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Abstract 
A system of remotely detecting vocal fold pathologies using 
telephone quality speech recorded during a telephone 
dialogue is presented. This study aims at developing a 
dialogue system using VoiceXML for remote diagnosis of 
voice pathology. To assess the accuracy of the system, a 
database of 631 clean speech files of the sustained 
phonation of the vowel sound /a/  (58 normal subjects, 573 
pathologic) from the Disordered Voice Database Model 
4337 was transmitted over telephone channels to produce a 
test corpus. Pitch perturbation features, amplitude 
perturbation features and a set of measures of the harmonic-
to-noise ratio are extracted from the clean and transmitted 
speech files. These feature sets are used to test and train 
automatic classifiers, employing the method of Linear 
Discriminant Analysis. Cross-fold validation was employed 
to measure classifier performances. While a sustained 
phonation can be classified as normal or pathologic with 
accuracy greater than 90%, results indicate that a telephone 
quality speech can be classified as normal or pathologic 
with an accuracy of 74.15%. Amplitude perturbation 
features proving most robust in channel transmission. This 
study highlights the real possibility for remote diagnosis of 
voice pathology. 

Introduction 
Patients with voice disorders can possess a variety of vocal 
fold pathologies. Voice pathologies are relatively common 
affecting almost 5% of the population [1]. These 
pathologies can be found in varying degrees of severity 
and development. They can be classed as physical, 
neuromuscular, traumatic and psychogenic and all directly 
affect the quality of the voice.  
 
Developments in non-invasive methods for voice 
pathology diagnosis have been motivated by a need to 
conduct both objective and efficient analysis of a patient’s 
vocal function. At present a number of diagnostic tools are 
available to the otolaryngologists and speech pathologists 
such as videostroboscopy [2] and videokymography. 
However these current methods are time and personnel 
intensive and lack objectivity. 
 

Research has been reported on the development of reliable 
and simple methods to aid in early detection, diagnosis, 
assessment and treatment of laryngeal disorders. This 
research has lead to the development of feature extraction 
from acoustic signals to aid diagnosis. Much focus has 
been centred on perturbation analysis measures such as 
jitter and shimmer and on signal-to-noise ratios of voiced 
speech, which reflect the internal functioning of the voice. 
Through this research it has been shown that these features 
can discriminate between normal and pathologic speakers 
[3],[4],[5],[6]. Voice pathology detection systems using 
high quality voice recordings have achieved classification 
accuracies of over 90% in being able to discriminate 
between normal and pathologic speakers [7], [8]. 
 
One of the major difficulties in voice pathology assessment 
is the availability of trained clinicians and centres of 
excellence. With the limited number of centres available, 
long queues at voice outpatient clinics are a common 
occurrence. This tends to dissuade patients from attending, 
in particular those who must travel a distance to the clinic. 
Assessing progress of patients who have undergone 
surgery is also of concern for clinicians. Having a method 
of remote assessment patients for voice pathologies, for 
both new and continuing patients, would be of enormous 
benefit to both the clinician and patient. 

Aim 
The aim of this research was to investigate the 
performance of a telephone based dialogue to capture a 
voice recording of the patient producing a sustained 
phonation of the vowel sound /a/ and subsequently carry 
out voice pathology classification to categorise the voice as 
either normal or pathologic. The goal of this project was to 
produce a voice pathology classifier providing remote 
diagnosis in a non-intrusive and objective manner.  

 

Methodology 
The steps involved in a voice pathology classification 
system, as shown in Figure 1, are discussed below. 
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Figure 1. Processes involved in Voice Pathology Classification 

Audio Data 
The labelled voice pathology database “Disordered Voice 
Database Model 4337” [9] acquired at the Massachusetts 
Eye and Ear Infirmary Voice and Speech Laboratory and 
distributed by Kay Elemetrics is often cited in the literature 
for voice pathology assessment. A detailed description of 
the database can be found at [9]. The mixed gender 
database contains 631 voice recordings (Pathological: 573 
and Normal: 58) with an associated clinical diagnosis. The 
types of pathologies are diverse, ranging from Vocal Fold 
Paralysis to Vocal Fold Carcinoma. Attention in this study 
was focused on the sustained phonation of the vowel 
sound /a/ (as in the English word “cap”). This database 
was originally recorded at a sampling rate of 25kHz. For 
this study the database was downsampled to 10kHz. 

