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Abstract

Diffusion processes are important models for many real-world phenomena,

such as the spread of disease or rumors. We studied different aspects of

diffusion processes in networks, focusing on designing efficient distributed

algorithms for positive diffusion processes and good intervention strategies

to control harmful diffusions.

First, we design and analyze various distributed algorithms for diffusion pro-

cesses. We want to devise efficient distributed algorithms, which are easy

to implement, to help the spreading of positive/useful information. We re-

fer to these processes as positive diffusions. Earlier work has studied this

for a variety of models, mainly based on static networks. The major point

that separates our research with previous work is that we consider dynam-

ically changing networks, which extends previous models to a larger range

of real-life situations. Depending on the ways that networks are altered,

we studied diffusion processes over the following two types of dynamic net-

works: (1) networks are changed due to individuals’ decisions or behaviors;

(2) networks are controlled by an adversary.

Secondly, we study how to devise good intervention strategies to control

diffusion processes. This problem is crucial when we deal with harmful

information like human diseases or computer viruses. We refer to these

processes as harmful diffusions. We distinguish between centralized and

decentralized intervention strategies. In centralized intervention strategies,

there is a controller who has a limited amount of intervention resources (e.g.

vaccinations or antidotes in the case of diseases). We study the problem

of allocating these limited resources among the network agents so that the

spread of the diffusion process is minimized. In decentralized intervention



strategies, each individual in the network makes their own decision on pro-

tecting themselves, based on their individual utility and local knowledge.

In such settings, we are interested in questions such as: is there a stable

set of intervention strategies? What’s the cost of decentralized solutions

compared with an optimal centralized one? Lastly, we augment our studies

of intervention strategies with the consideration about individual behavior

changes which would lead to a new kind of network dynamics. Earlier work

has shown that the combination of behavior change and intervention failure

(e.g. failed vaccination) can lead to perverse outcomes where less (inter-

vention resources) is more (effective). However, the extent of the perversity

and its dependence on network structure as well as the precise nature of the

behavior change has remained largely unknown.
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Chapter 1

Introduction

The process of diffusion is the spread of information or some flow in a network through

local transmissions. Many real world applications can be modeled as diffusion processes

over networks. Some prominent examples include diseases transmitted among humans,

viruses transmitted over computer networks, information/ideas spreading over contact

networks, and creation of friendships through social networks. Despite the diversity

among these applications, there are fundamental similarities in the mathematical mod-

els. Understanding the properties of these applications through mathematical models

can help us anticipate, exploit, and control the propagation processes.

Based on the information or nature of the commodity that is flowing, we clas-

sify diffusion processes into the following two categories, positive diffusion and nega-

tive/harmful diffusion. In positive diffusion, the information or commodities are useful

to the nodes, like innovation and ideas, whereas in negative diffusion, the information

or commodities are harmful to the nodes, like diseases and viruses. In positive diffusion,

we are interested in analyzing the converging time and designing efficient algorithms for

fast diffusion. While in negative diffusion, we are interested in analyzing the converg-

ing time and the extent of diffusion processes, as well as designing good intervention

strategies. Take the spread of a disease or computer virus as an example. Lots of

important questions can be asked. Will it become an epidemic? How much time does

it take to become an epidemic? Who will get infected? What’s the social cost of the

epidemic? Once we understand all these, we can design interventions to control the

dynamics. For instance, how do we vaccinate or quarantine the population so that the

epidemic is controlled? How do we secure computers to enhance the network resilience?

1



1. INTRODUCTION

What polices should be applied with budget constraints (limited vaccines or anti-virus

software licenses), how should we distribute resources, and how much can we reduce

social cost? Often these interventions can be translated into voluntary directives from

government, like take vaccines or stay at home. However, people usually don’t adhere

to such recommendations. Instead, they make decisions based on their specific util-

ities and objectives. Such decisions happen in a decentralized manner, which makes

game theory a natural approach to study these problems. Moreover, people alter their

contacts dynamically. For example, a vaccinated person may increase his/her contacts

with friends, due to perceived secure feelings. These behavioral changes have a huge

impact on the dynamics and the effectiveness of these interventions, so that “good”

intervention strategies might be ineffective, depending on the behavioral changes. All

these make the analysis of diffusion processes more interesting and challenging.

In the first half of this dissertation, we concentrate on enabling positive diffusion.

More interestingly, we focus on the diffusion processes on dynamically changing net-

works. The networks can be changed by the diffusion process itself or by an adversary.

We introduce the problems in these two types of dynamic networks in detail in Sec-

tion 1.1 and Section 1.2 respectively. In the second half of this dissertation, we switch

gear to controlling negative diffusion. We design both centralized and decentralized

strategies to control negative diffusion, introduced in Section 1.3. We further consider

the effects of individual behavior changes on the design of control strategies, which is

introduced in Section 1.4.

1.1 Diffusion under organic dynamics

Many large-scale, real-world networks such as peer-to-peer networks, the Web, and

social networks are highly dynamic with continuously changing topology. The evolution

of the network as a whole is typically determined by the decentralized behavior of nodes,

i.e., the local topological changes made by the individual nodes (e.g., adding edges

between neighbors). The dynamics can be captured as diffusion processes in self-altered

networks. Understanding the dynamics of such diffusion processes is critical for both

analyzing the underlying stochastic phenomena, e.g., in evolution of social networks, the

Web and other real-world networks [40, 109, 123], and designing practical algorithms

for associated algorithmic problems, e.g., in resource discovery in distributed networks

2



1.1 Diffusion under organic dynamics

[75, 92] or in the analysis of algorithms for the Web [45, 51]. In this thesis, we study

the dynamics of network evolution that result from local gossip-style processes. Gossip-

based processes have recently received significant attention because of their simplicity

of implementation, scalability to large network size, and robustness to frequent network

topology changes; see, e.g., [54, 83, 84, 47, 82, 80, 106, 43] and the references therein.

In a local gossip-based algorithm (e.g., [47]), each node exchanges information with a

small number of randomly chosen neighbors in each round.1 The randomness inherent

in the gossip-based protocols naturally provides robustness, simplicity, and scalability.

We present two illustrative applications for our study. First, consider a P2P net-

work, where nodes (computers or end-hosts with IDs/IP addresses) can communicate

only with nodes whose IP address are known to them. A basic building block of such

a dynamic distributed network is to efficiently discover the IP addresses of all nodes

that currently exist in the network. This task, called resource discovery [75], is a vital

mechanism in a dynamic distributed network with many applications [75, 5]: when

many nodes in the system want to interact and cooperate they need a mechanism to

discover the existence of one another. Resource discovery is typically done using a local

mechanism [75]; in each round nodes discover other nodes and this changes the result-

ing network — new edges are added between the nodes that discovered each other.

As the process proceeds, the graph becomes denser and denser and will finally result

in a complete graph. Such a process was first studied in [75] which showed that a

simple randomized process is enough to guarantee almost-optimal time bounds for the

time taken for the entire graph to become complete (i.e., for all nodes to discover all

other nodes). Their randomized Name Dropper algorithm operates as follows: in each

round, each node chooses a random neighbor and sends all the IP addresses it knows.

