upon Typed JS [10], which has a formal soundness
guarantee relative to JS semantics. We are therefore confident that our system
correctly handles typical JS features. However, while our type system may be
sound for JS, we might ascribe types to jQuery apis that do not match their
actual behavior. This would be a failing of our type environment, not of our
type system. To produce plausibly correct types for jQuery’s apis, we have
experimented with many examples to determine potential types, and constructed
counterexamples to convince ourselves the types cause typing errors only in
programs we expected to be wrong.

Of course, jQuery is in fact implemented in JS, and therefore it is conceivable
that we might typecheck the implementation to confirm it has the types we
have ascribed. As our experience with typechecking ADsafe [15] has shown,
typechecking a library can be a complex undertaking in its own right; we leave
typechecking the source of jQuery itself as future work we intend to pursue.

But as we have begun to see already in Section 4.3, even choosing appro-
priate types for jQuery involves aesthetic choices, trading off between strictness
and static determination of errors on one hand, and flexibility and ease of devel-
opment on the other. We now examine these trade-offs in more detail.

5.2 Accommodating Varied Developer Expectations

The useful output of a type system—its acceptance or rejection of a program,
and the error messages that result—provides crucial feedback to developers to
distinguish buggy code from incomplete code. But type checkers can only op-
erate on the code that is actually written, and that may not always suffice to
distinguish these two cases, particularly when they are syntactically identical.

Merely by writing queries, developers have codified implicit expectations
about how the state of their program matches their code. In particular, they
understand that because of the dynamic, stateful changes to page structure that
make their application interactive, the size of a query’s result may vary during
execution: queries that might return several elements at one point of a program’s
execution might later return none, or vice versa. But buggy queries also may have
unexpected sizes. Nothing syntactically distinguishes queries with anticipated
size variability from ones that are buggy. Without this knowledge, we cannot
reliably report type errors to developers. We explore two untenable approaches
for resolving this ambiguity, and then explore two more palatable ones.

A Non-solution: Specialized Code One unsuccessful strawman approach
might require programmers to write repetitive variants of code to deal with each
potential query result size. This is untenable, as these variants clutter the code,
make future code modifications difficult, and break from the compositional style
of jQuery programs.

An Unsound “Solution”: Assuming Presence Another approach might
simply assert by fiat that any local structures defined by the author are always
guaranteed to be present: effectively, this means removing the explicit 0+ in
the output type of the query apis. Under this assumption, the following query
should always return 1〈Tweet〉 (recall the definition of Tweets from Section 4):

1 $(".tweet").find(".starred").first() // Has type jQuery〈1〈Tweet〉〉

But the developer explicitly said starred only might be present! Further, it is
laughably wrong in the face of page mutations:

1 $(".tweet").find(".starred").removeClass("starred");
2 $(".tweet").find(".starred").first() // Still has type jQuery〈1〈Tweet〉〉

Note that this assumption leads to incorrect types, in that it does not accu-
rately reflect the behavior of find(). But this type does not break the soundness
of the type system itself: it is entirely possible to write a method that always
returns a non-zero number of elements—though to do so, one would have to use
raw dom apis, and effectively make such a function a “primitive” operation
with respect to the jQuery language.

On the other hand, these “incorrect” types are much more useful for the
$() function: by allowing non-zero multiplicities, jQuery chains can be checked
without immediately requiring annotation.

A Spectrum of Type Environments One seemingly simple possibility is
simply to add “flags” to the type system indicating whether find() (above),
@selector (as in Section 4.3), and many other functions should be strict or per-
missive about their multiplicities. We reject this approach. If the flags affect the
core type language or the type checker itself, then any soundness or correctness
claims of the type system can only be made relative to every possible combination
of flags. As type checkers are already quite complicated, these flags are a poor
engineering decision, especially when a much cleaner, modular alternative exists.