Acquisition 
A voice recording is typically acquired using a microphone 
and digital storage in a clean audio environment. As the 
aim of this study is for a remote diagnosis classification 
system, each of the 631 voice recordings were played over 
a long distance telephone channel using a specifically 
written VoiceXML script and recorded under the control 
of another VoiceXML script. The VoiceXML development 
was carried out using the online development system 
VoxBuilder [10]. This process created a telephone quality 
voice pathology database for all 631 voice recordings in 
the “Disordered Voice Database Model 4337” database. A 
VoiceXML application currently exists to allow new 
telephone quality audio samples to be gathered. 

Feature Extraction 
Features typically extracted from the audio data for voice 
pathology analysis include the fundamental frequency 
(F0), jitter (short-term, cycle to cycle, perturbation in the 
fundamental frequency of the voice), shimmer (short-term, 
cycle to cycle, perturbation in the amplitude of the voice), 
signal-to-noise ratios and harmonic-to-noise ratios [7]. The 
features used in this study include Pitch Perturbation 
Features, Amplitude Perturbation Features and Harmonic 
to Noise Ratio (HNR).  
 
Pitch and Amplitude Measures. Pitch and Amplitude 
Perturbation measures were calculated by segmenting the 
speech waveform (3-5 seconds in length) into overlapping 
‘epochs’. Each epoch is 20msecond with an overlap of 
75% between adjacent epochs. A 20msecond epoch is 
necessary to give an accurate representation of pitch. Table 

1 and Table 2 provides a list of the twelve pitch and 
amplitude features employed in this study. 
 

No. Description Formula 

1 Mean F0 ∑
=

n

i
iF

n 1

1  

2 Maximum F0 
Detected 

)max( iF  

3 Minimum F0 
Detected 

)min( iF  

4 Standard Deviation 
of F0 contour ( )

2

11
1 ∑

=

−
−

n

i
i FF

n
 

5 Phonatory 
Frequency Range 

2log
_0
_0log

12









×
loF
hiF

 

6 Mean Absolute 
Jitter (MAJ) ∑

−=
+ −

−

1

1
1 ||

1
1

ni
ii FF

n
 

7 Jitter (%) 
avF

MAJ
_0

 

8 Relative Average 
Perturbation 
smoothed over 3 
pitch periods 

100
_0

|
3

|
2

1 1

2

11

×
−

++
− ∑

−

=

−+

avF

F
FFF

n

n

i
i

iii

 

9 Pitch Perturbation 
Quotient smoothed 
over 5 pitch periods 

100
_0

|
5

)(
|

4
1 2

3

2

2

×
−

− ∑
∑−

=

+

−=

avF

F
kF

n i

n

i

i

ik

 

10 Pitch Perturbation 
Quotient smoothed 
over 55 pitch 
periods 100

_0

|
55

)(
|

54
1 27

28

27

27

×
−

− ∑
∑−

=

+

−=

avF

F
kF

n i

n

i

i

ik

 
11 Pitch Perturbation 

Factor 100×≥

voice

thresholdp

N
N  

12 Directional 
Perturbation Factor 100×±∆

voiceN
N  

Table 1   Pitch Perturbation Features 
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Table 2   Amplitude Perturbation Features 
 
Harmonic to Noise Ratio. Mel Frequency Cepstral 
Coefficients (MFCC) features are commonly used in 
Automatic Speech Recognition (ASR) and also Automatic 
Speaker Recognition systems [11]. The Cepstral domain is 
employed in speech processing as the lower valued 
cepstral “quefrequencies” model the vocal tract spectral 
dynamics, while the higher valued quefrequencies contain 
pitch information, seen as equidistant peaks in the spectra.  
 
The Harmonic to Noise Ratio is calculated in the Cepstral 
domain, as follows: 
 
1. Speech signal is processed to have zero mean and unit 

variance. 
2. A 100msecond epoch is extracted. 
3. A peak-picking algorithm locates the peaks at 

multiples of the fundamental frequency. 
4. A bandstop filter in the Cepstral domain is applied to 

the signal. The stopband of the filter is limited to the 
width of each peak. The remaining signal is known as 
the rahmonics (harmonics in the cepstral domain) 
comb-liftered signal and contains the noise 
information. 

5. The Fourier transform of this comb-liftered signal is 
taken, generating an estimate of the noise energy 
present N(f). Similarly, the Fourier Transform of the 
original cepstral-domain signal, including rahmonics 
is taken, O(f). 

6. The HNR for a given frequency band B is then 
calculated as per 

βββ ))(())(()( fNmeanfOmeanfHNR −=  
 

Eleven HNR measures were calculated as in Table 3. 
Band Number Incorporating Frequencies ( Hz) 

1 0  -  500 
2 0  -  1000 
3 0  -  2000 
4 0  - 3000 
5 0  -   4000 
6 0  -  5000 
7 500 – 1000 
8 1000  -2000 
9 2000 – 3000 
10 3000 – 4000 
11 4000 - 5000 

Table 3   HNR bands. 
 