Note that while this process is also gossip based the information sent by a node to its

neighbor can be extremely large (i.e., of size Ω(n)).

Second, in social networks, nodes (people) discover new nodes through exchanging

contacts with their neighbors (friends). Discovery of new nodes changes the underlying

network — new edges are added to the network — and the process continues in the
1Gossip, in some contexts (see e.g., [80, 82]), has been used to denote communication with a random

node in the network, as opposed to only a directly connected neighbor. The former model essentially

assumes that the underlying graph is complete, whereas the latter (as assumed here) is more general

and applies even to arbitrary graphs. The local gossip process is typically more difficult to analyze due

to the dependencies that arise as the network evolves.

3



1. INTRODUCTION

changed network. For example, consider the LinkedIn network1, a large social network

of professionals on the Web. The nodes of the network represent people and edges are

added between people who directly know each other — between direct contacts. Edges

are generally undirected, but LinkedIn also allows directed edges, where only one node

is in the contact list of another node. LinkedIn allows two mechanisms to discover new

contacts. The first can be thought of as a triangulation process (see Figure 1.1(a)): A

person can introduce two of his friends that could benefit from knowing each other —

he can mutually introduce them by giving their contacts. The second can be thought

of as a two-hop process (see Figure 1.1(b)): If you want to acquire a new contact then

you can use a shared (mutual) neighbor to introduce yourself to this contact; i.e., the

new contact has to be a two-hop neighbor of yours. Both the processes can be modeled

via gossip in a natural way and the resulting evolution of the network can be studied.

This yields insight on the evolution of the social network over time.

Figure 1.1: (a) Push discovery or triangulation process. (b) Pull discovery or two-hop
walk process. (c) Non-monotonicity of the triangulation process – the expected convergence
time for the 4-edge graph exceeds that for the 3-edge subgraph.

1http://www.linkedin.com.

4
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1.1 Diffusion under organic dynamics

Gossip-based discovery. Motivated by the above applications, we analyze two natu-

ral gossip-based discovery processes (also diffusion processes). We assume that we start

with an arbitrary undirected connected graph and the process proceeds in synchronous

rounds. Communication among nodes occurs only through edges in the network. We

further assume that the size of each message sent by a node in a round is at most

O(log n) bits, i.e., the size of an ID.

1. Push discovery (triangulation): In each round, each node chooses two random

neighbors and connects them by “pushing” their mutual information to each

other. In other words, each node adds an undirected edge between two of its

random neighbors; if the two neighbors are already connected, then this does not

create any new edge. Note that this process, which is illustrated in Figure 1.1(a),

is completely local. To execute the process, a node only needs to know its neigh-

bors; in particular, no two-hop information is needed.

2. Pull discovery (two-hop walk): In each round, each node connects itself to a ran-

dom neighbor of one of its randomly chosen neighbors, by “pulling” a random

neighboring ID from a random neighbor. Alternatively, one can think of each

node doing a two-hop random walk and connecting to its destination. This pro-

cess, illustrated in Figure 1.1(b), can also be executed locally: a node simply

asks one of its neighbors v for an ID of one of v’s neighbors and then adds an

undirected edge to the received contact.

Both the above processes are local in the sense that each node only communicates

with its neighbors in any round, and lightweight in the sense that the amortized work

done per node is only a constant per round. Both processes are also easy to implement

and generally oblivious to the current topology structure, changes or failures. It is

interesting also to consider variants of the above processes in directed graphs. In

particular, we study the two-hop walk process which naturally generalizes in directed

graphs: each node does a two-hop directed random walk and adds a directed edge to

its destination. We are mainly interested in the time taken by the process to converge

to the transitive closure of the initial graph, i.e., till no more new edges can be added.
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1. INTRODUCTION

Our results. We present almost-tight bounds on the number of rounds it takes for

the push and pull discovery processes to converge.

• Undirected graphs: In Sections 2.2 and 2.3, we show that for any undirected n-

node graph, both the push and the pull discovery processes converge inO(n log2 n)

rounds with high probability. We also show that Ω(n log n) is a lower bound on

the number of rounds needed for almost any n-node graph. Hence our analysis is

tight to within a logarithmic factor.

• Directed graphs: In Section 2.4, we show that the pull process takes O(n2 log n)

time for any n-node directed graph, with high probability. We show a matching

lower bound for weakly connected graphs, and an Ω(n2) lower bound for strongly

connected directed graphs. Our analysis indicates that the directionality of edges

can greatly impede the resource discovery process.

Applications. The gossip-based discovery processes we study are directly motivated

by the two scenarios outlined above, namely algorithms for resource discovery in dis-

tributed networks and analyzing how discovery process affects the evolution of social

networks. Since our processes are simple, lightweight, and easy to implement, they

can be used for resource discovery in distributed networks. The original resource dis-

covery algorithm of [75] was helpful in developing systems like Akamai. Unlike prior

algorithms for the discovery problem [75, 92, 91, 5], the amortized work done per node

in our processes is only constant per round and hence this can be efficiently imple-

mented in bandwidth and resource-constrained networks (e.g., peer-to-peer or sensor

networks). In contrast, the Name Dropper algorithm of [75], can transfer up to Θ(n)

information per edge per round and hence may not be scalable for large-scale networks.

We note that, however, because there is essentially no restriction on the bandwidth,

the number of rounds taken by the Name Dropper algorithm is O(log2 n). (We note

that in our model, Ω(n) is a trivial lower bound). Our analyses can also give insight

into the growth of real-social networks such as LinkedIn, Twitter, or Facebook, that

grow in a decentralized way by the local actions of the individual nodes. For example,

it can help in predicting the sizes of the immediate neighbors as well as the sizes of the

second and third-degree neighbors (e.g., these are listed for every node in LinkedIn).
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1.2 Diffusion under adversarial dynamics

An estimate of these can help in designing efficient algorithms and data structures to

search and navigate the social network.

Technical contributions. Our main technical contribution is a probabilistic analysis

of localized gossip-based discovery in arbitrary networks. While our processes can

be viewed as graph-based coupon collection processes, one significant distinction with

past work in this area [6, 11, 56] is that the graphs in our processes are constantly

changing. The dynamics and locality inherent in our process introduces nontrivial

dependencies, which makes it difficult to characterize the network as it evolves. A

further challenge is posed by the fact that the expected convergence time for the two

processes is not monotonic; that is, the processes may take longer to converge starting

from a graph G than starting from a subgraph H of G. Figure 1.1(c) presents a small

example illustrating this phenomenon. This seemingly counter-intuitive phenomenon

is, however, not surprising considering the fact that the cover time of random walks

also share a similar property. One consequence of these hurdles is that analyzing

the convergence time for even highly specialized or regular graphs is challenging since

the probability distributions of the intermediate graphs are hard to specify. Our lower

bound analysis for a specific strongly connected directed graph in Theorem 15 illustrates

some of the challenges. In our main upper bound results, we overcome these technical

difficulties by presenting a uniform analysis for all graphs, in which we study different

local neighborhood structures and show how each lead to rapid growth in the minimum

degree of the graph.

