
1

2

3

4

5

6
7

8
9

10

11
12
13
14
15
16
17

18
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

YJBIN 1263 No. of Pages 16; 4C : 10; Model 5+

19 January 2006 Disk Used Leo (CE) / Karthikeyan (TE)
ARTICLE IN PRESS
www.elsevier.com/locate/yjbin

Journal of Biomedical Informatics xxx (2006) xxx–xxx
O
O
F

Methodological Review

Health dialog systems
for patients and consumers q

Timothy Bickmore a,*, Toni Giorgino b

a College of Computer and Information Science, Northeastern University, Boston, MA, USA
b Laboratory for Medical Informatics, Dipartimento di Informatica e Sistemistica, Università di Pavia, Pavia, Italy
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Abstract

There is a growing need for automated systems that can interview patients and consumers about their health and provide health edu-
cation and behavior change interventions using natural language dialog. A number of these health dialog systems have been developed
over the last two decades, many of which have been formally evaluated in clinical trials and shown to be effective. This article provides an
overview of the theories, technologies and methodologies that are used in the construction and evaluation of these systems, along with a
description of many of the systems developed and tested to date. The strengths and weaknesses of these approaches are also discussed,
and the needs for future work in the field are delineated.
� 2006 Published by Elsevier Inc.
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E1. Introduction

One-on-one, face-to-face interaction with a health
provider is widely acknowledged to be the ‘‘gold stan-
dard’’ for providing health education to and affecting
health behavior change in patients and consumers.
Automated health dialog systems—especially those
which use speech and other audiovisual media—emulate
this form of interaction to communicate health informa-
tion to users in a format that is natural, intuitive and
dynamically tailored.

A significant amount of research has been conducted
over the last two decades into the automatic generation
of printed materials, web pages and other static media
for the purpose of providing health communication to
patients and consumers. However, although these
approaches have been found to be effective [1], they still fall
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short of the ‘‘gold standard’’ in several ways. For example,
in static media, information cannot be rephrased if the cli-
ents do not understand it, clients cannot ask clarifying
questions, and they cannot request more or less informa-
tion on specific topics of interest. In addition, while many
studies have demonstrated the efficacy of tailoring print
or web materials based on initial characteristics of the user
[2], dialog systems can allow messages to be tailored at a
very fine-grained level, with each sentence of delivered
information synthesized on the basis on the inferred goals
and beliefs of the user at a particular moment in time,
and incorporating everything that has previously been said
in the conversation. When used in conjunction with speech
and possibly other nonverbal conversational modalities
(such as hand gesture or facial display), dialog also pro-
vides a medium through which a significant amount of
information can be conveyed in addition to the linguistic
content, including emphasis, affect, and attitude. For these
reasons, simulated face-to-face conversation may also be
an especially effective communication channel to use with
individuals who have low reading or functional health
literacy.

mailto:bickmore@ccs.neu.edu
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Fig. 1. Levels of linguistic analysis (adapted from [9]).
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In some ways, health dialog systems may even be better
than interacting with a human provider. One problem with
in-person encounters with health professionals is that all
providers function in health care environments in which
they can only spend a very limited amount of time with
each patient [3]. Time pressures can result in patients
feeling too intimidated to ask questions, or to ask that
information be repeated. Another problem is that of
‘‘fidelity’’: providers do not always perform in perfect
accordance with recommended guidelines, resulting in sig-
nificant inter-provider and intra-provider variations in the
delivery of health information. Finally, many people sim-
ply do not have access to the all of the health professionals
they need, due to financial or scheduling constraints. Even
if health dialog systems have lower efficacy than one-on-
one counseling, they have the potential to reach a much
greater portion of the population, resulting in greater
‘‘impact’’ (efficacy multiplied by reach [4]).

In addition to emulating face-to-face interaction with a
health professional, dialog system technology can be used
in a number of otherways to provide patients and consumers
with health information. For example, real-time speech-
based machine translation systems can enable a health
professional to assist a patient who speaks a different
language [5]. Computer games in which consumers can con-
verse with non-player characters in natural language can be
used to affect health behavior change through role playing
and dialog with peer characters [6]. Thus, to be as inclusive
as possible, we define health dialog systems to be those auto-
mated systems whose primary goal is to provide health
communication with patients or consumers primarily using
natural language dialog. While such systems can be used
for a very wide range of applications—including the promo-
tion of patient disease self-management, diseasemonitoring,
and screening—we will focus on patient education and
health behavior change applications in this paper, as these
have received the most research attention to date.

The field of health dialog systems lies at the intersection
of two much larger disciplines—computational linguistics
(specifically work on dialog systems) and medical informat-
ics (specifically in the area of consumer informatics).
Although this intersection is still fairly small in terms of
the number of active researchers and the number of sys-
tems built and deployed, it has a long history and repre-
sents a rapidly growing field. In 2004, an initial
workshop was held on this topic as part of the American
Association for Artificial Intelligence’s Fall Symposium
Series [7], and a follow-on workshop will be held in 2006,
focusing specifically on automated argumentation systems
for health communication [8].

This article begins with a brief review of dialog system
theory followed by a discussion of what makes health dia-
log different from other dialog system application domains.
Reviews of dialog system technologies and deployment
technologies are then presented, followed by discussions
of development and evaluation methodologies. Finally, a
brief review is given of the efficacy of the systems fielded
E
D
P
R
O
O
F

to date followed by a discussion of some promising areas
of future research.

2. Basic concepts in dialog system theory

Linguists have traditionally decomposed the problem of
understanding and generating natural language utterances
into several layers of analysis (see Fig. 1) [9]. Phonetic anal-
ysis structures sequences of phonemes (the smallest units of
sound) together into morphemes (roots, prefixes and suffix-
es). Morphology structures sequences of morphemes into
words. Syntax structures sequences of words into clauses
and then into sentences or utterances (when spoken).
Semantics is concerned with the meaning of sentences,
independent of their context of use: how words, phrases
and clauses relate to the world, and how the meanings of
these constituents can be combined to form the meaning
of an entire utterance. Pragmatics is concerned with those
elements of utterance meaning that are context-dependent,
and with how language is used by people to achieve their
goals.

The study of discourse and dialog falls within the realm
of pragmatics. Discourse is the extended use of language to
convey desires, beliefs and intentions. The pragmatics of
discourse is the study of how sequences of utterances com-
bine to form meaning, beyond that specified by the utter-
ances in isolation. Thus, in determining the meaning of a
given utterance in a conversation it is usually necessary
to have some (abstracted) representation of what has been
said before: the discourse context. Interlocutors are
assumed to incrementally update their shared representa-
tion of this context as a conversation unfolds. Dialog is dis-
course between two or more parties, with the quintessential
example being a conversation between two people or, in
our case, between a person and a computer.

In this paper, we focus primarily on issues dealt with in
the pragmatics of discourse and dialog, even though issues
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in the lower levels of analysis must also be dealt with when
building dialog systems.

