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Lots of real word problems can be motivated and modeled as spreads of
epidemics through a network. Prominent examples include the spread of worms
and email viruses over the Internet, the spread of disease among the population,
and the spread of harmful gossip or panic in a social network. We want to
protect computer networks from viruses, prevent disease spreads, and control
the leakage of sensitive information and unpleasant gossip. At the same time
our resources (anti-virus software, vaccination, influence) are costly and limited,
so we are interested in achieving the best possible effect, while allocating the
minimum possible resources.

Two epidemic models are commonly used when studying the spreads of epi-
demics through a network, the susceptible-infected-susceptible (SIS) model and
the susceptible-infected-recovered (SIR) model. The main difference between
these two models is, a recovered individual can be infected again in the SIS
model, but not in the SIR model which assume recovered individuals have life
long immunity to the disease. And this difference makes them suitable for dif-
ferent kinds of problems. For instance, when studying childhood diseases which
individuals can have long-lasting immunity, either naturally or from vaccination,
it is more appropriate to use SIR model; when studying viruses transmitting
over the Internet, often times it is more reasonable to use SIS model, since most
of the viruses mutate, in which case even if a computer is cured by anti-virus
software and therefore not susceptible to the original virus, it is still susceptible
to a mutated virus.

Within each model, quite amount of research work has been done, touching
different aspects of the problems. This survey is trying to give a comprehensive
overview of the research work that has been done in the spreads of epidemics,
and discover open problems and further directions. The survey is going to be
structured as follows. In section 1, we introduce SIR model formally, brows-
ing different kinds of problems and techniques studied in such a model, and
proposing some open problems and further directions in this line of work. In
section 2, we use similar approach to introduce SIS model. In section 3, we
analyze different kinds of contact graphs, since the contact graph plays an im-
portant roll in epidemic problems. Different kinds of graphs have different set
of properties, which may help us get different results under SIR/SIS models.
More importantly, we need to know for different problems, what kind of contact
graph models the real underlying epidemic network well.
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1 SIR model

SIR model and its variants are widely used in the analysis of the outbreak
and spread of infectious diseases, which is very useful for mass vaccination pro-
gramme. An infectious disease is said to be endemic when it can be sustained in
a population without the need for external inputs. This means that, on average,
each infected person is infecting exactly one other person (any more and the
number of people infected will grow exponentially and there will be an epidemic,
any less and the disease will die out).

The structure of this section is organized as follows. Section 1.1 introduce
SIR model definition and its parameters formally. Section 1.2 summaries the
analysis results for SIR model. Section 1.3 shows the research work on opti-
mization problems under SIR model. Last, section 1.4 looks at game theory
analysis results for epidemic spread problems in SIR model.

1.1 Model setup

SIR model is used to study diseases which individuals can have long-lasting
immunity, like most common childhood diseases (measles, mumps, rubella, etc.).
So it makes sense to divide the population into those who are susceptible to
the disease (S), those who are infected (I) and those who have recovered and
therefore are immune (R). These subdivisions of the population are called
compartments. The letters (S, I,R) also represent the number of people in
each compartment at a particular time. N is the total number of people, i.e.
N = S+I+R. To indicate that the numbers might vary over time we make the
precise numbers a function of time (t): S(t), I(t) and R(t). The transition rate
from S to I is β. The transition rate from I to R is υ (recovery rate). Shown
in Figure 1.

Figure 1: SIR model.

Originally, the SIR model doesn’t have the concept of contact graphs. The
assumption there is the population is homogeneous, i.e. individuals make con-
tact at random to the whole population. And people usually study the case
where the size of the population is a constant. Under such assumptions, the
epidemic can be captured by a set of differential equations.
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dS

dt
= µN − µS − β I

N
S (1)

dI

dt
= β

I

N
S − (µ+ υ)I (2)

dR

dt
= υI − µR (3)

where µ is the birth rate, which is also death rate, since we assume the popu-
lation is a fixed constant. By solving these differential equations, we can know
at any time t, how many people are susceptible, how many people are infected
and how many people are recovered.