1.2 Diffusion under adversarial dynamics

In an adversarial dynamic network, nodes and communication links can appear and dis-

appear at will over time. Emerging networking technologies such as ad hoc, wireless,

sensor, mobile, and peer-to-peer networks are inherently dynamic, resource-constrained,

and unreliable. This necessitates the development of a solid foundation to design ef-

ficient, robust, and scalable algorithms for diffusion processes in adversarial networks,

and to understand the power and limitation of distributed computing on such networks.

Such a foundation is critical to realize the full potential of these large-scale dynamic

communication networks.
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1. INTRODUCTION

As a step towards understanding the fundamental computation power of such

dynamic networks, we investigate dynamic networks in which the network topology

changes arbitrarily from round to round. We first consider a worst-case model that

was introduced by Kuhn, Lynch, and Oshman [89] in which the communication links

for each round are chosen by an online adversary, and nodes do not know who their

neighbors for the current round are before they broadcast their messages. (Note that in

this model, only edges change and nodes are assumed to be fixed.) The only constraint

on the adversary is that the networks should be connected at each round. Unlike prior

models on dynamic networks, the model of [89] does not assume that the network even-

tually stops changing and requires that the algorithms work correctly and terminate

even in networks that change continually over time.

We study a fundamental diffusion process, information spreading (also known as

gossip) in such dynamic network. In gossip, or more generally, k-gossip, there are

k pieces of information (or tokens) that are initially present in some nodes and the

problem is to disseminate the k tokens to all nodes. By just gossip, we mean n-gossip,

where n is the network size. Information spreading is a fundamental primitive in

networks which can be used to solve other problems such as leader election.

The focus of this thesis is on the power of token-forwarding algorithms, which do

not manipulate tokens in any way other than storing and forwarding them. Token-

forwarding algorithms are simple, often easy to implement, and typically incur low

overhead. In a key result, [89] showed that under their adversarial model, k-gossip can

be solved by token-forwarding in O(nk) rounds, but that any deterministic online token-

forwarding algorithm needs Ω(n log k) rounds. They also proved an Ω(nk) lower bound

for a special class of token-forwarding algorithms, called knowledge-based algorithms.

Our main result is a new lower bound on any deterministic online token-forwarding

algorithm for k-gossip.

• We show that every deterministic online token-forwarding algorithm for the k-

gossip problem takes Ω(nk/ log n) rounds. Our result applies even to centralized

(deterministic) token-forwarding algorithms that have a global knowledge of the

token distribution.

This result resolves an open problem raised in [89], significantly improving their lower

bound, and matching their upper bound to within a logarithmic factor. Our lower
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1.3 Controlling negative diffusion

bound also enables a better comparison of token-forwarding with an alternative ap-

proach based on network coding due to [72, 73], which achieves a O(nk/ log n) rounds

using O(log n)-bit messages (which is not significantly better than the O(nk) bound

using token-forwarding), and O(n+k) rounds with large message sizes (e.g., Θ(n log n)

bits). It thus follows that for large token and message sizes there is a factor Ω(min{n, k}/ log n)

gap between token-forwarding and network coding. We note that in our model we allow

only one token per edge per round and thus our bounds hold regardless of the token

size.

Our lower bound indicates that one cannot obtain efficient (i.e., subquadratic)

token-forwarding algorithms for gossip in the adversarial model of [89]. Furthermore,

for arbitrary token sizes, we do not know of any algorithm that is significantly faster

than quadratic time. This motivates considering other weaker (and perhaps, more re-

alistic) models of dynamic networks. In fact, it is not clear whether one can solve the

problem significantly faster even in an offline setting, in which the network can change

arbitrarily each round, but the entire evolution is known to the algorithm in advance.

Our next contribution takes a step in resolving this basic question for token-forwarding

algorithms.

• We present a polynomial-time offline token-forwarding algorithm that solves the

k-gossip problem on an n-node dynamic network inO(min{nk, n1.5
√

log n}) rounds.

• We also present a polynomial-time offline token-forwarding algorithm that solves

the k-gossip problem in a number of rounds within an O(nε) factor of the optimal,

for any ε > 0, assuming the algorithm is allowed to transmit O(log n) tokens per

round.

The above upper bounds show that in the offline setting, token-forwarding algorithms

can achieve a time bound that is within O(
√
n log n) of the information-theoretic lower

bound of Ω(n+ k), and that we can approximate the best token-forwarding algorithm

to within a O(nε) factor, given logarithmic extra bandwidth per edge.

1.3 Controlling negative diffusion

In this section, we motivate our problems using computer virus as an example. However

the study of intervention strategies can be easily applied to other fields like epidemiol-

9



1. INTRODUCTION

ogy.

Over the recent decades, there has been an explosive growth in the use of per-

sonal digital devices of various kinds, which are connected to the Internet through new

technologies, such as Bluetooth and Wi-Fi to allow ubiquitous access. This has, unfor-

tunately, been accompanied by significant increase in worm attacks that exploit bugs

in these new technologies, and which have new and growing “medium” to spread on -

recent attacks, e.g., Cabir and CommWorm, that span multiple networks are expected

to become increasingly prevalent in future. While, effective anti-virus software and

patches are readily available, the average user is very independent and does not often

care to be proactive about installing the most effective anti-virus software, and down-

loading the latest patches, partially because of the cost of the software and the effort

involved, which we refer to as the security cost. Indeed, a large fraction of devices are

estimated to be without adequate anti-virus protection. If a user does not install pro-

tective software, they would incur a cost if his device gets attacked, due to downtime,

loss of revenue, and cost of re-installing systems; we refer to these as the infection cost.

If enough other nodes in the network are secured, the likelihood of a specific device

getting infected would go down (as a result of the “herd immunity”), leading to a natu-

ral game theoretic scenario. A number of different non-cooperative game formulations

have been developed to study this basic problem, e.g., [15, 16, 35, 67, 71, 94, 126]; one

issue with many of these formulations is that they involve utility functions that require

quite a lot of non-local information to compute, and it is not clear how implementable

such games might be.

In this thesis, we present a generalized network security game model GNS(d), which

incorporates arbitrary contact networks through an undirected graph G and heteroge-

neous nodes with individual security and infection costs. Our model is parametrized by

network locality parameter d, which represents the distance within the network that a

given infection can spread. Equivalently, the parameter d in the game GNS(d) could

represent the extent of neighborhood information that is available to a node when mak-

ing strategic security decisions, which is a departure from earlier models which require

global information for making decisions. Qualitatively, we consider three important

cases with respect to d. The case d = 1, which we refer to as the local infection model,

is most well-suited for ad hoc wireless networks and social networks, when certain ac-

tions initiated by an insecure node could adversely affect immediate neighbors, friends,
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1.3 Controlling negative diffusion

or email contacts. For this case, our model can be viewed as a variant of the IDS

model of [81]. The case d = ∞, which we refer to as the global infection model, is

most well-suited for the highly infectious worms and viruses in the Internet that can be

transmitted in an hop-unlimited manner through unsuspecting insecure nodes, under

the assumption that individual nodes have complete information. Our GNS(∞) model

is a generalization of the elegant model of [15]. The intermediate case 1 < d < ∞
applies to the majority of network security hazards where the transmission may be

hop-limited and nodes may only have limited local information about the topology and

security decisions taken by others. Our main results are the following.