Discourse theory, then, is generally concerned with how
multiple utterances fit together to specify meaning. Just as
theories of syntax assume that sentences are composed of
atomic units (words) and intermediate structures (phrases
and clauses), organized according to a set of rules, theories
of discourse generally assume that discourses are composed
of discourse segments (consisting of one or more adjacent
utterances), organized according to a set of rules. Beyond
this, however, discourse theories vary widely in how they
define discourse segments and the nature of the inter-seg-
ment relationships. Some define these relationships to be
a function of surface structure (e.g., based on categories
of utterance function, such as request or inform, called
‘‘speech acts’’ [10]), while others posit that these relation-
ships must be a function of the intentions (plans and goals)
of the individuals having the conversation [11,12]. In addi-
tion, researchers developing computational models of dis-
course have included a number of other constructs in
their representation of discourse context, including: entities
previously mentioned in the conversation, possibly orga-
nized into a sub-structure indicating the availability of
these entities for subsequent reference; topics currently
being discussed (e.g., ‘‘questions under discussion’’ [13]);
and information structure, which indicates which parts of
utterances contribute new information to the conversation
as opposed to those parts which serve mainly to tie new
contributions back to earlier conversation [14].

Discourse theory also seeks to provide accounts of a
wide range of phenomena that occur in naturally occurring
dialog including: mechanisms for conversation initiation,
termination, maintenance and turn-taking; interruptions;
speech intonation (used to convey a range of information
about discourse context); discourse markers (words or
phrases like ‘‘anyway’’ that signal changes in discourse
context); discourse ellipsis (omission of a syntactically
required phrase when the content can be inferred from dis-
course context); grounding (how speaker and listener nego-
tiate and confirm the meaning of utterances through signals
such as headnods and paraverbals such as ‘‘uh huh’’); and
indirect speech acts (e.g., when a speaker says ‘‘do you have
the time?’’ to know the time rather than simply wanting to
know whether the hearer knows the time or not).

While significant progress has been made in both theo-
retical and computational approaches to addressing most
of these issues, in the most general cases these problems
are far from being completely resolved, and many are
known to be computationally intractable. In addition, the
need for a first principles theory for these phenomena can
be obviated by properly constraining a system’s interaction
with the user. In particular, if the range of utterances the
user can make at each point in the conversation is tightly
constrained, then many of the phenomena above can be
designed out of the interaction (e.g., interruptions), while
others can be ‘‘pre-computed’’ by the system designers
(e.g., the meaning of indirect speech acts). Consequently,
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most contemporary health dialog systems—especially those
which have been formally evaluated in large clinical stud-
ies—use interactions with the user that are very tightly
scripted.

However, much of the ongoing research in this area is
concerned with developing systems that enable user–com-
puter conversation that more closely approximates natural
and fluid human–human dialog.

3. What’s unique about health dialog?

Communication between human healthcare providers
and their patients is one of the most widely studied
domains of communication research. Just within the field
of physician–patient communication, one source lists over
3000 articles in print [15], and there are volumes written
on the dialog that occurs during psychotherapy sessions.
In this section, we look at a number of factors that make
health communication a particularly novel and challenging
application domain for dialog systems researchers. Most of
these factors have yet to be definitively addressed in con-
temporary systems and thus represent important areas of
ongoing research.

3.1. Criticality

Many health dialog systems have the potential to be
used in emergency situations, for example in systems that
assist patients with ambulatory care sensitive diseases or
in chronic disease self-management. Several systems devel-
oped for this kind of application are designed to determine
if the patient is having a life-threatening emergency as
quickly as possible and either direct the patient to call
911 or immediately and automatically send a designated
physician a pager message or FAX alerting them to the sit-
uation [16].

3.2. Privacy and security

Dialog content and communication media may need to
be tailored based on the user’s context to address privacy
issues. For example, developers of applications that involve
disclosure of potentially stigmatizing conditions or infor-
mation should be sensitive to the user’s environment and
tailor content accordingly (e.g., using speech dialog systems
to manage HIV medication regimen adherence).

3.3. Continuity over multiple interactions

Most health communication applications require multi-
ple interactions with users over extended periods of time.
Interaction frequencies can range from multiple times a
day (e.g., in wearable monitoring applications) to daily
(as in [17]) to one or more times per week (as in most
TLC applications [18]), to once every few months (as in
many of the health behavior change applications that use
tailored documents [19]). Durations of use can span from
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a month (FitTrack, Section 5.3.1) to several months or a
few years (most behavior change applications) to a lifetime
(chronic disease monitoring and self-care). Further, these
interactions are not isolated, stateless sessions (such as in
a database question answering system), but require exten-
sive information to be kept persistently between sessions
for a given user, with subsequent dialog tailored on the
basis of earlier conversations. This requirement for conti-
nuity over multiple interactions is found in few dialog
system application domains outside of healthcare (multi-
session intelligent tutoring systems being the other notable
example). This requirement also drives several interesting
research problems, such as determining the form and con-
tent of dialog history that is maintained between sessions,
and the generation and resolution of expressions that refer
to past interactions.

3.4. Language change over time

In human health provider–patient interactions lan-
guage use naturally evolves over the course of time. Sev-
eral studies have noted that task talk becomes more
concise and takes less time as the interactants’ knowledge
of each other increases, while their use of social dialog
generally increases as their relationship grows [20]. Some
specific examples of the ways in which health behavior
change dialog can evolve include: making use of infor-
mation about the user’s state to set behavior goals and
give feedback; progressively disclosing more information
about the user’s condition; gradually making task lan-
guage more precise; and gradually phasing out introduc-
tory how-to instructions and help messages. Maximizing
conciseness in spoken output is especially important since
it takes more time to communicate information in speech
than in text [21]. Language change is also important just
to maintain user engagement in the system. In the Fit-
Track study [17], several subjects mentioned that repeti-
tiveness in the system’s dialog content was responsible
for their losing motivation to continue working with
the system and follow its recommendations.

3.5. Managing patterns of use

One of the interesting but important ramifications of
interacting with users over multiple sessions is that users’
patterns of use of the system is itself is an important
object of study, and may require as extensive tracking
and management as the content of the intervention and
the user’s health behavior. Determining the optimal pat-
terns of use for a given intervention is a difficult prob-
lem, but must be specified before a system can
correctly manage interactions with its users. What is
the dose–response relationship between user–system con-
tacts and outcomes [4]? Is more frequent user–system
contact always better? Is a regular contact schedule (vs.
as needed by the user or as dictated by sensor data
and other information) always best [22]?
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3.6. Power, initiative, and negotiation

At first it may seem that conversational initiative in
health communication is one feature that actually works
in favor of building simpler dialog systems: as in most pro-
fessional–client interactions, the professional maintains the
initiative the vast majority of the time. While this is still the
case in many physician–patient and therapist–patient inter-
actions (physicians generally talk 50–100% more than
patients [20]), contemporary health communication
researchers have determined that the best way to motivate
patients to adhere to prescribed regimens and/or change
their health behavior is by moving away from this ‘‘pater-
nalistic’’ style of interaction to one in which the health pro-
fessional and the client work together on an equal footing
to come up with a treatment plan that fits into the client’s
life: so-called ‘‘patient-centered’’ communication [23,24].
There has been a significant amount of research over the
last few years on automated systems that can negotiate
with users in natural language (‘‘argumentation systems’’),
and this remains an active area of research.