Rather than add these flags to the type system, we can compile a variety
of type environments from local structure, that contain stricter or looser types
for these functions. Unlike “flags”, whose interpretation is hidden within the
type system’s implementation, these various environments are easily examined
by the developer, who can see exactly how they differ. A developer choosing to
use the looser environments is therefore making a conscious choice that certain
error conditions are not important, or equivalently that he is willing for them
to appear as runtime errors instead. Moreover, the developer may migrate from
permissive to strict environments as his program matures and nears completion.

The Need for New APIs Our last approach requires actually enhancing the
jQuery api. JQuery objects expose their size via the length field; we might use
this to regain lost precision. We might force programmers to explicitly write if-
tests on the length field, but this has the unwanted effect of breaking chaining.
Instead, we propose new jQuery apis:

1 assertNotEmpty : (∀ t, [’jq〈01〈’t〉〉] -> ’jq〈1〈’t〉〉) &
2 (∀ t, [’jq〈0+〈’t〉〉] -> ’jq〈1+〈’t〉〉)
3 ifZero : ∀ t, [’jq〈0+〈’t〉〉] ([’jq〈0〈’t〉〉]->Undef) -> ’jq〈0+〈’t〉〉
4 ifOne : ∀ t, [’jq〈0+〈’t〉〉] ([’jq〈1〈’t〉〉]->Undef) -> ’jq〈0+〈’t〉〉
5 ifMany : ∀ t, [’jq〈0+〈’t〉〉] ([’jq〈1+〈’t〉〉]->Undef) -> ’jq〈0+〈’t〉〉

The first api converts possibly-empty collections into definitely-non-empty ones,
and throws a runtime error if the collection is in fact empty. Developers would
use this api to indicate queries they expect should never fail. The example
above would be rewritten

1 $(".tweet").find(".starred").removeClass("starred");
2 $(".tweet").find(".starred").assertNotEmpty().first();

This would typecheck successfully, and always throw an exception at runtime.
By contrast, the latter three apis take a receiver object of unknown multiplic-
ity, and a callback that expects a argument of precise multiplicity, and calls it
only if the receiver has the expected multiplicity. Developers would use these
apis to indicate computation they expect might not be needed. The example
above would be rewritten

1 $(".tweet").find(".starred").removeClass("starred");
2 $(".tweet").find(".starred").ifMany(function() { this.first(); });

This again would typecheck successfully, and would not call the inner function
at runtime. Unlike the previous api, these apis never throw exceptions, but
indicate to the type checker that the programmer knows that these calls—and
these alone—might fail. These apis implicitly perform a specialized form of
occurrence typing [22], without needing any extra type machinery.

6 Modeling JQuery Reality

Real jQuery programs avail themselves of several additional query apis. One of
them requires revising the kind of our type, and leads to the final form of our
type for jQuery. This change unfortunately makes the type more unwieldy to
use, but we can resolve this with a simple type definition.

Merging and Branching We have already seen the add() operation, which
allows combining two jQuery objects into one. Occasionally, a program might
need the dual of this operation, “splitting” one jQuery into multiple subqueries.
Consider the following two queries:

1 $(".tweet").find(".star").each(processStarredTweet);
2 $(".tweet").find(".self").each(processOwnTweet);

They both have the same prefix, namely $(".tweet"), and more generally this
prefix might be an expensive computation. To avoid this, jQuery objects con-
ceptually form a stack of their navigated states, where each navigation pushes a
new state on the stack: programs may use a new api, end(), to pop states off
this stack. The example above would be rewritten:

1 $(".tweet").find(".star").each(processStarredTweet)
2 .end() // pops the find operation
3 .find(".self").each(processOwnTweet);

Internally, jQuery objects form a linked list that implements this stack: the
chainable jQuery methods that appear to modify the contents of the collection
return a new jQuery object that wraps the new contents and whose tail is the old
jQuery object. (The old object is sill available, and has not been mutated.) The
end() method simply returns the tail of the list. In order to type end() correctly,
we must encode the linked list in our types. To do so requires a systematic change
in our type: we redefine the jQuery type constructor to take two type parameters,
where the new second type parameter describes the tail of the stack. Our final
type definition for jQuery is (only representative examples of jQuery’s more than
fifty query apis are shown; the full type is available in our implementation):