• Existence of pure Nash equilibria (NE): We show that the locality parameter

d plays a significant role in the structure of the resulting games. Both the extremes

of GNS(1) and GNS(∞) turn out to be ordinal potential games, and a pure NE

can be computed by best response dynamics – that is, every sequence of best

response steps by the individual players converges to a pure NE. However, for

every d in the range (1,∞), there exists an instance of GNS(d) that does not

have a pure equilibrium. The price of anarchy for a GNS(1) game is at most

the maximum degree of the contact graph, while that for GNS(∞) is inversely

proportional to the vertex expansion of the contact graph.

• Complexity of computing pure NE: While there is a simple combinatorial

characterization for the existence of pure NE in GNS(d) for all d, we show that

for 1 < d < ∞, deciding if an arbitrary instance of GNS(d) has a pure NE

is NP-complete. For GNS(1), we show that finding a pure NE of least cost is

NP-complete; a corresponding result for GNS(∞) is in [15].

• Approximating the social optimum: We show that computing the social

optimum is NP-complete for a GNS(d) game, for any d; the case of d = ∞
was shown by [15]. We design a general framework for finding a strategy vector

for the players in polynomial time, whose cost is at most 2d times that of the

optimal, for any fixed d. In particular, this implies that for d = 1, we obtain

a 2-approximation. For d = ∞, we provide a different algorithm within the

framework that yields an O(log n)-approximation, where n is the number of nodes

in the network; this improves on the approximation bound of O(log1.5 n) of [15]

achieved for a special case of the GNS(∞).
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• Empirical results: We study the characteristics of NE empirically in two dis-

tinct classes of graphs: random geometric graphs and power law graphs. For

d = 1, we find that the convergence time for best response is sub-linear in the

number of nodes in both the classes of graphs, while it is linear for d =∞. Also,

for d = 1, we find that the cost of the pure NE obtained is very close to that of

the social optimum, indicating that the pure NE obtained in real-world networks

approximate social optimum very well. For d =∞, we observe that there may be

a significant gap between the cost of the pure NE and that of the social optimum,

even for small networks. Finally, we study the performance of our approximation

algorithms for the social optimum, and find that the approximation guarantees

in practice are much smaller than our theoretical bounds.

Pure NE represent stable operating points for a system with selfish users. Therefore,

for a network planner, understanding and controlling the quality of equilibria reached

is an important issue. Our results suggest locality characteristics of the network or

the amount of information available to the strategic network players have a significant

impact on the existence of equilibria. The non-monotonicity in the existence of NE, with

respect to d, is somewhat surprising and suggests a closer examination of the impact

of information on pure NE in such games. While our theoretical analysis indicates

that pure NE may be significantly inferior to the optimum in terms of social optimum

in the worst-case, our experiments suggest that for real-world network models pure

NE obtained by uncoordinated best response dynamics have low cost relative to the

social optimum, especially in the case of d = 1. Additionally, our results on the price

of anarchy suggest natural heuristics to aid a network planner in enforcing efficient

equilibria. Finally, the approximations achieved by our approximation algorithms, both

in theory and experiments, indicate that our proposed algorithms are viable candidates

wherever centralized decisions can be made on network protection mechanisms.

1.4 Controlling negative diffusion in the presence risk be-

havior changes

The study in Section 1.3 assumes that the behavior of each individual remains the same

before and after taking interventions. However, this is not an accurate assumption in

some real world scenarios. For instance, people expose themselves more to the public
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1.4 Controlling negative diffusion in the presence risk behavior changes

after taking vaccinations. This behavior change is often referred as risk behavior change.

And it is very common, specially in epidemiology. Since vaccination is not 100% reliable,

this kind of behavior change has the potential to increase the likelihood of disease

transmission. In our study, it is important to consider the impact of risk behavior to

good intervention strategies. In our discussion below, we use disease transmission as

example, but risk behavior is not limited to epidemiology.

For many diseases, such as influenza and HIV, prophylactic interventions using anti-

virals and vaccinations are commonly used to control the spread of the diseases, and

are usually universally recommended, barring individual constraints. Recent studies

have shown significant benefits of anti-retrovirals for reducing the spread of HIV [61].

Such treatments have varying levels of efficacy (25-75% in the case of HIV [61, 70] and

between 10-80% in the case of influenza [1], depending on the demographics and the

specifics of the flu strain). However, people are not very well aware of this limitation,

and studies often over-estimate the efficacy of vaccines [114]. Indeed, the perceived

protection from infection might cause behavioral changes, leading to an increase in

contact by a treated individual; such a behavioral change following vaccination could

also be a natural evolutionary response [86, 105], and has also been documented re-

cently in the context of flu vaccines [115]. Regardless of the underlying reasons, fail-

ure of prophylactic interventions in conjunction with increased social behavior can

have significant unexpected effects on the disease dynamics. In a series of impor-

tant papers [37, 98] Blower and her collaborators demonstrated that risk behavior

change, in the context of HIV vaccinations, could lead to perverse outcomes. Subse-

quently, several independent studies have confirmed this phenomenon of perversity in

the use of HIV vaccines and anti-virals, and vaccines for the human papillomavirus

(HPV) [119, 36, 128, 124, 70, 121, 13, 52, 74, 100, 44, 64].1

A fundamental question in mathematical epidemiology is to determine the frac-

tion of the population that needs to be vaccinated or treated with anti-virals in order

to minimize the impact of the disease, especially when the supply is limited. Mod-

ern epidemiological analysis is largely based on an elegant class of models, called SIR

1 The phenomenon of an increase in risky behavior following protection is also referred to as “moral

hazard” and has been studied extensively in a number of areas, such as insurance (e.g., [103]); in the

epidemiology literature, this is referred to more commonly as “risk behavior” (e.g., [37]), and we will

fix on this terminology for most of the thesis.

13



1. INTRODUCTION

(susceptible-infected-recovered), which was first formulated by Reed and Frost in the

1920s, and developed over the subsequent decades. The SIR model and its variants

have been highly influential in the study of epidemics [129, 97, 99, 79, 69, 98]. These

models, however, do not attempt to capture the rich structure of the contact network

over which interactions occur. Network structure has a direct effect on both the spread

of diseases as well as the nature of interactions, which has been observed by a number

of researchers, e.g. [108, 76]. In the emerging area of contact network epidemiology, an

underlying contact graph captures the patterns of interactions which lead to the trans-

mission of a disease [113, 55, 95, 101, 102, 110, 127, 67]. Many studies have predicted

the spread of diseases through networks using mathematical analysis or simulations.