However, once we include contact graphs, the population is not homogeneous
any more. Different individuals (vertices in the graph) have different neighbors.
Those vertices with large degree are more likely to spread the disease than those
with small degrees if they get infected. So we cannot use the above differential
equations to capture the epidemic process in this case.

1.2 Analysis results

In this section, we present the analysis results of SIR model, which is without
the existence of vaccination or anti-dots, how the disease is going to spread, is
the epidemic going to last or die out?

Since so far people often study disease spread without considering contact
graphs in SIR model and use those results to help mass vaccination programme,
the follow analysis results will focus on this restricted model.

In epidemiology, the basic reproduction number (sometimes called basic re-
productive rate or basic reproductive ratio) of an infection is the mean number
of secondary cases a typical single infected case will cause in a population with
no immunity to the disease in the absence of interventions to control the infec-
tion. It is often denoted as R0. This metric is useful because it helps determine
whether or not an infectious disease will spread through a population. When
R0 < 1, the infection will die out in the long run; when R0 > 1, the infection
will be able to spread in a population. Large values of R0 may indicate the pos-
sibility of a major epidemic. Generally, the larger the value of R0, the harder it
is to control the epidemic. In particular, the proportion of the population that
needs to be vaccinated to provide herd immunity and prevent sustained spread
of the infection is given by 1− 1/R0.

Based on equations (1), (2) and (3), define basic reproduction number to be

R0 =
β

µ+ υ

which has threshold property. In fact, independently from biologically mean-
ingful initial values (S(0), I(0), R(0)), one can show that if R0 ≤ 1, then

lim
t→∞

(S(t), I(t), R(t))→ (N, 0, 0)

3



which is called the Disease Free Equilibrium; if R0 > 1 and I(0) > 0, then

lim
t→∞

(S(t), I(t), R(t))→
(
N

R0
,
µN

β
(R0 − 1),

υN

β
(R0 − 1)

)
which is called the Endemic Equilibrium.

The above result shows if R0 > 1, we need vaccination or anti-dots to erad-
icate the epidemic. The following is the analysis of Mass Vaccination Program,
i.e. how many people we need to vaccinate in order to have herd immunity and
prevent sustained spread of the disease. Let us consider a disease for which the
newborn are vaccinated (childhood disease) at rate p, and V be the number of
vaccinated people. Then we have the following differential equations.

dS

dt
= µN(1− p)− µS − β I

N
S (4)

dI

dt
= β

I

N
S − (µ+ υ)I (5)

dV

dt
= µNp− µV (6)

One can show that if R0(1− p) ≤ 1, then

lim
t→∞

(S(t), I(t))→ (N(1− p), 0)

which is disease free equilibrium; if R0(1− p) > 1 and I(0) > 0, then

lim
t→∞

(S(t), I(t))→
(

N

R0(1− p)
,
µN

β
(R0(1− p)− 1)

)
In other words, if p > p∗ = 1 − 1/R0, then the vaccination program is

successful in eradicating the disease, on the contrary it will remain endemic,
although at lower levels than the case of absence of vaccinations.

1.3 Optimization problems

As we have seen in section 1.2, when R0 > 1, we need vaccination or anti-dots
to eradicate the disease. If we don’t consider contact networks, we already know
we need to vaccinate 1−1/R0 percent of the population in order to successfully
eradicate the disease. However, if we take contact networks into account (which
models the real word problems better), how many people we need to vaccinate
to control the epidemic, and how to distribute vaccinations (or anti-dots) to
better make sure of these limited resources?