1 type jQuery = µ jq :: (M〈*〉, *) => * .
2 Λ m :: M〈*〉, prev :: * . {
3 // Navigation APIs: next, prev, parent, etc. are analogous
4 children : ∀ e <: 1+〈Element〉 .
5 [’jq〈’e, ’prev〉] -> ’jq〈@childrenOf〈’e〉, ’jq〈’e, ’prev〉〉
6 // Accessor APIs: offsetX, height, attr, etc. are analogous
7 css : ∀ e <: Element .
8 ([’jq〈1〈’e〉, ’prev〉] Str -> Str &
9 [’jq〈1+〈’e〉, ’prev〉] Str*Str -> ’jq〈1+〈’e〉, ’prev〉)

10 // Stack-manipulating APIs
11 add : ∀ n <: 0+〈Element〉, ’q .
12 [’jq〈’m, ’prev〉] ’jq〈’n, ’q〉 -> ’jq〈’m++’n, ’jq〈’m, ’prev〉〉
13 end : [’jq〈’m, ’prev〉] -> ’prev
14 // Collection-manipulating APIs
15 each : ∀ e <: Element . [’jq〈0+〈’e〉, ’prev〉] (’e->Undef) -> ’jq〈’m, ’prev〉
16 filter : (∀ e <: Element, [’jq〈0+〈’e〉〉] (’e->Bool) -> ’jq〈0+〈’e〉〉) &
17 (∀ s <: Str, [’jq〈’m〉] ’s -> ’jq〈0+〈@filter〈’m, ’s〉〉〉)
18 find : ∀ s <: Str, [’jq〈’m〉] ’s -> ’jq〈0+〈@filter〈@desc〈’m〉, ’s〉〉〉
19 eq : ∀ e <: Element, [’jq〈1+〈’e〉〉] Num -> ’jq〈01〈’e〉〉
20 // No other fields are present
21 ? : _

22 }

Methods such as add() and children() nest the current type one level deeper,
and end() simply unwraps the outermost type.

Convenience Often the suffix of the stack is not needed, so we can define a
simple synonym for the supertype of all possible jQuery values:

1 type AnyJQ = ∀ p . jQuery〈0+〈Any〉, ’p〉

Any functions that operate over jQuery objects, and that will not use end() to
pop off the jQuery stack any more than they push on themselves, can use AnyJQ
to summarize the type stack easily.

7 Evaluation

To determine the flexibility of our type system, we analyzed a dozen samples
from Learning JQuery [6] and from the Learning JQuery blog [20, 21]. Our
prototype system5 supports standard CSS selectors, but not pseudoselectors or
the bespoke jQuery extensions to CSS syntax. In the examples below, we have
edited the original code by replacing pseudoselectors and extensions with calls to
their api equivalents and with calls to ifMany() (defined above). These added
calls represent our understanding of how the examples should work; without
them, the program’s intended behavior is unclear. With these added calls, the
examples below were checked assuming presence for the $() function, but not
for find() or filter(). We distinguish three sets of results: those that should
typecheck and do, those that should not typecheck and do not, and cases that
expose weaknesses for our system.

7.1 Successfully Typechecking Type-correct Examples

Our samples consist of between 2 and 9 calls to jQuery functions in linear, branch-
ing, and nested call-patterns. These examples each typecheck with no annotations
needed on the code besides local structure definitions that need only be written
once. These local structures were not defined by the accompanying text; we
derived them by manual inspection of the examples and their intended effects.
We highlight three illustrative examples here.