As we have argued above, moral-hazarding/risky behavior clearly plays an important

role in the effectiveness of such interventions. While the impact of risky behavior on

prophylactic treatments has been studied in previous work, the extent of the perversity

and its dependence on network structure as well as the precise nature of the behavior

change has remained largely unknown. 1

In this thesis, we study the impact of risk behavior change on the spread of diseases

in networks and observe a rich and complex structure dependent both on the underlying

network characteristics as well as the nature of the change in behavior. We use a

discrete-time SIR model of disease transmission on a contact network. The contact

network is an undirected graph with each edge having a certain probability of disease

transmission. An infected node is assumed to recover in one time step. We consider

both uniform random vaccination (where each node is vaccinated independently with

the same probability) as well as targeted vaccinations (where nodes are vaccinated

based on their degree of connectedness). Vaccines are assumed to fail uniformly and

randomly.2 We model risk behavior change by an increase in the disease transmission

probability. A significant aspect of our work is the consideration of the “sidedness”

of risk behavior change. We classify risk behavior as one-sided or two-sided based

on whether the increase in disease transmission probability requires an increase in

1 Similar issues arise in the context of the spread of malware through infected computers. Several

studies, e.g., [2], have found that computer and smart-phone users do not relate bot infections to risky

behavior, such as downloading spam mails, though a large fraction of users have updated anti-virus

software. It is plausible that such phenomena can also be associated with risky behavior in many cases.
2Though we focus on vaccinations and disease transmission, the basic results apply to other pro-

phylactic treatments such as anti-virals, and other phenomena such as malware spread.
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risk behavior of both the infector and the infectee or just the infector. As examples:

influenza (H1N1) may be modeled as a one-sided disease since a vaccinated individual

may be motivated to behave more riskily (going to crowded places, traveling on planes

etc.,) thus increasing the chance of infecting all the individual comes in contact with;

whereas AIDS (HIV) may be modeled as a two-sided disease since the increase in

disease transmission requires both the individuals participating in the interaction to

engage in risky behavior. Of course, these examples are simplistic and most diseases

have elements of both one-sided as well as two-sided risk behavior.

Our main findings are threefold.

• First, we find that the severity of the epidemic varies non-monotonically as a

function of the vaccinated fraction. The specific dynamics depend on the nature

of risky behavior, as well as the efficacy of the vaccine (the less reliable the vaccine,

the greater the non-monotonicity) and the contagiousness of the disease, but in

general, we observe that increased vaccination does not immediately imply less

severity; in some cases, the severity could increase by as much as a factor of two.

• Second, we find that one-sided risk behavior change leads to perverse outcomes

at low levels of vaccination, while two-sided risk behavior change leads to per-

verse outcomes at high levels of vaccination. Our analysis indicates that effective

prophylactic interventions against diseases with one-sided risk behavior change

need to have sufficiently high coverage; on the other hand, for diseases with two-

sided risk behavior change, it is essential to combine prophylactic treatments with

education programs aimed at reducing risky behavior.

• Our third and, perhaps, most surprising finding is that interventions that target

highly connected individuals can be strictly worse than random interventions for

the same level of coverage and that this phenomenon occurs both for one-sided

as well as two-sided risk behavior change. Given prior work on targeting vaccine

distributions, this finding flies in the face of intuition that expects that targeted

vaccination would confer greater benefits.

Our results have direct implications for public policy on containing epidemic spread

through prohylactic interventions. Implications of risk behavior in public health have

been examined earlier, e.g. [37, 98]. These prior studies are based on differential
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equation models, which divide the population into a fixed set of groups and model

the interaction between different groups in a uniform way. The epidemic spread is

then characterized by the “reproductive number,” denoted by R0, with the expected

epidemic size exhibiting a threshold behavior in terms of R0. In contrast, we use a

network model that captures the fine structure of interactions between (an arbitrary

number of) individuals rather than (a fixed set of) groups, and find that the network

structure has a significant impact on the resulting dynamics. The heterogenous network

model extends to a larger range of real-life situations but the increased fidelity comes

at a price. The outcomes are more complicated and varied and the general approach

of lowering R0 does not appear to be directly applicable. Another new contribution of

our study is the focus on the sidedness inherent in risk behavior change, which has not

been considered before. Prior research has implicitly assumed one-sided risk behavior

change where vaccinated individuals engage in risky behavior increasing the chances of

infection of those they come in contact with. This work explicitly treats both one-sided

and two-sided risk behavior changes and shows that their differing impact needs to be

considered in public intervention policies.

1.5 Overview

In this thesis, we design efficient algorithms to enable positive diffusion and good in-

tervention strategies to control negative diffusion. In Chapter 2, we study two nature

diffusion processes under organic dynamics, and show an almost tight upper bound

for both of these processes. In Chapter 3, we study similar problems as in Chapter 2,

but under adversarial dynamics. We show an lower bound for any token-forwarding

algorithms under online adversarial model, and design two efficient algorithms under

offline adversarial model. In Chapter 4, we study both centralized and decentralized

intervention strategies. We give an O(log n) approximation algorithm for optimal cen-

tralized intervention strategy. Then we show the existence of intervention strategies in

decentralized settings and compare their costs with the optimal centralized strategy. In

Chapter 5, we extend the study in Chapter 4 to the presence of risk behavior changes,

and observe two interesting phenomena: 1) less interventions can be more effective,

and 2) targeted intervention strategy can be worse than random intervention strategy.

We conclude in Chapter 6.
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Chapter 2

Diffusion under organic dynamics

In this chapter, we study diffusion processes under organic dynamics that are motivated

by information discovery in large-scale distributed networks such as peer-to-peer and

social networks. A well-studied problem in peer-to-peer networks is resource discovery,

where the goal for nodes is to discover all other nodes in the network. For example, a

node may want to know the IP addresses of all the other hosts in the network. In social

networks, nodes (people) discover new nodes through exchanging contacts with their

neighbors (friends). In both cases the discovery of new nodes changes the underlying

network — new edges are added to the network — and the process continues in the

changed network.

We study and analyze two natural gossip-based diffusion/discovery processes. In

the push discovery or triangulation process, each node repeatedly chooses two random

neighbors and connects them (i.e., “pushes” their mutual information to each other).

In the pull discovery process or the two-hop walk, each node repeatedly requests or

“pulls” a random contact from a random neighbor and connects itself to this two-hop

neighbor. Both processes are lightweight in the sense that the amortized work done per

node is constant per round, local, and naturally robust due to the inherent randomized

nature of gossip.

Our main result is an almost-tight analysis of the time taken for these two ran-

domized processes to converge. We show that in any undirected n-node graph both

processes take O(n log2 n) rounds to connect every node to all other nodes with high

probability, whereas Ω(n log n) is a lower bound. We also study the two-hop walk in

directed graphs, and show that it takes O(n2 log n) time with high probability, and
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2. DIFFUSION UNDER ORGANIC DYNAMICS

that the worst-case bound is tight for arbitrary directed graphs, whereas Ω(n2) is a

lower bound for strongly connected directed graphs. A key technical challenge that we

overcome in our work is the analysis of a randomized process that itself results in a

constantly changing network leading to complicated dependencies in every round.

In Section 2.1 we list the notations and prove some common lemmas we will use in

the proofs. We show the upper and lower bounds of the push discovery and the pull

discovery in Section 2.2 and 2.3 respectively. Then we give the proofs of upper and

lower bound of the pull discovery in directed graph in Section 2.4. Finally, we conclude

in Section 2.5.

2.1 Preliminaries

In this section, we define the notations used in our proofs, and prove some common

lemmas for Section 2.2 and Section 2.3. Let G denote a connected graph, d(u) denote

the degree of node u, and N i(u) denote the set of nodes that are at distance i from u.