3.7. User–computer relationship

The importance of quality relationships between health
care providers and their patients is now widely recognized
as a key factor in improving not only patient satisfaction,
but treatment outcomes across a wide range of health care
disciplines. The use of specific communication skills by
physicians—including strategies for conducting patient-
centered interviews and relationship development and
maintenance—has been associated with improved adher-
ence to treatment regimens improved physiological out-
comes, and increased patient satisfaction, leading to
recommendations for training physicians, nurses, pharma-
cists, and therapists in these skills [25].

Several studies have demonstrated that people respond
in social ways to computers (and other media) when pro-
vided with the appropriate social cues, even though they
are typically unconscious of this behavior {Reeves, 1996
#2139}. In a qualitative study of user perceptions of a tele-
communications-based health behavior change interven-
tion, Kaplan et al. found that users not only talked
about the system using anthropomorphic terms (e.g., using
personal pronouns), they described the system in ways
indicative of having a personal relationship with it (e.g.,
‘‘friend,’’ ‘‘helper,’’ ‘‘mentor’’) and seemed to be concerned
about impression management (e.g., choosing to only
interact with the system on days in which they met the sys-
tem’s health behavior goals) [26]. Milch, et al. [27] found
that several subjects in their pager-based medication adher-
ence intervention talked about their pager as a ‘‘trusted
friend.’’

Taken together, these results indicate that an effective
automated health communication system must not only
be able to deploy appropriate intervention messages at
the appropriate time, but must also address social, emo-
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tional, and relational issues in its communication with a
user [25].

4. Dialog system technologies

A range of technologies are available for building health
dialog systems. The simplest of these is a linear script that
specifies the exact sequence of dialog moves the system and
user will make in an interaction. State transition networks
provide a more sophisticated and flexible model, allowing
branches in the dialog based on what the user does in a giv-
en exchange with the computer. State transition networks
can be defined hierarchically, resulting in sub-dialogs that
can be factored out and re-used like subroutines: a model-
ing approach known as hierarchical state transition net-
works. Finally, plan-based dialog systems provide the
potential for the greatest flexibility in dialog behavior by
using action planners and plan recognition to model the
underlying intentions of people in conversation. First,
however, we describe pattern–response systems: a very sim-
ple, but commonly used approach for producing what
appears to be flexible and coherent dialog with a computer.
Table 1 presents a summary of the technologies discussed.

4.1. Pattern–response dialog systems

One of the most ubiquitous and popular methods for
building systems that appear to be able to conduct
coherent, intelligent dialogs with users (for primarily
non-medical applications) is the use of a set of pat-
tern–response rules. In these systems, rule patterns are
matched against the sequence of words in a user utter-
ance and, when a match is found, a corresponding sys-
tem output utterance is produced. Pioneered in the
ELIZA system in 1966 [28], these systems maintain little
or no discourse context, but instead rely on a number of
tricks to produce what is apparently coherent dialog.
These tricks include: maintaining system-initiated dialog,
by having most system outputs prompt the user with
open-ended questions; relying on the user’s sense-making
ability to infer coherent explanations for the system’s
outputs; and reflecting the user’s inputs back to them
with minor wording changes in order to give the illusion
of understanding what the user is saying.

An example rule in such a system is:
U
N

Table 1
Summary of health dialog system technologies

Dialog system technology Discourse context representation

Pattern–response None
State-based linear Current state
State transition network Current state
Hierarchical state transition network Stack of states
Augmented transition network Stack of states, database

Plan-based Many possible representations
encompassing beliefs and
intentions of system and user
E
D
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R
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PATTERN: * I AM * DEPRESSED *
RESPONSE: I AM SORRY TO HEAR THAT YOU

ARE DEPRESSED

where the asterisks in the pattern match zero or more
words in the user’s utterance. Here, the rule will match a
user input of ‘‘I AM FEELING A LITTLE
DEPRESSED’’ and produce a reasonable response. How-
ever, this same response would also be produced (not so
reasonably) for user inputs of ‘‘I AM NOT REALLY
DEPRESSED’’ and ‘‘MY BROTHER THINKS I AM
DEPRESSED’’.

Unfortunately, since the user’s inputs are unconstrained
and there is no linguistic analysis or discourse model that
could enable the system to truly understand what the user
is talking about in all situations, these systems cannot be
relied upon for critical applications in health communica-
tion in which errors in understanding user input can have
dire consequences. However, this type of interaction has
proven effective for emulating the behavior of a Rogerian
psychotherapist (the purpose for which this type of dialog
system was originally developed), and has been proven
effective for therapy in which the system is essentially
prompting a patient to think aloud and work through his
or her own problems [29]. In these applications, significant
errors in understanding user input or in producing incoher-
ent system output can often be tolerated, as the primary
function of the system is just to keep the user engaged in
the interaction.

4.2. State-based dialog systems

The most common technology used for health dialog
systems is a state machine in which each dialog move the
system can make (utterance or discourse segment) is repre-
sented by a state, and arcs between states represent possible
state transitions, with all of the arcs leading out of a given
state (typically) representing alternative user inputs that are
allowed in that state. In a state machine in which each state
has only either zero or one next state, this represents an
inflexible linear script such as the one shown in Fig. 2,
for a simplified physical activity promotion system.

To provide variations in system behavior based on user
input (and other factors such as physiological measure-
ments, user characteristics or information gleaned from a
Use for

Entertainment, engagement of user
Very short series of questions (e.g., screening)
Brief dialog with some branching
Partitioning extended dialog, or dialog with reusable sub-dialogs
Multiple extended dialogs, or dialogs in which branching is based
on several earlier responses
Generating dialog from deep knowledge of domain and natural
language
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System:

How many steps
will you walk

today?

User:
Input goal

number
of steps

User:
Input number

of steps
walked

System:
Hello

System:
OK.

Goodbye.

System:
How many steps

did you walk
yesterday?

System:
How many steps

will you walk
today?

Fig. 2. Example linear dialog script.
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user in previous dialogs), the linear script can be general-
ized to a State Transition Network, in which dialog states
can have more than one next state, as shown in Fig. 3.

Often, dialog state machines need to be created for a
variety of situations in which fragments of the state
machine are repeated. For example, a different top-level
dialog network may be developed for every contact with
a user, but every contact includes a sub-dialog for assessing
the user’s health behavior in the same way. For this reason,
and also to reduce the complexity of very large dialog net-
works, it becomes desirable to factor out commonly used
dialog fragments and arrange for them to be invoked in a
hierarchical manner, like subroutines in a software pro-
gram. This model—as depicted in Fig. 4—is referred to
as a hierarchical state transition network, in which the box-
es represent invocation of sub-networks which are run to
completion before the parent network is resumed. Execu-
tion of these networks thus requires a run-time stack to
keep track of the suspended (invoking) networks and
return states.

Linguists have previously proposed using grammars to
represent general dialog structure, based on the observa-
tion that there are many sequencing regularities among
utterances in human conversation, for example ‘‘adjacency
pairs’’ such as a question typically being followed by an
answer [30]. However, there have also been many argu-
U
N
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User:
Input number

of steps >= 10,000

User:
Input number

of steps <= 10,000

MOTIVATE_

GIVE_POSITIVSystem:
How many steps

did you walk
yesterday?

Fig. 4. Example hierarchical state tr

User:
Input number

of steps >= 10,000

System:
How many steps

did you walk
yesterday?