Selecting All of a Row Our first example shows a straightforward selection of
all 〈td/〉 tags in a table row and adding a class to them. Note that addClass()
is called with a class name that is not declared in the local structure; our type
system is not intended to restrict such code. Rather, it ensures that the call
to addClass() is given a non-empty collection to work with. Note also that
the initial query is over-broad (a better query would be ’td.title’) and re-
quires the command-line option for flexible query matching (of Section 4.3) to
typecheck as written:
5 Available at https://jswebtools.org/jQuery/

https://jswebtools.org/jQuery/

1 /*::
2 (PlaysTable : TableElement ids = [playstable] classes = [plays]
3 (PlaysRow : TRElement classes = [playsrow]
4 (Title : TDElement classes = [title])
5 (Genre : TDElement classes = [genre])
6 (Year : TDElement classes = [year])
7)+);
8 */
9 $(’td’) // Has type t1 = jQuery〈1+〈Title〉++1+〈Genre〉++1+〈Year〉, AnyJQ〉

10 .filter(’:contains("henry")’) // t2 = jQuery〈0+〈Title+Genre+Year〉, t1〉
11 .ifMany(function() { // [jQuery〈1+〈Title+Genre+Year〉, t1〉] -> Undef
12 this // t3 = jQuery〈1+〈Title+Genre+Year〉, t1〉
13 .nextAll() // t4 = jQuery〈1+〈Genre〉 ++ 1+〈Year〉, t3〉
14 .andSelf() // jQuery〈1+〈Genre〉 ++ 1+〈Year〉 ++ 1+〈Title〉, t4〉
15 .addClass(’highlight’); // allowed, non-empty collection
16 });

Filtering by Ids This next example is a deliberately circuitous query, and
illustrates several features both of jQuery and our type system. The call to
parents() normally would return all the known parents of the current elements,
up to and including the generic type Element, but because the query also fil-
ters on an id, and because that id appears in local structure, our type is much
more tightly constrained. Similarly, the calls to children() and find() are
constrained by the local structure. Note that if the call to parent() were not so
constrained, then these subsequent calls would mostly be useless, since nothing
is known about arbitrary Elements.

1 /*::
2 (SampleDiv : DivElement ids = [jqdt2] classes = [samplediv]
3 (Paragraph : PElement classes = [goofy]
4 ...) // The children of a Paragraph are irrelevant here
5 (OrderedList : OLElement classes = [list]
6 (LinkItem : LIElement classes = [linkitem]
7 (Link : AElement classes = [link]))
8 (GoofyItem : LIElement classes = [goofy]
9 (StrongText : StrongElement classes = [strongtext]))

10 (FunnyItem : LIElement classes = [funny])
11 <LinkItem>
12 <GoofyItem>));
13 */
14 $(’li.goofy’) // Has type t1 = jQuery〈1+〈GoofyItem〉, AnyJQ〉
15 .parents(’#jqdt2’) // t2 = jQuery〈1+〈SampleDiv〉, t1〉
16 .children(’p’) // t3 = jQuery〈1+〈Paragraph〉, t2〉
17 .next() // t4 = jQuery〈1+〈OrderedList〉, t3〉
18 .find(’a’) // t5 = jQuery〈1+〈Link〉, t4〉
19 .parent(); // t6 = jQuery〈1+〈LinkItem〉, t5〉

Manipulating Each Element The following example demonstrates that our
approach scales to higher-order functions: the callback passed to the each()
operation (line 16) needs no annotation to be typechecked. The ifMany() calls
could be eliminated using the unsound options described in Section 5. Note also
the use of end() on line 14 to restore a prior query state.

1 /*::
2 (NewsTable : TableElement classes = [news] ids = [news]
3 ... // Placeholder element; never queried
4 (NewsBody : TBodyElement classes = [newsbody]
5 (YearRow : TDElement classes = [yearrow])
6 (NewsRow : TRElement classes = [newsrow] optional classes = [alt]
7 (NewsInfo : TDElement classes = [info])+)+
8 <YearRow>
9 <NewsRow>+))