Let δ denote the minimum degree of G. We note that G, d(u), and N i(u) all change

with time, and are, in fact, random variables. For any nonnegative integer t, we use

subscript t to denote the random variable at the start of time t; for example Gt refers

to the graph at the start of step t. For convenience, we list the notations in Table 2.1.

Table 2.1: Notation table

Notation description

δt minimum degree of graph Gt

N i
t (u) set of nodes that are at distance i from u in Gt∣∣N i
t (u)

∣∣ number of nodes in N i
t (u)

dt (u) degree of node u in Gt

dt
(
u,N i

t (v)
)

number of edges from u to nodes in N i
t (v), i.e., degree induced on N i

t (v)

We present two lemmas that are used in the proofs in Section 2.2 and Section 2.3.

Lemma 1 gives a lower bound on the number of neighbors within distance 4 for any node

u in Gt while Lemma 2 is a standard analysis of a sequence of Bernoulli experiments.

Lemma 1.
∣∣∪4
i=1N

i
t (u)

∣∣ ≥ min {2δt, n− 1} for all u in Gt.
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2.2 The triangulation: Discovery through push

Proof. If N3
t (u) is not an empty set, consider node v ∈ N3

t (u). Since dt (v) ≥ δt, we
have

∣∣∪4
i=2N

i
t (u)

∣∣ ≥ δt.
∣∣N1

t (u)
∣∣ ≥ δt because dt (u) ≥ δt. We also know N1

t (u) and
∪4
i=2N

i
t (u) are disjoint. Thus,

∣∣∪4
i=1N

i
t (u)

∣∣ ≥ 2δt. If N3
t (u) is an empty set, then

N1
t (u)∪N2

t (u) = n− 1 because Gt is connected. Thus
∣∣∪4
i=1N

i
t (u)

∣∣ = n− 1. Combine
the above 2 cases, we complete the proof of this lemma.

Lemma 2. Consider k Bernoulli experiments, in which the success probability of the
ith experiment is at least i/m where m ≥ k. If Xi denotes the number of trials needed
for experiment i to output a success and X =

∑k
i=1Xi, then

Pr [X > (c+ 1)n lnn] <
1
nc

Proof. Since X only increases with k, with out loss of generality assume that k = m.
Now we can view this as coupon collector problem [104] where Xm+1−i is the number
of steps to collect the ith coupon. Consider the probability of not obtaining the ith
coupon after (c+ 1)n lnn steps. This probability is(

1− 1
n

)(c+1)n lnn

< e−(c+1) lnn =
1

nc+1

By union bound, the probability that some coupon has not been collected after (c +
1)n lnn steps is less than 1/nc. And this completes the proof of this lemma.

2.2 The triangulation: Discovery through push

In this section, we analyze the triangulation process on undirected connected graphs,

which is described by the following simple iteration: In each round, for each node u,

we add edge (v, w) where v and w are drawn uniformly at random from N1
t (u). The

triangulation process yields the following push-based resource discovery protocol. In

each round, each node u introduces two random neighbors v and w to one another. The

main result of this section is that the triangulation process transforms an arbitrary con-

nected n-node graph to a complete graph in O(n log2 n) rounds with high probability.

We also establish an Ω(n log n) lower bound on the triangulation process for almost all

n-node graphs.

2.2.1 Upper bound

We obtain the O(n log2 n) upper bound by proving that the minimum degree of the

graph increases by a constant factor (or equals n− 1) in O(n log n) steps. Towards this
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2. DIFFUSION UNDER ORGANIC DYNAMICS

objective, we study how the neighbors of a given node connect to the two-hop neighbors

of the node. We say that a node v is weakly tied to a set of nodes S if v has less

than δ0/2 edges to S (i.e., dt (v, S) < δ0/2), and strongly tied to S if v has at least

δ0/2 edges to S (i.e., dt (v, S) ≥ δ0/2). Recall that δ0 is the minimum degree at start

of round 0. Then, we have the following two lemmas.

Lemma 3. If δ0 ≤ dt (u) < (1 + 1/4)δ0 and w ∈ N1
0 (u) is strongly tied to N2

t (u),
then the probability that u connects to a node in N2

t (u) through w in round t is at least
2/(7n).

Proof. Since w is strongly tied to N2
t (u), dt

(
w,N2

t (u)
)
≥ δ0/2. Therefore, the proba-

bility that u connects to a node in N2
t (u) through w in round t is

=
dt
(
w,N2

t (u)
)

dt (w)
· 1
dt (w)

≥
dt
(
w,N2

t (u)
)

dt (w)
· 1
n
≥

dt
(
w,N2

t (u)
)

|N1
t (u) |+ dt

(
w,N2

t (u)
) · 1

n

≥
dt
(
w,N2

t (u)
)

(1 + 1/4)δ0 + dt
(
w,N2

t (u)
) · 1

n
≥ δ0/2

(1 + 1/4)δ0 + δ0/2
· 1
n

=
2

7n
.

Lemma 4. If δ0 ≤ dt (u) < (1 + 1/4)δ0, w ∈ N1
0 (u) is weakly tied to N2

t (u), and
v ∈ N2

0 (u) ∩N1
0 (w), then the probability that u connects to v through w in round t is

at least 1/(4δ20).

Proof. Since w is weakly tied toN2
t (u), we know that dt (w) equals |N1

t (u) |+dt
(
w,N2

t (u)
)
,

which is at most (1 + 1/4)δ0 + δ0/2. Therefore, the probability that u connects to v

through w in round t is

=
1

dt (w)2
≥ 1

((1 + 1/4)δ0 + δ0/2)2
≥ 1

(7δ0/4)2
≥ 1

4δ20
.

For analyzing the growth in the degree of a node u, we consider two overlapping

cases. The first case is when more than δ0/4 nodes of N1
t (u) are strongly tied to N2

t (u),

and the second is when less than δ0/3 nodes of N1
t (u) are strongly tied to N2

t (u). The

analysis for the first case is relatively straightforward: when several neighbors of a node

u are strongly tied to u’s two-hop neighbors, then their triangulation steps connect u

to a large fraction of these two-hop neighbors.
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2.2 The triangulation: Discovery through push

Figure 2.1: This figure illustrates the different cases and relations between lemmas used
in the proof of Theorem 8. The shaded nodes in N1

t (u) are strongly tied to N2
t (u). Others

are weakly tied to N2
t (u).

Lemma 5 (When several neighbors are strongly tied to two-hop neighbors).
There exists T = O(n log n) such that if more than δ0/4 nodes in N1

t (u) are strongly
tied to N2

t (u) for all t < T , then dT (u) ≥ (1 + 1/4)δ0 with probability at least 1−1/n2.