Such problem can be formulated as follows. Given a graph G = (V,E) which
represents the contact network, and a number k which is the number of vacci-
nations available, how to distribute these vaccinations such that the epidemic
size is minimized. If a node is vaccinated and the vaccination is successful, then
this node is immune to the disease and removed from graph G.
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In [2], Aspnes et al studied one special case of this problem. The model they
considered is for highly infectious computer virus (or human diseases), i.e. if
one node in G is infected, all the other nodes in the same connected component
will get infected too. The computer virus (or disease) starts from a single node,
randomly chosen from graph G. So they are trying to minimize the expected
size of connected component. And they showed that even in such restricted
model, such problem is NP-hard. And they give a O(log1.5 n) approximation
algorithm, where n is the number of vertices in graph G.

[11] studied network immunization against virus spread with limited immu-
nization budget using simulation approach. They considered such problem in a
discrete-time special case of SIR model (called independent-cascade model pro-
posed by Kempe et al [14]), i.e. at time t = 0 the adversary plants r viruses
to some vertices of the graph. Then if a vertex i becomes infected for the first
time at time t, it is given a single chance to infect each of its neighbors j that is
currently uninfected. The probability that vertex i succeeds in infecting vertex
j is pij . They propose an algorithm with good simulation performance, but no
theoretical proof.

1.4 Game theory problems

The optimization problem explained in section 1.3 only models the situation
where there is a centralized authority, like US government, who has some lim-
ited resources (certain number of vaccinations, anti-dots, anti-virus software,
etc.). While in real word, it’s often not the case. For example, in volunteer
vaccination program, as more individuals become vaccinated, the remaining un-
vaccinated individuals are increasingly unlikely to become infected, because of
herd immunity. For a population with sufficiently high vaccine coverage, a dis-
ease can be eradicated without vaccinating everyone. Therefore, as coverage
increases, there is a greater individual incentive not to vaccinate, since non-
vaccinators can gain the benefits of herd immunity without the risk of vaccine
complications. In such settings, we need game theory to capture such individual
behaviors, which formalizes strategic interactions in a group where individuals
attempt to maximize their payoffs.

In this section, we are going to introduce the game theory study in epidemic
spreading problems. In section 1.4.1, we look at the one shot game in SIR model
without contact graph. In section 1.4.2 we present research work on one shot
game in SIR model with contact graph. Lastly, in section 1.4.3, we explore
studies on multi-round game in SIR model without contact graph.

1.4.1 One round game without contact graph

In this section, we look at the most simply game theory setup. It is a single
round game, all players make choices simutaneous based on their strategies,
and they recieve certain payoff at the end. Each person knows all the global
information, like vaccination uptake level, probability of getting infected, etc.
Also there is no contact graph, i.e. the population is homogenous.
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[4] studies the problem of voluntary vaccination policies for childhood dis-
eases. The kind of diseases they considered is once you get recovered or vacci-
nated, you will be immune during life time. Since if a sufficient proportion of
the population is already immune, either by vaccination or naturally, then risk
associated with vaccination will outweight the risk from infection, which means
parents will tend to not vaccinate their children. In their model, each person
takes vaccination with probability P , and its expected payoff is

E(P, p) = P (−rv) + (1− p)(−ri)πp

where p denotes the vaccination uptake level in the population, rv denotes the
morbidity risk of taking vaccine, ri denotes the morbidity risk of getting infected,
and πp denotes the probability that an unvaccinated individual will eventually
be infected if the vaccine coverage level in the population is p. In such model,
they showed Nash equilibrium always exists. And the calculation shows it is
impossible to eradicate a disease through voluntary vaccination when individuals
act according to their own interests.

1.4.2 One round game with contact graph

In this section, the game theory model considers the underlying contact graph.
So the disease will transmit through this contact network. Different factors, and
utility models can be take into consideration. Like, is the vaccination reliable or
not? What is the disease transmission probability? Does each person know the
global information or only the situation of his neighbors in the contact graph?
The following references study this kind of game theory problems.