10 */
11 $(’#news’) // Has type t1 = jQuery〈1〈NewsTable〉, AnyJQ〉
12 .find(’tr.alt’) // t2 = jQuery〈1+〈NewsRow〉, t1〉
13 .ifMany(function() { this.removeClass(’alt’); }) // t2
14 .end() // t1
15 .find(’tbody’) // t3 = jQuery〈1〈NewsBody〉, t1〉
16 .each(function() { // [NewsBody] -> Undef
17 $(this) // t4 = jQuery〈1〈NewsBody〉, AnyJQ〉
18 .children() // t5 = jQuery〈1+〈YearRow〉 ++ 1+〈NewsRow〉, t4〉
19 .filter(’:visible’) // t6 = jQuery〈0+〈YearRow〉++0+〈NewsRow〉, t5〉
20 .has(’td’) // t7 = jQuery〈0+〈NewsRow〉, t6〉
21 .ifMany(function() { // [jQuery〈1+〈NewsRow〉, t6〉] -> Undef
22 this.addClass(’alt’); // allowed, non-empty collection
23 }); // t7
24 }); // t3

7.2 Successfully Flagging Type-incorrect Examples

The examples we examined from the Learning JQuery textbook and blog are
typeable. To verify that our type-checker was not trivially passing all programs,
we injected errors into these examples to ensure our system would correctly catch
them, and it does. Our modifications changed queries to use the wrong element
id, or have too many or too few navigational calls.

1 $(’li.goofy’) // Has type t1 = jQuery〈1+〈GoofyItem〉, AnyJQ〉
2 .parents(’#WRONG_ID’) // t2 = jQuery〈01〈Element @ "#WRONG_ID"〉, t1〉
3 .children(’p’);
4 ⇒ ERROR: children expects 1+〈Element〉, got 01〈Element〉
5 $(’#news’) // Has type t3 = jQuery〈1〈NewsTable〉, AnyJQ〉
6 .find(’tr.alt’) // t4 = jQuery〈1+〈NewsRow〉, t3〉
7 .ifMany(function() { this.removeClass(’alt’); }) // t4

8 // Note: missing call to .end()
9 .find(’tbody’) // t5 = jQuery〈0〈Element〉, t3〉

10 .each(...)
11 ⇒ ERROR: each expects 1+〈Element〉, got 0〈Element〉
12 $(".tweet").children().next().next().next().css("color", "red");
13 ⇒ ERROR: css expects 1+〈Element〉, got 0〈Element〉
14 $(".tweet").children().next().css("color");
15 ⇒ ERROR: css expects 1〈Element〉, got 1+〈Author + Time〉

7.3 Weaknesses of Our System

Beyond the restrictions shown in the paper, and the trade-offs between soundness
and utility of types, there still exist queries our system cannot handle. We
construct one such instance here.

Under our running example, the expression $(".tweet").parent() will have
the expected type jQuery〈1+〈Stream〉, AnyJQ〉. However, the similar expres-
sion $(".stream").parent() correctly has type jQuery〈0+〈Element〉, AnyJQ〉,
because nothing is known about the parent of a Stream.

The expression $("div.outer > *.stream").parent() will at runtime re-
turn the 〈div div=“outer”/〉 elements that contain streams (if any exist). Our
current type system, however, will nevertheless give this expression the type
jQuery〈0+〈Element〉, AnyJQ〉, even though these Streams definitely have 〈div/〉s
as parents. This is inherent in our semantics for local structure: developers are
obligated to provide definitions for any content they intend to access via jQuery’s
apis—beyond those definitions, the remainder of the page is unknown. One
might re-engineer our system to dynamically refine the local structure-derived
types to include the extra information above their root elements, but such compli-
cation both muddies the implementation and also confuses expectations of what
the system can provide developers. Instead, developers must simply provide
extra local structure information, and avoid the confusion entirely.

8 Related Work

XDuce and CDuce Languages such as XDuce [11, 19] and CDuce [2] embed an
XML-processing language into a statically-typed general-purpose language, and
extend the type language with document schemas. These languages differ from
our jQuery setting in three crucial ways, all stemming from the fact that jQuery
is a language for manipulating HTML that is embedded within JS.

First and foremost, XDuce andCDuce operate over well-schematized databases
represented in XML, from which richly-typed structured data can be extracted.
But HTML is not schematized: it is almost entirely free-form, and largely presen-
tational in nature. As we argued in Section 4, mandating a global schema for
HTML documents is an untenable requirement on developers. As such, XDuce
and CDuce’s approach cannot apply directly.