Proof. If at any round t < T , dt (u) ≥ (1 + 1/4) δ0, then the claim of the lemma holds.
In the remainder of this proof, we assume dt (u) < (1 + 1/4) δ0 for all t < T . Let
w ∈ N1

t (u) be a node that is strongly tied to N2
t (u). By Lemma 3 we know that

Pr
[
u connects to a node in N2

t (u) through w in round t
]
≥ 2

7n
>

1
6n

We have more than δ0/4 such w’s in N1
t (u), each of which independently executes a

triangulation step in any given round. Consider a run of T1 = 72n lnn/δ0 rounds. This
implies at least 18n lnn attempts to add an edge between u and a node in N2

t (u).
Thus,

Pr
[
u connects to a node in N2

t (u) after T1 rounds
]

≥ 1−
(

1− 1
6n

)18n lnn

≥ 1− e−3 lnn = 1− 1
n3
.

Therefore, in T = T1δ0/4 = O(n log n) rounds, u will connect to at least δ0/4 new
nodes with probability at least 1− 1/n2, i.e., dT (u) ≥ (1 + 1/4) δ0.

We next consider the second case where less than δ0/3 neighbors of a given node u

are strongly tied to the two-hop neighborhood of u. This case is more challenging since
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2. DIFFUSION UNDER ORGANIC DYNAMICS

the neighbors of u that are weakly tied may not contribute many new edges to u. We

break the analysis of this part into two subcases based on whether there is at least one

neighbor of u that is strongly tied to N2
0 (u). Figure 2.1 illustrates the different cases

and lemmas used in the proof of Theorem 8.

Lemma 6 (When few neighbors are strongly tied to two-hop neighbors).
There exists T = O(n log n) such that if less than δ0/3 nodes in N1

t (u) are strongly
tied to N2

t (u) for all t < T , and there exists a node v0 ∈ N1
0 (u) that is strongly tied to

N2
0 (u), then dT (u) ≥ (1 + 1/8) δ0 with probability at least 1− 1/n2.

Proof. If at any point t < T , dT (u) ≥ (1 + 1/8) δ0, then the claim of the lemma holds.
In the remainder of this proof, we assume dT (u) < (1 + 1/8) δ0 for all t < T . Let S0

t

denote the set of v0’s neighbors in N2
t (u) which are strongly tied to N1

t (u) at time t,
W 0
t denote the set of v0’s neighbors in N2

t (u) which are weakly tied to N1
t (u) at time

t.

Consider any node v in S0
t . Less than δ0/3 nodes in N1

t (u) are strongly tied to
N2
t (u), thus more than δ0/2 − δ0/3 = δ0/6 neighbors of v in N1

t (u) are weakly tied
to N2

t (u). Let w be one such weakly tied node. By Lemma 4, the probability that u
connects to v through w in round t is at least 1/(4δ20). We have at least δ0/6 such w’s,
each of which executes a triangulation step each round. Consider T = 72δ0 lnn rounds
of the process. Then the probability that u connects to v in T rounds is at least

1−
(

1− 1
4δ20

)12δ20 lnn

≥ 1− e−3 lnn = 1− 1
n3
.

Thus, if |S0
t | ≥ δ0/8, in an additional O(n log n) time, dT (u) ≥ (1 + 1/8)δ0 with

probability at least 1− 1/n2.

Therefore, in the remainder of the proof we consider the case where |S0
t | < δ0/8.

Define R0
t = R0

t−1 ∪W 0
t , R0

0 = W 0
0 . If at least δ0/8 nodes in R0

t are connected to u at
any time, then the claim of the lemma holds. Thus, in the following we consider the
case where |R0

t ∩N1
t (u) | < δ0/8. From the definition of R0

t , we can derive

|R0
t | ≥ |W 0

t | = dt
(
v0, N

2
t (u)

)
− |S0

t | ≥ dt
(
v0, N

2
t (u)

)
− δ0/8

At time 0, v0 is strongly tied to N2
0 (u), i.e., d0

(
v0, N

2
0 (u)

)
≥ δ0/2. Since δ0 ≤ dt (u) <

(1 + 1/8)δ0, we have

dt
(
v0, N

2
t (u)

)
≥ dt

(
v0, N

2
0 (u)

)
− δ0/8 ≥ 3δ0/8
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2.2 The triangulation: Discovery through push

Let e1 denote the event
{
u connects to a node in R0

t \N1
t (u) through v0 in round t

}
.

Pr [e1] =
|R0

t \N1
t (u) |

dt (v0)
· 1
dt (v0)

=
|R0

t | − |R0
t ∩N1

t (u) |
dt (v0)

· 1
dt (v0)

≥ |R0
t | − |R0

t ∩N1
t (u) |

dt (v0)
· 1
n

=
|R0

t | − |R0
t ∩N1

t (u) |∣∣N1
t (u)

∣∣+ dt
(
v0, N2

t (u)
) · 1

n

≥ |R0
t | − δ0/8∣∣N1

t (u)
∣∣+ dt

(
v0, N2

t (u)
) · 1

n
≥

dt
(
v0, N

2
t (u)

)
− δ0/8− δ0/8∣∣N1

t (u)
∣∣+ dt

(
v0, N2

t (u)
) · 1

n

≥ 3δ0/8− δ0/8− δ0/8∣∣N1
t (u)

∣∣+ 3δ0/8
· 1
n
≥ 3δ0/8− δ0/8− δ0/8

(1 + 1/8)δ0 + 3δ0/8
· 1
n

=
1

12n

Let X1 be the number of rounds it takes for e1 to occur. When e1 occurs, let v1
denote a witness for e1. We know v1 is in W 0

t1 for some t1, i.e., v1 is strongly tied to
N2
t1 (u)∩N3

t1 (u). If dt
(
v1, N

2
t (u)

)
< 3δ0/8 at any point, then dt (u) ≥ (1+1/8)δ0. Thus,

in the remainder of the proof, we consider the case where dt
(
v1, N

2
t (u)

)
≥ 3δ0/8. Let

S1
t (resp., W 1

t ) denote the set of v1’s neighbors in N2
t (u) that are strongly tied (resp.,

weakly tied) to N1
t (u). If |S1

t | ≥ δ0/8, then as we did for the case |S0
t | ≥ δ0/8, we

argue that in O(n log n) rounds, the degree of u is at least (1 + 1/8)δ0 with probability
at least 1− 1/n2.

Thus, in the remainder, we assume that |S1
t | < δ0/8. Define R1

t = R1
t−1∪W 1

t , R1
t1 =

W 1
t1 . Let e2 denote the event

{
u connects to a node in R0

t \N1
t (u) (or R1

t \N1
t (u)) through v0(or v1) in round t

}
.

By the same calculation as for v0, we have Pr [e2] ≥ 1/6n. Similarly, we can define
e3, X3, e4, X4, . . . , eδ0/4, Xδ0/4, and obtain that Pr [ei] ≥ i/(12n). The total number of
rounds for u to gain δ0/4 edges is bounded by T =

∑
iXi. By Lemma 2, T ≤ 36n lnn

with probability at least 1− 1/n2, completing the proof of this lemma.

Lemma 7 (When all neighbors are weakly tied to two-hop neighbors). There
exists T = O(n log n) such that if all nodes in N1

t (u) are weakly tied to N2
t (u) for all

t < T , then dT (u) ≥ min {(1 + 1/8)δ0, n− 1} with probability at least 1− 1/n2.