Pattern Classifier 
Linear discriminants (LD) [12] partition the feature space 
into the different classes using a set of hyper-planes. The 
parameters of this classifier model were fitted to the 
available training data by using the method of maximum 
likelihood. Using this method the processing required for 
training is achieved by direct calculation and is extremely 
fast relative to other classifier building methods such as 
neural networks. This model assumes that the feature data 
has a Gaussian distribution for each class. In response to 
input features, linear discriminants provide a probability 
estimate of each class. The final classification is obtained 
by choosing the class with the highest probability estimate.  
 
The cross-validation scheme [13] was used for estimating 
the classifier performance. The variance of the 
performance estimates was decreased by averaging results 
from multiple runs of cross validation where a different 
random split of the training data into folds is used for each 
run. In this study ten repetitions of ten-fold cross-
validation were used to estimate classifier performance 
figures. For each run of cross fold validation the total 
normal population and a randomly selected group of 
abnormals equal in size to the normal population was 
utilised. This results in a more realistic reflection of the 
predictive ability of the system.  
 
In this study the performance of the classifier is quoted 
using class sensitivities, predictivities and overall 
accuracy.  
 

  Classification 
Pathology 

Classification 
Normal 

Diagnosed  
Pathology 

P True Positive 
TP 

False Negative 
FN 

Diagnosed  
Normal 

N False Positive 
FP 

True Negative 
TN 

Table 4   Classification Matrix. 
 
 
 



Definitions of sensitivity, specificity, predictivities and the 
overall accuracy are given in Table 4b. 

Sensitivity 
FNTP

TP
+

 Fraction of speech files 
from the set of all 
pathologic files 
correctly classified. 

Specificity 
FPTN

TN
+

 Fraction of speech files 
from the set of all 
normal voices correctly 
classified. 

Positive 
Predictivity FPTP

TP
+

 Fraction of speech files 
detected as pathologic 
that are correctly 
classified. 

Negative 
Predicitivity FNTN

TN
+

 Fraction of speech files 
detected as normal that 
are correctly classified. 

Overall 
Accuracy FNFPTNTP

TNTP
+++

+  Fraction of the total 
number of subjects’ 
voices that are 
classified correctly. 

Table 4b   Definition of Measures of Performance. 

Results 
Each feature was tested for class sensitivities, predictivities 
and overall accuracy. The contribution provided by each 
pitch perturbation measures, amplitude perturbation 
measures and HNR, on the subsampled (10kHz) and 
telephone quality databases is given in Tables 5-10. 

Feature 
Number 

Acc Sens Spec Pos. 
Pred 

Neg. 
Pred 

1 52.82 50.17 55.50 53.30 52.35 
2 65.75 53.10 78.53 71.46 62.33 
3 51.78 48.28 55.32 52.24 51.38 
4 60.02 35.52 84.82 70.31 56.51 
5 60.97 39.66 82.55 69.70 57.47 
6 58.28 30.00 86.91 69.88 55.09 
7 57.42 27.59 87.61 69.26 54.45 
8 57.33 27.59 87.43 68.97 57.40 
9 57.41 48.66 43.56 60.49 58.13 
10 60.10 25.52 95.11 84.09 55.78 
11 62.45 37.93 87.26 75.09 58.14 
12 49.52 49.14 49.91 49.83 49.23 

Table 5   Pitch Perturbation Measures: Clean 10kHz database 
 

Feature 
Number 

Acc Sens Spec Pos. 
Pred 

Neg. 
Pred 

1 47.79 43.28 52.36 47.90 47.69 
2 63.66 57.93 69.46 65.75 61.99 
3 50.91 43.10 58.81 51.44 50.52 
4 62.36 41.03 83.94 72.12 58.49 
5 61.01 42.24 82.02 70.40 58.39 
6 61.75 37.07 86.74 73.88 58.49 
7 60.54 34.48 86.91 72.73 57.72 
8 60.36 34.32 86.56 72.20 56.62 
9 58.37 35.00 82.02 66.34 55.49 
10 63.31 32.76 94.24 85.20 58.6 
11 58.11 36.90 79.58 64.65 53.47 
12 49.35 36.38 62.48 49.53 49.24 