[2] studies the spread of viruses in general undirected graph. The viruses
are highly infectious, i.e. if one vertex gets infected, all the other vertices that
are in the same connected component will eventually get infected. If a vertex
installs anti-virus software, which has cost C, it will be immune from viruses. If
a vertex does not install anti-virus software and gets infected, it will experience
a loss of L. Each vertex has all the global information and attempts to calculate
the best strategy for itself. They showed pure Nash equilibrium always exists
in such setting, and can be found in polynomial time. However, both comput-
ing the pure Nash equilibrium with lowest social cost and computing the pure
Nash equilibrium with highest social cost are NP-hard. They also consider the
centralized version of this problem, and obtain a polynomial time O

(
log1.5 n

)
-

approximation algorithm for computing social cost, where n is the total number
of vertices in the graph.

[3] studies the game between a virus and an alert over a network. Initially,
randomly select a small set of detector nodes, and a single node to start infection.
In every round thereafter, each infected node sends out a constant number (β)
of worms to other nodes, and each alerted node sends out a constant number (α)
of alerts. Infected nodes can send out worms to any node in the graph, however
alerted nodes can only send out alerts through a previously determined, constant
degree overlay network. If a worm is received by a node that is not a detector
and is not alerted, that node becomes infected; If a worm is received by a node
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that is a detector, that node becomes alerted; If an alert is received by a node
that is not infected, that node becomes alerted. The question is, assuming that
infected nodes are omniscient, is there a strategy for the alerted nodes that
ensures only a vanishingly small fraction of nodes become infected? In such
settings, they show, by using a simple alert strategy (i.e. each alerted node
send out alerts to α nodes selected uniformly at random without replacement
from its neighbors in the overlay graph), if d ≥ α and α

β(1−γ) >
2d
c , then with

high probability only o(n) nodes get infected, where d is the degree of the overlay
graph, c is the node expansion of the overlay graph, γ is the probability that
each node is a detector.

1.4.3 Multi-round game without contact graph

The game theoretical analyses introduced in previous sections rely upon classi-
cal game theory, assuming a static game where individuals know all the global
information. In reality, people change their strategies over time, and individuals
don’t have global information. Moreover, humans adopt new strategies through
learning, by imitating others who appear to have adopted more successful strate-
gies. This means we should develop dynamics in game theory model.

[5] set up a dynamic game theory model for childhood disease vaccination
program. The payoff for vaccinated people is fv = −rv, where rv is the per-
ceived probability of significant morbidity from the vaccine (perfect vaccine
efficacy is assumed). The payoff for non-vaccinated people depends on the per-
ceived probability ri of suffering significant morbidity upon infection, and the
perceived probability of eventually becoming infected, which is assumed to in-
crease linearly with the current disease prevalence I(t), which models the fact
that each individual doesn’t know what is the exact probability he will be in-
fected. So payoff for non-vaccinated people is fn(I) = −rimI where parameter
m quantifies the sensitivity of vaccinating behavior to changes in prevalence. For
the dynamic to imitate other people’s strategies, they assumed that individuals
randomly sample other members of the population at some constant rate. If
the strategy of the sampled member provides a higher payoff, then his strategy
is adopted with a probability proportional to the expected gain in payoff.

2 SIS model

SIS model is originally used to study disease outbreak and spread, where in-
dividuals don’t have long-lasting immunity, like common cold. This means an
individual who is recovered from infection can be infected again. Later on, this
model is also used for modeling virus spread over the Internet or email networks,
since most of the viruses mutate. So even if a computer is cured by anti-software
and therefore not susceptible to the original virus, it is still susceptible to the
mutated viruses.

The structure of this section is organized as follows. Section 2.1 introduce
the definition and parameters in SIS model. Section 2.2 summaries the analysis
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results in SIS model, like disease die out time and epidemic size. Section 2.3
presents the research work on the optimization problems under SIS model. For
example, with certain amount of anti-dotes, how to distribute them in order to
reduce the disease die out time most effectively? Last, section 2.4 shows those
results which study epidemic spreads problems from game theory point of view.