Second, XDuce and CDuce go to great lengths to support pattern matching
over XML: in particular, their language of values includes sequences of tagged
values, i.e. XML forests. XDuce and CDuce define regular expression types to
precisely type these sequences. But jQuery does not have the luxury of enriching
JS to support free-form sequences: instead, it encapsulates a sequence of values
into a JS object. As the CDuce paper notes [2], regular expression types are not
themselves types, but are only meaningful within the context of an element: this
is exactly comparable to our kinding distinction between multiplicities and types.

Third, the operations native the HTML and dom programming are simpler
than those in XML processing: web programmers use CSS selectors [25] to query
nodes in their documents, rather than XPath. Further, because JS has no pattern-
matching construct, there is no need for an analysis of jQuery to define tree
patterns or regular tree types (as in [11]), or check exhaustiveness of pattern
matching (as in [5]). Instead, as we have shown, a simpler notion suffices.

Semanticizing the Web This work fits into a growing effort to design—or
retrofit—semantics onto portions of the client-side environment, including JS [9,
14, 16], the event model [13], and the browser itself [3]. Some work has begun
addressing the semantics of dom manipulations [8], but it has focused on the low-
level apis and not on the higher-level abstractions that developers have adopted.

Structure and Size Types Other work [26] extends Haskell’s type system
with indexed types that describe sizes statically. Multiplicities specialize this
model by admitting ranges in the indices. Our implementation also demon-
strates how to use multiplicities without annotation burden, in the context of
an important web library.

9 Future work: Interoperating with Non-jQuery Code

While our type system cleanly and accurately supports the query and navigation
portions of jQuery, other challenges remain in analyzing the interactions between
jQuery and raw JS code. We focus on two interactions: code written with types
but without multiplicities, and code that might breach local structure invariants.

Relating Types and Multiplicities Multiplicities, as presented so far, are
strictly segregated from types by the kinding system. However, suppose we had
two nearly-identical list types, defined by client code and by a library:

1 type AMultList = Λ m :: M〈*〉
2 type ATypeList = Λ t :: *

A value of type AMultList〈1+〈τ〉〉 cannot be used where one of type ATypeList〈τ〉
is expected, and yet any program expecting the latter would behave correctly
when given the former: by its type, it clearly cannot distinguish between them.

However, upon returning from non-multiplicity-based code, we have to construct
some multiplicity from a given type. Accordingly, we might add the two “sub-
type/multiplicity” rules

Lax-TypMult

τ <: 0+〈τ〉

Lax-MultTyp

0+〈τ〉 <: τ

These two rules let us be “lax” about keeping multiplicities and types sep-
arate, without sacrificing soundness. Note that the utility of Lax-TypMult
depends heavily on using occurrence typing to refine the resulting 0+〈τ〉 mul-
tiplicity into something more precise. We have implemented these rules in our
type checker, but they have not been needed in the examples we have seen.

Preserving Local Structure Our type for jQuery ensures only that developer-
supplied callbacks typecheck with the appropriate receiver and argument types
(see Section 3). This is an incomplete specification, as such excursions into low-
level JS can easily be sources of bugs. We envision both dynamic and static
solutions to this problem.

Dynamically, maintaining the local structure of a subset of a page amounts
to a contract. The local structure definitions can easily be compiled into exe-
cutable JS code that checks whether a given node conforms to particular local
structure definitions, and these checks can be automatically wrapped around
all jQuery apis.

Statically, maintaining tree shapes may be analyzable by a tree logic [7]. The
primary challenge is a reachability analysis identifying all the possible nodes that
might be modified by arbitrary JS; we leave this entirely to future work.

References

[1] A. Abel. Polarized subtyping for sized types. Mathematical Structures in Com-
puter Science, 18(5):797–822, Oct. 2008.

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-
purpose language. In ACM SIGPLAN International Conference on Functional
Programming (ICFP), 2003.

[3] A. Bohannon and B. C. Pierce. Featherweight Firefox: formalizing the core of
a web browser. In USENIX Conference on Web Application Development (Web-
Apps), 2010.