Table 6   Pitch Perturbation: Transmitted database 

Feature 
Numbe 

Acc Sens Spec Pos. 
Pred 

Neg. 
Pred 

1 49.87 52.59 47.12 50.16 49.54 
2 51.17 53.28 49.04 51.41 50.91 
3 50.04 52.24 47.82 50.33 49.73 
4 56.63 70.17 42.93 55.45 58.71 
5 72.94 92.76 52.88 66.58 87.83 
6 67.82 88.97 46.42 62.70 80.61 
7 71.21 94.66 47.47 64.59 89.77 
8 67.65 88.62 46.42 62.61 80.12 
9 66.61 87.76 45.20 61.85 78.48 
10 62.36 76.21 48.34 59.89 66.75 
11 56.55 71.72 41.19 55.25 59.00 
12 67.04 75.52 58.46 64.79 70.23 

Table 7   Amplitude Perturbation: Clean 10kHz database 
 

Feature 
Number 

Acc Sens Spec Pos. 
Pred 

Neg. 
Pred 

1 51.17 53.10 49.21 51.42 50.90 
2 56.63 57.24 56.02 56.85 56.41 
3 47.70 49.66 45.72 48.08 47.29 
4 63.14 73.63 52.53 61.09 66.30 
5 72.68 89.72 52.36 66.34 87.72 
6 63.57 82.76 44.15 60.00 71.67 
7 51.08 11.72 90.92 56.67 50.44 
8 63.66 82.93 44.15 60.05 71.88 
9 62.97 81.55 44.15 59.65 70.28 
10 58.81 68.45 45.03 55.76 58.50 
11 56.90 72.41 41.19 55.48 59.60 
12 61.23 68.62 53.75 60.03 62.86 

Table 8   Amplitude Perturbation: Transmitted database 
 

Band 
Number 

Acc Sens Spec Pos. 
Pred 

Neg. 
Pred 

1 76.25 79.83 78.18 78.74 75.00 
2 75.55 83.79 78.58 80.07 82.78 
3 79.88 85.00 74.69 77.27 83.11 
4 77.62 83.28 71.90 75.00 80.94 
5 65.74 77.59 53.75 62.94 70.32 
6 47.61 52.59 42.58 48.11 47.01 
7 70.86 83.79 57.77 66.76 77.88 
8 50.22 34.66 65.97 50.76 49.93 
9 75.20 73.28 77.14 76.44 74.04 
10 79.63 78.79 82.14 82.19 79.40 
11 75.46 84.14 66.67 71.87 80.59 

Table 9   HNR Bands: Clean 10kHz database 
 

Band 
Number 

Acc Sens Spec Pos. 
Pred 

Neg. 
Pred 

1 53.77 72.14 28.10 52.70 57.09 
2 44.41 42.76 46.07 44.52 44.30 
3 45.19 48.45 41.88 45.77 44.53 
4 49.78 4.83 95.29 50.91 49.73 
5 53.86 67.24 40.31 53.51 58.86 
6 NA NA NA NA NA 
7 51.08 16.55 86.04 54.55 50.46 
8 50.65 31.03 70.51 51.58 50.25 
9 58.28 24.48 92.50 76.76 54.75 
10 57.15 52.41 74.00 67.11 60.51 
11 NA NA NA NA NA 

Table 10   HNR Bands: Transmitted database 



For the telephone database bands 6 and 11 were omitted. 
However due to channel variability bands 1-5 were 
measured, as above, from 0Hz. 
 
The various feature groups provide independent and 
complimentary classification information. By combining 
the feature groups it was anticipated that the overall 
classification performance would be improved. 
Classification results were obtained for the combination of 
these features, as shown in Table 11. 
 
 

Test 
Corpus 

Acc Sens Spec Pos. 
Pred 

Neg. 
Pred 

Clean 
10kHz 

89.10 93.26 85.14 87.63 86.25 

Telephon
e 

74.15 75.69 72.60 73.66 74.69 

Table 11   Classification results based on the combination of 
feature sets. 

 

Discussion 
Twelve pitch and twelve amplitude perturbation measures 
were extracted from the pitch and amplitude contours 
respectively. The pitch and amplitude perturbation 
measures detect short-term changes in the pitch contour. It 
was hypothesized that such measures, when extracted from 
normal and pathologic subjects, would also be statistically 
different and therefore allow a classifier to distinguish 
between the two groups. Normal speech is known to have 
certain levels of jitter and shimmer. However pathologic 
speech should exhibit larger perturbations in both the pitch 
and the amplitude contours. However, the difficulty in 
accurately tracking the pitch contour especially in speech 
could severely limit the ability of the perturbation 
measures to separate between normal and pathologic voice. 
 