2.1 Model setup

Similar to SIR model, SIS model divides the population into two groups, those
who are susceptible to the disease (S) and those who are infected (I). These
subdivisions of the population are called compartments. The letters (S, I) also
represent the number of people in each compartment at a particular time. N is
the total number of people, i.e. N = S+ I. To indicate that the numbers might
vary over time we make the precise numbers a function of time (t): S(t) and
I(t). The infection rate (from state S to state I) is β, and recover rate (from
state I to state S) is υ. Shown in figure 2.

Figure 2: SIS model.

If we don’t consider contact graphs and assume the population is homoge-
neous, then SIS model can be captured by the following equations.

dS

dt
= −βS I

N
+ υI (7)

dI

dt
= βS

I

N
− υI (8)

The same as SIR model, once we introduce contact graph, we loss the ho-
mogeneous property, hence we cannot use those differential equations to model
such process any more. With contact graph, we can describe SIS model as fol-
lows. Given graph (contact network) G = (V,E), V represents the set of people,
and E represents their contacts. At time t, the state can be represented by a
vector X(t) such that if person i is infected at time t if and only if Xi(t) = 1,
and if person i is healthy at time t if and only if Xi(t) = 0. Infected nodes
contaminate their neighbors at rate β, and recover at rate υ. Then

Xi : 0→ 1 at rate β
∑

(j,i)∈E Xj

Xi : 1→ 0 at rate υ
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We want to see under such random process, what is epidemic going to be
like.

2.2 Analysis results

In this section, we present the analysis results of SIS model, which is without
the existence of vaccination or anti-dots, how the disease is going to spread, is
the epidemic going to last or die out?

If we don’t consider contact graphs, we can use differential equation approach
by solving equation (7) and (8). Because we also have S + I = N , substituting
I = N − S in equation (8). We have

dI

dt
= β(N − I)

I

N
− υI = (β − υ)I − β

N
I2

Solving dI/dt = 0, we see that there are two possible equilibria for this SIS
model, one with I = 0 and the other with I = β−υ

β N . Define basic reproductive
number as R0 = β/υ. If R0 ≤ 1, then limt→∞ I(t) → 0, which is disease free
equilibrium; if R0 > 1, then limt→∞ I(t) → N(β − υ)/β, which is endemic
equilibrium.

In the following section, we present the analysis results on SIS model with
contact graphs. There are two natural measures, one is time (how long the
epidemic is going to last) and the other is size (how many people are infected).

2.2.1 Epidemic time

One nature measure for epidemic is how much time it takes for a disease to
die out. This problem has been studied in the probability community [18], but
where it is usually studied on bounded-degree graphs. The most important
general result in the context is the existence of epidemic thresholds. For infinite
graphs it has shown that there exist two epidemic thresholds λ1 ≤ λ2. If the
infection ratio λ = β/υ is larger than λ2, then with positive probability the
epidemic can spread and survive at any point of the graph. If λ1 < λ < λ2,
the epidemic survives with positive probability, but every vertex almost surely
eventually heals without being reinfected. If λ < λ1, the epidemic dies out
almost surely. (see [18] and [23, 22])

However, for finite graphs, it is easy to see that the infection will eventually
die out with probability 1. In this case people say that the infection becomes an
epidemic if the time that it takes to die out is super-polynomial in the number
of vertices of the the graph.

[12] studies the relationship between topological properties of the graph and
epidemic time. Their results are, in finite graphs, (1) a sufficient condition for
a quick die out (i.e. the die out time is logarithmic of the size of the graph) is
that the ratio of infection rate to cure rate not exceed the spectral radius of the
adjacency matrix of the underlying topology graph; (2) a sufficient condition for
slow die out (i.e. the die out time is exponential of the size of the graph) is that
the ratio of infection rate to cure rate be larger than the isoperimetric constant
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associated with the graph. [24] also studies the same problem, the relationship
between threshold and graph properties. And they have similar results.