Syste

Great 

Syste
You re
should

10,000 s

User:
Input number

of steps < 10,000

Fig. 3. Example state transitio
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ments against the use of dialog grammars for representing
natural human conversation. For example, the fact that a
given utterance can perform multiple conversational func-
tions makes a single next state impossible to specify [31].

The expressive power of hierarchical state transition net-
works can further be extended by allowing the actions taken
upon user input recognition to include storing and retrieving
information from a persistent database, and allowing net-
work branches to be (partially) conditioned on this stored
information. For example, in a physical activity promotion
system, information about whether a user likes to exercise
alone or with others can be obtained early in a conversation
with a user and later used to determine whether to invoke a
social support sub-dialog or not. Hierarchical state transi-
tion networks augmented in this manner are called ‘‘Aug-
mented Transition Networks,’’ and were originally
developed for sentence parsing [32]. Augmented transition
networks remain the most commonly used technology for
implementing health dialog systems, and is themodel under-
lying the VoiceXML dialog system standard [33].

4.3. Plan-based systems

The ultimate goal for many applications in dialog sys-
tems research is the development of systems that allow
users to have as much freedom as possible to conduct an
System:

Goodbye.
TO_WALK

E_FEEDBACK

ansition network dialog model.

m:

job!

System:

Goodbye.m:
ally
 walk
teps

n network dialog model.
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unconstrained conversation with a system, including all of
the behavior observed in natural human–human conversa-
tions. This behavior includes: unconstrained user input;
mixed-initiative dialog, in which either the user or the sys-
tem can take control of the conversation at any time; prop-
er handling of interruptions and requests for clarifications;
indirect speech acts; and, ultimately, the proper recogni-
tion, display and use of nonverbal conversational behavior
such as hand gesture.

The predominant approach taken to building these
sophisticated dialog systems involves representing and rea-
soning about the intentions that underlie system and user
utterances, inferring the user’s goals and task plan, and
dynamically synthesizing the system’s task plan. Inferring
a user’s goals and task plan is necessary because, as exem-
plified by indirect speech acts, people’s utterances do not
always correspond directly to their communicative intent
(e.g., as in ‘‘Do you have the time?’’). Thus, plan-based the-
ories of communicative action and dialog assume that the
speaker’s speech acts are part of a plan, and the listener’s
task is to infer it and respond appropriately to the underly-
ing plan, rather than just to the utterance [34]. Synthesizing
system task plans, including communicative and other
actions, is necessary in complex applications in which all
possible conversational contingencies (and their possible
orderings) cannot be anticipated and scripted, but must
be addressed in an incremental, reactive manner.

Dynamic planning and plan inference can be computa-
tionally very complex, and thus have not been used much
to date in fielded health dialog systems. However, they
remain active areas of research in Artificial Intelligence,
and a handful of health dialog systems that use these tech-
niques have been developed for the application of clinical
guidelines [35], for the automatic generation of reminders
for older adults with cognitive impairment [36], for medica-
tion advice [37], and for diet promotion [38]. Plan recogni-
tion, and especially dialog planning systems have been
developed to consider several types of information in
sequencing dialog segments including task dependencies,
rhetorical strategies, and conversational conventions. Some
research has also been conducted into machine learning of
dialog plans [39], but these approaches require large sam-
ples of sample dialogs and have only been used for relative-
ly simple planning problems to date.
U
N
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4.3.1. Example: COLLAGEN

As an example of a plan-based computational model of
discourse, we briefly review the theory developed by Grosz
and Sidner [11], later elaborated by Grosz and Kraus and
Lochbaum [40,41], and implemented in the COLLAGEN
dialog engine [42]. In this theory, discourse context is rep-
resented by three elements:

• Linguistic structure—the structure of the utterances that
comprise a discourse, partitioned into discourse seg-
ments, where the utterances in each segment are grouped
according to intention (the Discourse Segment Purpose
or DSP, representing the goal that the utterances relate
to).

• Intentional structure—represents relationships among
the DSPs and the overall goal of the discourse (the Dis-
course Purpose, DP). These relationships can be either
sub-goal relationships (e.g., to conduct a conversation
you need a greeting, a body and a farewell) or prece-
dence relationships (e.g., the greeting precedes the body
which precedes the farewell).

• Attentional state—is an abstraction of the participants’
focus of attention as their discourse unfolds. It is
dynamic, recording the entities (typically objects
referred to in noun phrases) that are salient at each point
in the discourse. It is represented as a stack of ÆDSP,
focus spaceæ pairs, where the focus space represents
the entities under discussion (‘‘in focus’’) during pursuit
of the DSP. With each new discourse segment, a new
pair is pushed onto the stack (possibly after other focus
spaces are first popped off). One of the primary roles of
the focus space is to constrain the range of DSPs to
which a new DSP can be related, thus greatly simplify-
ing the problem of plan recognition [43].

An example showing the state of a discourse in progress
is given in Fig. 5. The discourse involves a physical activity
promotion system, involving: a greeting (Opening); review
of a client’s previous day’s exercise (DiscussPreviousDay);
setting goals for the next day (DiscussNextDay); and pre-
senting and discussing a self-monitoring graph depicting
exercise progress over time (ShowGraph, DiscussGraph).
The linguistic structure on the right shows (an excerpt) of
the dialog, its partition into discourse segments, and the
1
Interacting about exercise.

Done opening interaction.
Discussing previous day.

Done client identifying steps walked yesterday as 1000.
Coach says “How many steps did you walk yesterday?”
Client says “1000.”

Coach showing graph for the week.
Coach says “Here’s how you’ve done this week.”
Next expecting coach to show graph for the week.

Expecting to discuss graph.
Expecting to discuss next day.
Expecting to close interaction.

2

3

Closing

Linguistic Structure

t in Grosz & Sidner’s model.
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embedding relationships among them. The intentional
structure in the middle shows the relationship among the
DSPs corresponding to the discourse segments (with
arrows representing the sequencing relationships among
the DSPs and dashed lines representing decomposition
relationships). The attentional state on the left shows the
stack of DSP/focus space pairs at position (3) in the dialog.

The theory (and the COLLAGEN implementation) also
includes algorithms for determining the user’s task goals on
the basis of their utterances and other actions (plan recog-
nition) and the planning of system actions (including utter-
ances) required to collaborate with the user on the task
being performed.

4.4. Utterance understanding and generation

Although the focus of this paper is on the discourse level
of analysis in dialog systems, the issues of how individual
user and system utterances will be recognized and pro-
duced must be addressed in the course of their develop-
ment. In this section, we provide a brief overview of the
approaches to these functions most commonly used in
fielded systems.

4.4.1. Utterance understanding

Understanding user communicative intent on the basis
of speech, text, and other input modalities, taking into
account discourse context and world knowledge, is the
single most difficult problem in developing dialog sys-
tems, and is thus the aspect that is typically the most
tightly constrained. One of the ways this is usually
accomplished is by providing users a discourse context
in each dialog state in which their choices of possible
responses are obvious and small in number, such as
when a system asks closed-ended (e.g., yes/no) questions.
Given this, however, there are still a range of approaches
to mapping user inputs onto the range of input options
the system is able to handle.