The classification performances of the pitch perturbation 
measures to differentiate between normal and pathologic 
voice are presented in Table 5 and 6. Using just one 
feature, best test set accuracies of 65.75% and 63.66% 
were achieved for individual features on the 10kHz and 
telephone databases. The classification performances of 
the amplitude perturbation measures to differentiate 
between normal and pathologic voice are presented in 
Table 7 and 8. Best test set accuracies of 72.94% and 
63.66% were achieved for just one feature (shimmer) for 
individual features on the 10kHz and telephone databases. 
 
The Harmonics-to-Noise ratio (HNR) measures were 
extracted for eleven frequency bands described in Table 3. 
The HNR method transforms the speech signal to the 
cepstral domain, removes the rahmonic information from 
the cepstrum and applies the DFT to this signal, which is 
defined as the spectrum of the estimated noise signal. The 
classification performances of the harmonic to noise ratio 
measures to differentiate between normal and pathologic 

voice are presented in Table 9 and 10. Using just one 
feature, best test set accuracies of 79.88% and 58.28% 
were achieved for individual features on the 10kHz and 
telephone databases. 
 
Pathologic subjects should theoretically have increased 
levels of jitter, shimmer and additive noise. Much research 
exists that demonstrates that the signal-to-noise measure 
does successfully distinguish between the normal and 
pathologic groups. From the results in Table10 the 
telephone transmission of the audio files does not allow 
preservation of HNR information to identify the pathologic 
and normal voice, compared to the 10kHz database allows. 
 
By taking combinations of features, the ability of the 
features to separate normal and pathologic subjects on the 
two databases, 89.10% and 74.15%, is a definite 
improvement over using the individual features groups. 
More research is needed on the specific combinations of 
features for these databases. 
 
A number of research groups [14], [15], [16] have reported 
results for detection rates for voice pathologies of 94.87%, 
76% and 96.30% respectively. In [14] the “Disorder Voice 
Database Model 4337” sampled at 25kHz was employed 
and their results may be compared with the results 
obtained in this study, although they have used the higher 
quality audio data. In study [15] different databases were 
used and a direct comparison of results cannot be made. 
 
The database used in the present study provides a large 
number of pathologic subjects that might not fairly 
represent the pathologies present in other studies 
conducted in this area or those encountered by the medical 
profession on a day-to-day basis. The predictive ability of 
this model could be confirmed through external validity.  
 
As mentioned in Section II the “Disorder Voice Database 
Model 4337” is accompanied by a diagnostic description 
for each subject. The diagnostic description provided with 
the database is very detailed. These detailed diagnostic 
descriptions were grouped into several diagnostic 
categories by our medical consultant. It was observed from 
the distributions of the diagnoses for each subject that only 
at the highest level (i.e. either normal or pathologic) that a 
patient’s diagnosis is mutually exclusive. However, as the 
level of categorisation proceeds to sublevels the patient’s 
diagnoses are no longer mutually exclusive. Thus each 
subject may be diagnosed into more than one category i.e. 
they may have a pathology that is both physical and 
neuromuscular. This has a significant effect on the 
potential for an automatic classification system to 
differentiate between the categorisation types. One could 
categorise the database to allow for a vocal quality 
classification scheme. In this way, a speech recording may 
be categorised based on the vocal quality of the speech 
recording; breathy, strained or noisy. Future work in this 



area, based on the methods developed in this study, would 
allow investigation into the differentiation, for example, 
between normal subjects and subjects with nodules. 
 
Ongoing research is examining feature configurations for 
further improvement of pathology diagnosis, with 
categorizations of the database into further sublevels of 
pathologies within the classes of neuromuscular, physical 
and mixed. Also further patient data is being acquired 
through collaboration with a local hospital Speech and 
Language department, specifically to ensure that the 
pathologies acquired are those encountered by the medical 
profession on a day-to-day basis. Audio samples are 
recorded in the clinic at 44kHz and simultaneously using a 
VoiceXML based telephone application. This allows the 
remote classification system to perform analysis on both 
telephony quality and high quality audio. The classification 
of the audio data is performed automatically on receipt of 
the audio data, with results posted to a web interface.  
 
The results of the project suggest that by combining 
VoiceXML as a telephony interface and server side speech 
processing, an automatic classification system to 
differentiate between normal and pathologic voice can be 
achieved. Further investigations will continue into this 
aspect. 
 
It is hoped that as the performance of the telephony system 
enhances with increased training samples, the system could 
provide the clinical staff with a useful pre-screening 
service for voice pathology.  
 
 

Conclusion 
The results of the study suggest that by combining 
VoiceXML as a telephony interface, having a dialogue to 
aid the patient in the production of a sustained phonation 
and having server side speech processing, an automatic 
classification system to differentiate between normal and 
pathologic voice can be achieved. This study highlights the 
real possibility for remote diagnosis of voice pathology. 
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