The other effort studying the epidemic time is trying to reduce the epidemic
die out time by making recover rate non-uniform among vertices [8]. The mo-
tivation for this is we can distribute antidotes unevenly to control epidemics.
The more antidotes one gets, the sooner it recovers from infection. With limited
amount of antidotes, what is a good way to distribute them in order to make
the epidemic die out quickly? Their results show that if we distribute antidotes
proportional to vertex’s degree, the epidemic will die out quickly.

2.2.2 Epidemic size

Although a lot of work has been done on epidemic time under SIS model, few
results are known on epidemic size. [15] studies such problem, the mean number
of infections. But they didn’t involve the concept of contact graphs. Instead
they use differential equation approach, which I think is the same as the contact
graph is a complete graph.

2.3 Optimization problems

Since there are two natural measure of epidemic (time and size) under SIS
model, it’s optimization problem can be characterized as follows. Given a graph
G = (V,E), and a number k which represents the amount of resources available
(vaccination, anti-dots, anti-virus software, etc.), remove k vertices from graph
G to decrease epidemic time (or size) as much as possible.

[8] studied such optimization problem with anti-dots as cure. They showed
that by distributing anti-dots to vertices proportional to their degrees can reduce
the epidemic time to O(log n) where n is the total number of population. [9]
looked at the same problem using simulation approach. And they came up with
similar conclusion.

[11] studied network immunization against virus spread with limited im-
munization budget using simulation approach. They considered such problem
under SIS model, and gave a simple heuristic which out perform the greedy
algorithm, where deleting the vertex with maximum degree at each step, in
simulation.

2.4 Game theory problems

3 Contact graphs

The underlying contact graph plays an important roll in the spreads of epi-
demics. Different kinds of graphs can provide different set of properties, which
are crucial in the analysis of epidemic problems. More important questions
would be what kinds of graphs should we use to model the real word problems?
And what kinds of results can we derive from that? A lot of work has been
devoted in this area.
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3.1 Power-law graphs

Power-law graph is one where the number of nodes with degree k is proportional
to k−γ for some γ > 1. Ever since [10] discovers that the Internet AS-level graph
exhibits a power law degree distribution, lots of other large scale social networks
are discovered to have power-law distribution, even human sexual contact net-
works [19]. So it is nature to study epidemic problems under power-law graphs,
as well as the interesting properties of such graphs.

3.1.1 Robustness and vulnerability

Robustness and vulnerability are important connectivity properties of power-law
graph, which basically means power-law graphs are robust under random attack
(i.e. randomly delete vertices from the graph) but vulnerable under targeting
attack (i.e. choose vertices to delete).

[1] studies the robustness of power-law graph under random errors and tar-
geting attacks. Its simulation results show that power-law graphs is very robust
under random errors (i.e. by randomly deleting nodes the graph remains high
connectivity) but vulnerable under targeting attacks (i.e. by removing a small
fraction of high degree nodes we can break the graph into small pieces).

[7] studies the same problem as [1], but more rigorously. It shows mathe-
matically that (1) if vertices are deleted at random, then as long as any positive
proportion remains, the graph induced on the remaining vertices has a com-
ponent of order of n (which is the total number of vertices) (2) if the deleted
vertices are chosen maliciously, a constant fraction less than 1 can be deleted
to destroy all large components, and the the vertices they targeted are those
added in the early stage of preferential attachment process.

3.1.2 Virus transmission

Since the Internet, WWW, email networks, and human sexual networks are
well modeled as power-law graph, it’s nature to study virus transmission in
such graph. And the standard model in viral infections is SIS model. Let β
be virus transmission probability, υ be recovery probability of an infected node.
And define an effective spreading rate to be λ = β/υ.

In some graphs, like regular lattice, there is threshold λc such that if λ > λc
the virus will persist, while if λ < λc the virus will die out quickly. However,
[21] shows that for power-law graphs the threshold vanishes, i.e. λc = 0. This
implies that on such networks even weakly infectious viruses can spread and
prevail.