The simplest way to constrain user responses to system
prompts is to provide users with an exhaustive multiple
choice list of input options. An input context-free gram-
mar, usually specified for each dialog state, allows signifi-
cantly more flexibility in specifying allowed user inputs.
This format is typically used for recognizing everything
from individual numbers and dates up to phrases and sen-
tences, and is commonly used in Automatic Speech Recog-
nition (ASR) systems. More sophisticated parsing
techniques using more powerful grammars and probabilis-
tic/empirical techniques are available, but tend to not be
used in dialog systems in which the focus is on discourse
issues and high accuracy in understanding user intent. Mul-
ti-modal input understanding—in which either nonverbal
conversational behavior, such as hand gesture or alterna-
tive input modalities, such as stylus gesture [44] are
used—represents another active area of dialog system
research, although little work has been done in the medical
domain.
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4.4.2. Utterance generation

Text generation is the problem of transforming a logical
representation into a natural language utterance [45]. The
simplest form of utterance generation involves simply
indexing a fixed string or pre-recorded speech utterance
and producing this for the user. A slightly more sophisti-
cated technique—and the one most often used in fielded
systems—is template-based generation, in which a string
is annotated with variables whose values are determined
at run-time (e.g., ‘‘YOU WALKED ÆNumStepsæ STEPS
TODAY.’’). In the most general case, text generation can
involve word-by-word synthesis of utterances based on a
grammar and dictionary, discourse context and world
knowledge, although this level of sophistication is typically
not required for most dialog system applications. Research
has also been conducted into generation of multi-modal
system outputs (speech or text plus accompanying nonver-
bal behavior or graphics) although, as with multi-modal
input understanding, this has not been used widely in
health dialog systems to date.

5. Deployment technologies

Health dialog systems may be deployed using a range of
communication media. In this section, we provide an over-
view of the technologies that have been used.

5.1. World wide web

Among the deployment media for automated dialog sys-
tems, the Internet offers a number of attractive features.
The main issue of deployment of automated dialog systems
is what technology to use at the user’s endpoint. The more
advanced communication medium one chooses, the more
complex (and costly) is the deployment process and its
maintenance if it requires any special ‘‘receiver’’ technolo-
gy. This applies both to hardware (whatever device patients
are required to physically interact with), as well as to any
user-visible software possibly involved.

Technologies that make use of client–server architec-
tures are therefore preferable in situations in which ease
of deployment is the most important factor. Among Inter-
net-based technologies, web pages allow for very straight-
forward implementation of questionnaires and written
turn-based dialogs. Deployment is straightforward because
web pages only require a web browser to be displayed at
the client site, and this software is available more or less
universally. The limiting factor may still be availability of
Internet connection and computers themselves, especially
for certain user groups (e.g., low income, older adult, etc.).

While the most natural deployment medium for speech-
only dialog systems is via telephony, Internet technologies
support multimodal interfaces featuring speech with simul-
taneous graphical output, enabling the use of pictures, dia-
grams, and animations. Proposed solutions for multimodal
browsing can be divided into server- and client-side speech
recognition. In the former, the bulk of the speech recogni-
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tion process happens at the remote server site, by transmit-
ting the voice signal over the internet [46]. Client side rec-
ognition, instead, performs speech recognition on the
user device; it therefore requires less bandwidth for the
transmission of voice, but higher processing power. Client
side recognition is endorsed by the W3C via the
XHTML + Voice profile, related to VoiceXML [47]. Mul-
timodal browsing is especially attractive for mobile devices,
although still in its infancy.

5.2. Speech and telephony

A natural, technologically mature way to provide direct
access to health communication interventions to patients
from home is via their telephone, dialed into a specially
equipped server computer. These systems are known as
Interactive Voice Response (IVR). While it is possible to
set up an inexpensive IVR system for relatively simple,
low call volume applications, complex dialogue systems
targeted at high volume applications can be very expensive
to develop and deploy. Systems are typically built to deal
with incoming calls (dial in)—but in some cases they can
be deployed to automatically dial out connections and pro-
cess them (once callee’s privacy issues are addressed, of
course).

IVR systems can communicate with users by playing
messages over the telephone line. Such messages, or
prompts, must be either pre-recorded by voice actors and
stored inside the computer system or dynamically synthe-
sized. Recorded prompts are usually natural and intelligi-
ble; however, the messages cannot be altered after being
recorded, but only combined sequentially. This is a major
drawback if one needs to convey to the user information
that is evaluated at runtime: for example, large numbers,
or even names that were not foreseen at the time when
the system was built.

Text to speech (TTS) systems are a viable alternative for
prerecorded voice prompts. TTS systems are able to trans-
form an arbitrary text string into a sound signal, which can
be played over the telephone line [48]. Since the synthesis
process starts from the string, any utterance can be gener-
ated, and TTS is required when system utterances are
dynamically generated.

Users can communicate with IVR systems by pressing
keys on touch tone phones. The vast majority of current
telephones, including cellular phones, produce a known
frequency combination when each key is depressed. The
frequencies, commonly known as Dual Tone Multi Fre-
quency (DTMF) or touch-tones, can be transmitted over
channels made for carrying voice, and reliably detected
by algorithms built into telephony hardware or software.
For these reasons, DTMF signaling became a sensible
means to acquire user input in IVR, allowing users to pro-
vide feedback, for example, selecting items in a menu struc-
ture presented during the progress of an automated call.
The data that can be entered are necessarily limited to
numeric quantities or codes and navigation is usually
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restricted to a tree-like structure. Despite this somewhat
cumbersome usage, controlled studies have shown such
DTMF systems to be successful for in-home monitoring
of patients with chronic diseases such as hypertension
[49–51] and diabetes [52].

Automatic speech recognition (ASR) technology is now
widely available and has been integrated into many IVR
systems as an alternative to DTMF. The accuracy of
ASR is still far from perfect, especially for certain types
of users (e.g., for those with non-standard accents, older
adults, or children) or dialog. Thus, speech input gram-
mars—specifying what users can say at each dialog
state—must be carefully designed, often using DTMF as
a fallback. Unconstrained spoken input is possible, in prin-
ciple, in dictation systems—but in practice it is not usable
for IVR, since dictation systems need a lengthy training
on the specific speaker (speaker-dependent recognition) to
achieve satisfactory performance, and even with this, accu-
racy is usually too low to be useful for health communica-
tion. Grammars, instead, restrict the input space of
utterances and make speaker-independent recognition of
sentences over the telephone reliable enough for practical
use.

A significant advance in the deployment of IVR systems,
both keypad- and voice-based, has been the standard
endorsed by the W3 Consortium (W3C). The standardiza-
tion activity has yielded a dialog planning language, Voice-
XML, and also standardized grammar definition languages,
such as the Speech Recognition Grammar Format (SRGF).
TheW3C Voice Interaction group proposed an architecture
for IVR systems which closely resembles that for standard
web-based applications, the main difference being that the
visual web browser (client), is replaced by a voice browser,
which interprets a dialog description written in VoiceXML
and conducts the interaction [33]. Dialog description and
its linked grammars are served over the internet or intranet
in a manner analogous to HTML pages and linked images.
Detailed discussion of the languages and standards is outside
of the scope of this paper; further details can be found, e.g., in
[53]. Programming VoiceXML can be cumbersome, result-
ing in a growing number of commercial tools for authoring
VoiceXML documents and approaches to dynamically gen-
erating these documents [54].