[4] BuiltWith. JQuery usage statistics. Retrieved Nov. 2012. http://trends.
builtwith.com/javascript/JQuery.

[5] G. Castagna, D. Colazzo, and A. Frisch. Error mining for regular expression
patterns. In Italian conference on Theoretical Computer Science, ICTCS’05, 2005.

[6] J. Chaffer and K. Swedberg. Learning JQuery. Packt Publishing Ltd., Birming-
ham, UK, 3rd edition, 2011.

[7] P. Gardner and M. Wheelhouse. Small specifications for tree update. In interna-
tional conference on Web services and formal methods, WS-FM’09, 2010.

http://trends.builtwith.com/javascript/JQuery
http://trends.builtwith.com/javascript/JQuery

[8] P. A. Gardner, G. D. Smith, M. J. Wheelhouse, and U. D. Zarfaty. Local
Hoare reasoning about DOM. In ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS), 2008.

[9] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In
European Conference on Object-Oriented Programming (ECOOP), 2010.

[10] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and state using
flow analysis. In European Symposium on Programming Languages and Systems
(ESOP), 2011.

[11] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.

[12] B. S. Lerner. Designing for Extensibility and Planning for Conflict: Experiments
in Web-Browser Design. PhD thesis, University of Washington Computer Science
& Engineering, Aug. 2011.

[13] B. S. Lerner, M. J. Carroll, D. P. Kimmel, H. Q. de la Vallee, and S. Krishna-
murthi. Modeling and reasoning about DOM events. In USENIX Conference on
Web Application Development (WebApps), June 2012.

[14] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for JavaScript.
In Asian Symposium on Programming Languages and Systems (APLAS), 2008.

[15] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. ADsafety: type-
based verification of JavaScript sandboxing. In USENIX Security Symposium,
Aug. 2011.

[16] J. G. Politz, M. Carroll, B. S. Lerner, J. Pombrio, and S. Krishnamurthi. A
tested semantics for getters, setters, and eval in JavaScript. In Dynamic Languages
Symposium (DLS), 2012.

[17] J. G. Politz, A. Guha, and S. Krishnamurthi. Semantics and types for objects
with first-class member names. In Workshop on Foundations of Object-Oriented
Languages (FOOL), 2012.

[18] V. St-Amour, S. Tobin-Hochstadt, M. Flatt, and M. Felleisen. Typing the numeric
tower. In Practical Aspects of Declarative Languages (PADL), 2012.

[19] M. Sulzmann and K. Z. M. Lu. A type-safe embedding of XDuce into ML. In
Workshop on ML, 2005.

[20] K. Swedberg. How to get anything you want - part 1. Written Nov. 2006. http:
//www.learningjquery.com/2006/11/how-to-get-anything-you-want-part-1.

[21] K. Swedberg. How to get anything you want - part 2. Written Dec. 2006. http:
//www.learningjquery.com/2006/12/how-to-get-anything-you-want-part-2.

[22] S. Tobin-Hochstadt and M. Felleisen. The design and implementation of Typed
Scheme. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), 2008.

[23] W3C. XML path language (XPath) 2.0. Written Dec. 2010. http://www.w3.
org/TR/xpath20/.

[24] W3C. XQuery 1.0: An XML query language. Written Dec. 2010. http:
//www.w3.org/TR/xquery/.

[25] W3C. Selectors level 3. Written Sept. 2011. http://www.w3.org/TR/
selectors/.

[26] C. Zenger. Indexed types. Theoretical Computer Science, 187(1–2):147–165, 1997.

http://www.learningjquery.com/2006/11/how-to-get-anything-you-want-part-1
http://www.learningjquery.com/2006/11/how-to-get-anything-you-want-part-1
http://www.learningjquery.com/2006/12/how-to-get-anything-you-want-part-2
http://www.learningjquery.com/2006/12/how-to-get-anything-you-want-part-2
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/selectors/
http://www.w3.org/TR/selectors/

	Combining Form and Function: Static Types for JQuery ProgramsThis work is partially supported by the US National Science Foundation and Google.
	Bibliography