So [9] studies virus spreading with cures. This means we can eradicate
virus from the node to which the cure is applied, but the cure doesn’t offer
a permanent protection. Its result shows that biased strategies, which cures
the hubs with higher probability than the less connected nodes, can restore the
threshold, i.e. λc > 0.

Borgs et al studied this problem more rigorously. In [6], they showed virus
with a positive rate of spread from a node to its neighbors has a non-vanishing
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chance of becoming epidemic. Quantitatively, for a virus with effective spread
rate λ, if the infection starts at a typical vertex, then it develops into an epidemic
with probability λΘ( log(1/λ)

log log(1/λ) ), but on average the epidemic probability is λΘ(1),
which is consistent with the simulation results in [21]. Here becoming an epi-
demic means the time that it takes for infection to die out is super-polynomial
in the number of vertices of the graph, and typical vertex means those with
degree less than λ−2.

Furthermore, in [8], Borgs et al rigorously analyzed that by distributing
anti-dots proportional to vertex’s degree can largely decrease disease die out
time.

3.1.3 Other properties

[20] shows preferential connectivity model have constant conductance, which
means it is a constant expander.

3.2 Small world graphs

Small world graph proposed by Kleinberg [17, 16] is considered to be a good
model for social networks. It models the small-world phenomenon. A social
network exhibits the small-world phenomenon if, roughly speaking, any two
individuals in the network are likely to be connected through a short sequence
of intermediate acquaintances. Milgrams basic small-world experiment remains
one of the most compelling ways to think about the problem. The goal of
the experiment was to nd short chains of acquaintances linking pairs of people
in the United States who did not know one another. In a typical instance of
the experiment, a source person in Nebraska would be given a letter to deliver
to a target person in Massachusetts. The source would initially be told basic
information about the target, including his address and occupation; the source
would then be instructed to send the letter to someone she knew on a rst-name
basis in an effort to transmit the letter to the target as efficaciously as possible.
Anyone subsequently receiving the letter would be given the same instructions,
and the chain of communication would continue until the target was reached.
Over many trials, the average number of intermediate steps in a successful chain
was found to lie between ve and six, a quantity that has since entered popular
culture as the “six degrees of separation principle” [13].

The following is the small world graph model. Start with a set of nodes
(representing individuals in the social network) that are identied with the set
of lattice points in an n× n square, {(i, j) : i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}}.
Dene the lattice distance between two nodes (i, j) and (k, l) to be the number
of lattice steps separating them, d ((i, j), (k, l)) = |k− i|+ |l−j|. For a universal
constant p ≥ 1, the node u has a directed edge to every other node within
lattice distance p (these are its local contacts). For universal constants q ≥ 0
and r ≥ 0, we also construct directed edges from u to q other nodes (the long-
range contacts) using independent random trials: the ith directed edge from u
has endpoint v with probability proportional to [d(u, v)]−r.
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Based on the above model, Kleinberg answered the following two questions:
(1) Why should there exist short chains of acquaintances linking together arbi-
trary pairs of strangers? (2) Why should arbitrary pairs of strangers be able to
nd short chains of acquaintances that link them together? Basically he study
“decentralized” algorithms by which individuals, knowing only the locations of
their direct acquaintances, attempt to transmit a message from a source to a
target along a short path.

And his results to those questions are: (1) There is a constant α0, depending
on p and q but independent of n, so that when r = 0, the expected delivery time
of any decentralized algorithm is at least α0n

2/3; (2) There is a decentralized
algorithm A and a constant α2, independent of n, so that when r = 2 and
p = q = 1, the expected delivery time of A is at most α2 (log n)2; (3) Let
0 ≤ r < 2. There is a constant αr, depending on p, q, r, but independent
of n, so that the expected delivery time of any decentralized algorithm is at
least αrn(2−r)/3. Let r > 2. There is a constant αr, depending on p, q, r,
but independent of n, so that the expected delivery time of any decentralized
algorithm is at least αrn(r−2)/(r−1). (see [17])
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