5.2.1. Example: HOMEY

The HOMEY project was funded in 2001 by the Euro-
pean Union with the aim to advance research in spoken
dialog systems applied to enhance communication between
specialist health centers and patients with chronic diseases
[55]. The project resulted in three demonstrators: (1) one
for monitoring patients affected by hypertension [55], (2)
a second for studying automated dialog planning from
ontologies and computerized guidelines [35], and (3) a
PDA-based multimodal electronic patient record interface
[46]. This section gives a short account of the first system;
the second is addressed by Beveridge and Fox in a separate
paper in this issue.
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The HOMEY hypertension system enables patients to
self-report clinical values and possible medication side
effects via a telephone-based, mixed initiative spoken dialog
system. It also provides simple educational messages and
serves as a reminder for clinical tests and scheduled
appointments. Data entered by patients is reported to phy-
sicians through a web-based electronic medical record,
which is integrated with the system. This self-reported data
is stored and displayed along with data entered by physi-
cians from face-to-face encounters.

Hardware and speech recognition software, and the pro-
prietary dialog scripting language, were provided by pro-
ject partners, while the development of the application
itself (the dialog scripts) and the web-based patient record
has been co-designed together with knowledge engineers
and medical specialists.

The hypertension prototype was subject to two pre-de-
ployment tests with volunteers, which were used to assess
ergonomic aspects, including dialog adaptation and refine-
ments of language models. The system was finally used by
two hospitals in a controlled clinical trial that lasted
approximately one year (6 months between enrollment
and follow-up for each patient). Results indicated that
24-h averaged blood pressure values decreased more in
the dialog-system treatment group compared to a control
group (p < 0.1).

5.3. Embodied conversational agents

Embodied Conversational Agents (ECAs) are animated
humanoid computer-based characters that use speech, eye
gaze, hand gesture, facial expression, and other nonverbal
modalities to emulate the experience of human face-to-face
conversation with their users [56]. Such agents can provide
a ‘‘virtual consultation’’ with a simulated health provider,
offering a natural and accessible source of information
for patients. These agents represent one form of multimod-
al dialog system, in which the nonverbal modalities are rec-
ognized and produced in addition to accompanying text or
speech, to more fully understand the user’s communicative
intent. In addition to carrying additional factual informa-
tion, nonverbal behavior is also used in face-to-face con-
versation to regulate the interaction structure itself, for
example, gaze and intonation to regulate turn-taking
behavior, body position and orientation to regulate conver-
sation initiation and termination.

In addition to the FitTrack system described below, sev-
eral ECAs have been developed for use in health dialog sys-
tems, for applications spanning training in human subjects
consenting procedures [57], training in coping skills for
caregivers of children with cancer (deployed on both desk-
tops and PDAs [58]), and diet behavior change. These sys-
tems vary greatly in their linguistic capabilities, input
modalities (most are mouse/text/speech input only), and
task domains, but all share the common feature that they
attempt to engage the user in natural, full-bodied (in some
sense) conversation.
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5.3.1. Example: FitTrack

The FitTrack system was developed to investigate the
ability of anECA to establish andmaintain a long-term ther-
apeutic alliancewith users, and to determine if these relation-
ships could be used to increase the efficacy of health
communication and health behavior change programs deliv-
ered by the agent [59,60]. An ECAwas expected to be partic-
ularly effective at relational communication, given that most
human relationships are formed and maintained in face-to-
face conversation where nonverbal behavior can be used to
communicate and assess the social aspects of the interaction.
In the FitTrack system, the ECA uses nonverbal behavior to
convey propositional, interactional, affective and attitudinal
information in addition to the speech channel.

The ECA, named ‘‘Laura,’’ played the role of an exercise
advisor who motivated sedentary adults to obtain the mini-
mum level of physical activity recommended by current pub-
lic health guidelines [61] over a two-month period of time.
The dialog was modeled using augmented transition net-
works, with dynamic multiple choice inputs by users and
embodied conversational agent output (synthesized speech
and synchronized nonverbal conversational behavior dis-
played by an animated agent). The system was designed to
run on standard home desktop computers so that partici-
pants could interact with the system on a daily basis.

The appearance and nonverbal behavior of the exercise
advisor was based on a review of relevant literature and a
series of pre-test surveys. Fig. 6 shows the character and
user interface. The system used the BEAT text-to-embod-
ied-speech translator [62] to generate nonverbal behavior
for the agent, including hand gestures, posture shifts, head
nods, gaze and eyebrow behavior, immediacy behavior
(liking or disliking of one’s conversational participant dem-
onstrated through nonverbal behaviors such as proximity
and gaze [63,64]) and nonverbal signaling of different con-
versational frames [65] (health dialog, social dialog, empa-
thetic dialog, and motivational dialog).

FitTrack was successfully used in two randomized clin-
ical trials, one involving MIT students and the second an
urban, older adult population.

5.4. Robots

There is an emerging interest in developing autonomous,
mobile robotic systems that can interact with users to per-
form various health-related tasks. Many of these robots
include some speech-based natural language dialog capa-
bility, although they appear to be mostly very simplistic
from a dialog systems perspective. Example applications
include robotic nurse spirometry assistants for post-cardiac
surgery patients [66], arm motion rehabilitation for stroke
patients [67], and eldercare [68].

6. Development methodologies

The development methodologies used in dialog systems
research depends very heavily upon the type of technology
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and underlying models employed. Development of all
kinds of dialog systems often begins with the collection
and analysis of sample dialogs between real people (e.g.,
between health providers and patients). The resulting
recordings (audio or video) are transcribed and subjected
to discourse analysis [69]. This analysis results in a charac-
terization of the range of concepts, terms, and syntax typ-
ically used in patient–provider communication, in addition
to the range of topics discussed, the types of questions
asked, and the overall conversation structure and sub-dia-
log structure used. Much of this process is analogous to the
knowledge engineering methodology followed in the devel-
opment of expert systems. Typically, full characterization
of dialogs is achieved through a combination of literature
review, discourse analysis, and direct authoring of scripts
by expert providers.

Another method that is widely used in dialog system
development is the ‘‘Wizard-Of-Oz’’ technique, in which
(unbeknownst to test subjects) a human confederate replac-
es some or all of a dialog system’s functionality during live
interactions between subjects and the system [70]. Dialog
from these sessions is recorded and analyzed for several
purposes, including: early characterization of domain dia-
logs; characterization of user responses in particular con-
texts of interest; assessment of user acceptance of and
attitude towards a planned system; and assessment of util-
ity and efficacy of a planned system. Although ideally,
user–system interaction will closely follow provider–patient
interaction, it has been observed that in many situations
users speak and otherwise behave differently when interact-
ing with a computerized system than with another human
E(e.g., they simplify their speech patterns) [71]. In these sit-
uations, Wizard-of-Oz testing is particularly important,
since the study of provider–patient interaction will not cor-
rectly characterize these dialogs.

The underlying model to be built into the dialog system
also influences development. State-based and grammar-
based dialog systems are designed with a focus on charac-
terizing the surface level of the dialog and a small number
of relatively large-grained variations in dialog structure.
This effort can proceed from the collected corpora, from
one or more providers who author the grammars or net-
works directly, or by a linguist/knowledge engineer who
interviews one or more providers and develops the gram-
mar. Development of plan-based dialog systems is much
more involved, and requires deeper modeling of relevant
ontologies and knowledge structures in the domain, as well
as the development of dialog plan fragments.

Finally, development of dialog systems that are going to
be fielded, for example for use in a clinical trial, requires
extensive pre-testing and iterative refinement to ensure that
the resulting system is both functional and natural.

7. Evaluation methodologies

There are three broad approaches to the evaluation of
health dialog systems (as compared with other kinds of sys-
tems in medical informatics [72]). First, qualitative and
quantitative evaluation of a single user–system conversa-
tion—focusing on issues such as accuracy, efficiency, and
subjective user evaluation—can be performed using a vari-
ety of methods and instruments. Second, and perhaps
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unique to health dialog systems, is the analysis of usage
patterns over time—how often users choose to conduct
interactions, whether these taper off over time, etc.—and
how these patterns are affected by features of the dialog
system and how, in turn, they affect health outcomes.
Finally, evaluation of the efficacy of health dialog systems
can be established through standard randomized clinical
trial methodologies. In practice, researchers whose back-
grounds are in the medical professions tend to focus pri-
marily on the last type of evaluation, while those in
computational linguistics tend to focus primarily on the
first. Ideally, multiple forms of evaluation should be used
throughout the development lifecycle to ensure the most
efficacious system.

In addition to these task- and outcome-oriented assess-
ments, itmay also be important to evaluate the psychological
aspects of interactions between users and a health dialog sys-
tem. Very little work has been to date in this area. It may be
important to assess user attitudes towards a system after
some period of use: qualitative methods (as in [26]) and stan-
dardized measures of patient–provider relationship (as used
in [73]) may be used for this purpose. We know of no cogni-
tive evaluations of conversations between users and health
dialog systems (e.g., of the form done in [74]). However, as
these systems move away from scripting technologies and
incorporate dialog planners that synthesize language from
explicit knowledge representations (as discussed in Section
4.3), ‘‘cognitive analysis’’ of themachine’s knowledge should
become a simple matter of inspection.

7.1. Dialog performance evaluation

One of the most mature methods for evaluating dialog
system performance is provided by the PARADISE frame-
work [75]. PARADISE uses a decision-theoretic frame-
work to combine evaluations of system accuracy (success
rate at achieving desired conversational outcomes) with
the ‘‘costs’’ of using a system—comprised of quantitative
efficiency measures (number of dialog turns, conversation
time, etc.) and qualitative measures (e.g., number of repair
utterances)—to yield a single quality measure for a given
interaction. Weights for the various elements of the evalu-
ation are determined empirically from overall assessments
of user satisfaction for a sample set of conversations, and
the evaluation formula can be applied to sub-dialogs as
well as to entire conversations to enable identification of
problematic dialog fragments.

Two other qualitative evaluation methods were devel-
oped on the TRINDI and DISC projects. They provide cri-
teria for evaluating a dialog system’s competence in
handling certain dialog phenomena. The TRINDI Tick-
List consists of three sets of questions that are intended
to elicit explanations describing the extent of a system’s
competence [76]. The first set consists of eight questions
relating to the flexibility of dialog that a system can handle.
For example, the question ‘‘Can the system deal with
answers to questions that give more information than
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was requested?’’ assesses whether the system has any ability
to handle mixed-initiative dialog. The DISC Dialog Man-
agement grids [77] include a set of nine questions, similar
to the Trindi Tick-List, that are intended to elicit some fac-
tual information regarding the potential of a dialog system.

Since it is desirable to perform extensive evaluation of
health dialog systems prior to using them in expensive clin-
ical trials, they are often evaluated by volunteers who are
given scripts and asked to interact with a system to perform
a series of ‘‘real life tasks.’’ These users have to find their
way through the system interaction in order to accomplish
the task.

Evaluation may also be conducted on the basis of call
logs in telephony systems that record conversations
between users and the system. These recordings can be lis-
tened to and annotated by human expert evaluators, but at
the expense of effort and time. Woodbridge [78] describes
how telemedicine interactions can be scored via a hand-
crafted algorithm, while Giorgino [55] proposes to apply
supervised machine learning algorithms to reproduce
human-provided numeric annotations, based on attributes
that can be gathered automatically.

7.2. Evaluating patterns of use

Health communication applications in general, and
health behavior change applications in particular, require
multiple contacts with a user over extended periods of time.
In these systems, it is the user’s decision whether to conduct
a given conversation with the system or not, even if the
conversations are system initiated. Acquisition of such
usage data for many users over extended periods of time
results in datasets that can be analyzed to determine: typi-
cal usage patterns; correlations between system or user
characteristics and usage; and correlations between system
usage and outcomes (dose–response relationships). These
are important objects of study, because they can inform
the design of future systems that users like interacting with
(maximizing usage) or which are most efficacious (maxi-
mizing outcomes) or, ideally, both.

This is a nascent area of research, but there have already
been a few published studies. Farzanfar partitioned users
of a telephone-based physical activity promotion system
into five usage groups: (1) those who adhered to the recom-
mended call schedule (twice weekly for 3 months) at least
80% of the time; (2) those who used the system throughout
the three months but intermittently; (3) those who used the
system consistently for a while but then discontinued use;
(4) those who only used the system zero or one time; and
(5) those who had one or more incomplete calls [22]. Differ-
ences between these groups were found in both outcomes
and self-reported system evaluations. For example individ-
uals in the intermittent group (2) had the highest ratio of
satisfied users and better reported outcomes both in terms
of physical activity levels and perceived benefits, compared
to the other groups. Giorgino made similar observations in
analysis of the call data from the HOMEY system [55].
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7.3. Randomized clinical trials

As the ultimate objective of the majority of health dialog
systems is to affect the health of its users, the evaluation of
these systems involves randomized clinical trials in which
they are compared (typically) to standard-of-care condi-
tions and evaluated using the same outcome measures that
would be used in a trial involving any other health inter-
vention technology or method. The vast majority of
NIH-funded health dialog systems have been evaluated in
this manner. The only differences between a study involv-
ing an automated dialog system and one involving human
health providers are: study eligibility criteria usually specify
that subjects must speak a particular language (since most
projects do not have the resources to produce multi-lingual
systems); subjects have access to the terminal device
required (phone, home computer, etc.) or are provided
one for the study; and they have the cognitive and physical
ability to use the system. Subjects in dialog systems studies
are also either provided an initial training session and/or
printed materials describing how to access and use the sys-
tem initially. Given the amount of longitudinal data typi-
cally collected in these studies, longitudinal data analysis
methodologies are normally employed in addition to stan-
dard before-and-after (or baseline/end-of-intervention/fol-
low-up) comparisons [79].

8. Efficacy of formally evaluated systems

A number of health dialog systems to deliver health edu-
cation or effect health behavior change have been devel-
oped and successfully evaluated in randomized clinical
trials, with the results generally demonstrating significant
improvements in health outcomes over standard-of-care
or no-intervention control conditions, and in many cases
demonstrating outcomes equivalent to similar interven-
tions by human health providers.

Revere and Dunbar conducted a meta-review of 37 eval-
uation studies involving generation of print-based health
educational materials, and telephone-based and comput-
er-based health dialog system interventions [80]. These sys-
tems provide health behavior change information to users
based on a wide variety of health behavior theories (e.g.,
the stages of change model [81], the health belief model
[82], and social cognitive theory [83]), and were applied
to a number of health behaviors (physical activity promo-
tion, diet adherence, medication regimen adherence, smok-
ing cessation, chronic disease self-management, and
others). The authors found that 33 of the 37 studies report-
ed improved outcomes and 20 of these (60.6%) were statis-
tically significant. The authors also concluded that tailored
interventions—those whose messages are based on a specif-
ic individual’s characteristics—generally outperformed
interventions that were generic, targeted (developed for a
specific subgroup of the population), or just personalized
(included the user’s name in the messages). Of the studies
reviewed, only 13 could be considered true dialog systems
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(i.e., communicated using interactive utterance exchanges
with a user), but of these 11 (85%) reported statistically sig-
nificant improvements in health outcomes.

8.1. Evaluation of IVR systems

One meta-review, specifically focused on outcome stud-
ies of IVR-based systems published during years 1989–2000
is provided by [84].The reviewers exhaustively took into
consideration 54 studies concerning health-related DTMF
systems, published in peer-reviewed journals. (It is however
not clear how many distinct systems they are related to.)
The first interesting point of the review is that the papers
were grouped by intervention area, thus providing a useful
synopsis of the intervention types to which these systems
have been applied. Authors also identified common fea-
tures which make IVR systems applicable for healthcare
interventions, including: absence of interviewer bias, low
cost per interview, automatic and continuous operation,
and greater confidentiality. Positive outcomes were report-
ed according to different intervention areas: change in
screening habits and self-reported satisfaction with the sys-
tem for telephone-based information services; increased
treatment compliance and child immunization rates for
reminder calls about children immunization and other
appointments; reduced hemoglobin readings for diabetic
patients in chronic disease monitoring; and more faithful
reporting of misbehaviors in behavior assessment. Not all
of the studies examined were controlled, and some inter-
ventions which were did not show statistically significant
improvements. Insufficient IVR compliance was noted in
several studies.

Another review [85] explicitly focused on IVR interven-
tions for management of chronic disease conditions. This
review concludes that, while there are still few peer-re-
viewed evaluations of the impact of IVR-supported disease
management systems, ‘‘those that have been conducted
indicate that some outcomes can be moderately improved.’’

Finally, the clinical effectiveness of educational voice
messages has been assessed by another recent meta-review
[36], which concludes that among 19 studies considered (of
which 16 were controlled), ‘‘more than 80% of studies
showed significant impact upon measurable health
outcomes.’’

One series of IVR systems and studies deserve special
mention: the Telephone-Linked Care (TLC) systems devel-
oped by Friedman and colleagues at Boston University
over the last 20 years. These systems are developed primar-
ily using two-level augmented transition networks, record-
ed speech output, and either DTMF or ASR for user input.
TLC behavior change applications have been applied to
changing dietary behavior [86], promoting physical activity
[87], smoking cessation [88], and promoting medication
adherence in patients with depression [89] and hyperten-
sion [18]. TLC chronic disease applications have been
developed for chronic obstructive pulmonary disease
(COPD) [90], and coronary heart disease, hypercholestern-
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emia, and diabetes mellitus [18]. All of these systems have
been evaluated in randomized clinical trials and most were
shown to be effective on at least one outcome measure,
compared to standard-of-care or non-intervention control
conditions.

8.2. Evaluation of ECA systems

An evaluation of the FitTrack physical activity advisor
agent was conducted in a randomized study comparing col-
lege-aged subjects who conducted daily dialogs with the
agent with subjects who simply kept track of their physical
activity (time estimates and pedometer steps) [25]. Subjects
who interacted with the agent increased their number of
days per week during which they had 30 min or more of
moderate-or-greater intensity physical activity, compared
to subjects in the CONTROL condition, t (86) = 1.98
p < .05. A second study evaluated FitTrack for an urban,
older adult population, in which subjects who interacted
with the agent were compared to a standard of care (print
materials and pedometer only) control group [91]. The esti-
mated slope of pedometer steps over the two-month study
duration (increase per week in mean weekly steps walked)
was significantly greater for the intervention group than
the control group (p = 0.004).

9. Conclusion and future directions

There is a growing body of research on the development
and evaluation of systems which can interview patients and
consumers about their health and provide health informa-
tion and counseling using natural language dialog. The
formal evaluation of many of these systems has demon-
strated that they are effective compared to standard-of-care
controls and, in some cases, are as effective as human
health providers (e.g., [92]). These systems have the poten-
tial to reach large numbers of users at relatively low cost,
resulting in the potential for high impact on population
health. At the same time, health dialog represents a chal-
lenging and important application domain for dialog
system researchers, with many features—such as repeated
contacts over extended periods of time—relatively unique
to the domain.

There are many future directions for research in health
dialog systems that are currently being pursued. One of
the most important is the further development of
plan-based dialog systems that incorporate medical and
behavioral ontologies and deep knowledge of health com-
munication strategies. The use of standard, underlying
ontologies will allow the theory-level knowledge in these
systems to be shared and validated, and to be directly com-
pared in a meaningful manner. On a more practical level,
the lack of model-based representations in these systems
limits their scalability, tailorability, and adaptability, and
requires that every new intervention be developed from
scratch, requiring months of duplicated effort when teams
of behavioral scientists write dialog scripts for a new appli-
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cation, even if it is only a slight variant of a previously
developed system.

Other promising directions of research include the
increasing use of multi-modal dialog, including both
embodied conversational agents and other systems that
support elements of natural face-to-face conversation, as
well as systems that use other modalities such as speech
and pen-based input. Properly conducting the affective
and empathic dimensions of provider–patient communica-
tion represents a significant challenge, as is the mainte-
nance of engagement over many interactions.

Multi-party dialog is understudied in both linguistics
and computational linguistics, but represents a potentially
important area of future research for health dialog systems.
Some health behavior change systems have already been
developed that interact with multiple members of a house-
hold (e.g., to increase medication adherence in childhood
asthma [93]), and this type of intervention represents a
promising avenue for effecting change through social sup-
port. Systems to support case management nurses in their
telephone consultations with patients have also been devel-
oped, and the development of systems that can support
3-way, real-time conversations between nurses, patients,
and a dialog system that can offload routine parts of these
interactions also represents an interesting area of inquiry.
However, much more work remains to be done in this area.

Finally, the use of mobile devices (e.g., cellular phones)
provides the opportunity for automated systems to dialog
with patients ‘‘anywhere, anytime.’’ When coupled with
real-time sensors, these systems can provide pro-active
health messaging at the time of need (e.g., when a user is
starting a bout of exercise or lighting up a cigarette). Devel-
oping health behavior change systems that can maintain a
persistent and continuous dialog with patients about their
health behavior, incorporating awareness of the user and
their environment, providing comfort and empathy in
addition to tailored and theory-driven pragmatic advice,
and tying in human health providers when needed may still
be science fiction, but it represents a grand goal to work
towards.
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