Proof. If at any point t < T , dt (u) ≥ min {(1 + 1/8)δ0, n− 1}, then the claim of this
lemma holds. In the remainder of this proof, we assume dt (u) < min {(1 + 1/8)δ0, n− 1}
for all t < T . In the following, we first show, any node v ∈ N2

0 (u) will have at least
δ0/4 edges to N1

T1
(u), where T1 = O(n log n). After that, v will connect to u in

T2 = O(n log n) rounds. Therefore, the total number of rounds used for v to connect
to u is T3 = T1 + T2 = O(n log n).

Node v at least connects to one node in N1
0 (u). Call it w1. Because all nodes

in N1
t (u) are weakly tied to N2

t (u), we have dt
(
w1, N

1
t (u)

)
≥ δ0 − δ0/2 = δ0/2. If

dt
(
w1, N

1
t (u) \N1

t (v)
)
< δ0/4, then v already has δ0/4 edges to N1

t (u). Thus, in the
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2. DIFFUSION UNDER ORGANIC DYNAMICS

following we consider the case where dt
(
w1, N

1
t (u) \N1

t (v)
)
≥ δ0/4. Let e1 denote the

event
{
v connects to a node in N1

t (u) \N1
t (v) through w1

}
.

Pr [e1] =
dt
(
w1, N

1
t (u) \N1

t (v)
)

dt (w1)
· 1
dt (w1)

≥
dt
(
w1, N

1
t (u) \N1

t (v)
)∣∣N1

t (u)
∣∣+ dt

(
w1, N2

t (u)
) · 1

dt (w1)

≥ δ0/4
(1 + 1/8)δ0 + δ0/2

· 1
dt (w1)

≥ 2
13
· 1
n

>
1

7n

Let X1 be the number of rounds needed for e1 to occur. When e1 occurs, let w2 denote
a witness for e1. Notice w2 is also weakly tied to N2

t (u). By similar argument, we have
dt
(
w2, N

1
t (u) \N1

t (v)
)
≥ δ0/4. Let e2 denote the event

{
v connects to a node in N1

t (u) through w1 or w2

}
.

We have Pr [e2] ≥ 2/(7n). Let X2 be the number of rounds needed for e2 to occur. Sim-
ilarly, we can define e3, X3, . . . , eδ0/4, Xδ0/4 and show Pr [ei] ≥ i/(7n). Set T1 =

∑
iXi,

which is the bound on the number of rounds needed for v to have at least δ0/4 neighbors
in N1

t (u). By Lemma 2, we know T2 ≤ 28n lnn with probability at least 1−1/n3. Now
we show v will connect to u in T2 time after this. Notice that, all wi’s are still weakly
tied to N2

t (u). By Lemma 4, the probability that u connects to v through wi in round
t is at least 1/(4δ20). We have w1, w2, . . . , wδ0/4 independently executing a triangulation
step each round. Consider T2 = 48δ0 lnn rounds of the process. Then,

Pr [u connects to v in T2 rounds] ≥ 1−
(

1− 1
4δ20

)12δ20 lnn

≥ 1− 1
n3
.

Combine the two steps. We have shown for any node v ∈ N2
0 (u), it will connect to u

in time T3 = T1 + T2 with probability at least 1− 1/n3. This implies in time T3, u will
connect to all nodes in N2

0 (u) with probability at least 1−
∣∣N2

0 (u)
∣∣ /n3. Then, N2

0 (u) ⊆
N1
T3

(u) , N3
0 (u) ⊆ N1

T3
(u) ∪ N2

T3
(u) , N4

0 (u) ⊆ N1
T3

(u) ∪ N2
T3

(u) ∪ N3
T3

(u). Now we
apply the above analysis twice, and obtain that in time T = 3T3 = O(n log n), N2

0 (u)∪
N3

0 (u)∪N4
0 (u) ⊆ N1

T (u) with probability at least 1−
∣∣N2

0 (u) ∪N3
0 (u) ∪N4

0 (u)
∣∣ /n3 ≥

1− 1/n2. By Lemma 1, we know
∣∣N2

0 (u) ∪N3
0 (u) ∪N4

0 (u)
∣∣ ≥ min {2δ0, n− 1}. Thus,

we complete the proof of this lemma.

Theorem 8 (Upper bound for triangulation process). For any connected undi-
rected graph, the triangulation process converges to a complete graph in O(n log2 n)
rounds with high probability.

Proof. We first show that in O(n log n) rounds, either the graph becomes complete or
the minimum degree of the graph increases by a factor of at least 1/12. Then we apply
this argument O(log n) times to complete the proof of this theorem.
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2.2 The triangulation: Discovery through push

For each u where d0 (u) < min {(1 + 1/8)δ0, n− 1}, we consider the following 2
cases. The first case is if more than δ0/3 nodes in N1

0 (u) are strongly tied to N2
0 (u).

By Lemma 5, there exists T = O(n log n) such that if at least δ0/4 nodes in N1
t (u) are

strongly tied to N2
t (u) for t < T , then dT (u) ≥ (1 + 1/8)δ0 with probability at least

1 − 1/n2. Whenever the condition is not satisfied, i.e., less than δ0/4 nodes in N1
t (u)

are strongly tied to N2
t (u), it means more than δ0/3−δ0/4 = δ0/12 strongly tied nodes

became weakly tied. By the definitions of strongly tied and weakly tied, this implies
dT (u) ≥ (1 + 1/12)δ0.

The second case is if less than δ0/3 nodes in N1
0 (u) are strongly tied to N2

0 (u).
By Lemmas 6 and 7, we know that there exists T = O(n log n) such that if we remain
in this case for T rounds, then dT (u) ≥ min {(1 + 1/8)δ0, n− 1} with probability at
least 1 − 1/n2. Whenever the condition is not satisfied, i.e., more than δ0/3 nodes
in N1

t (u) are strongly tied to N2
t (u), we move to the analysis in the first case, and

dT (u) ≥ (1 + 1/8)δ0 in T = O(n log n) time with probability at least 1− 1/n2.

Combining the above 2 cases and applying a union bound, we obtain δT ≥ min {(1 + 1/8)δ0, n− 1}
in T = O(n log n) rounds with probability at least 1 − 1/n. We now apply the above
argument O(log n) times to obtain the desired O(n log2 n) upper bound.

2.2.2 Lower bound

Theorem 9 (Lower bound for triangulation process). For any connected undi-
rected graph G that has k ≥ 1 edges less than the complete graph the triangulation
process takes Ω(n log k) steps to complete with probability at least 1−O

(
e−k

1/4
)

.

Proof. We first observe that during the triangulation process there is a time t when
the number of missing edges is at least m = O(

√
k) and the minimum degree is at least

n/3. If k < 2
3n then this is true initially and for larger k this is true at the first time

t the minimum degree is large enough. The second case follows since the degree of a
node (and thus also the minimum degree) can at most double in each step guaranteeing
that the minimum degree is not larger than 2

3n at time t also implying that at least
n
3 = Ω(

√
k) edges are still missing.

Given the bound on the minimum degree any missing edge {u, v} is added by a fixed
node w with probability at most 9

2n2 . Since there are at most n − 2 such nodes the
probability that a missing edge gets added is at most 9

2n . To analyze the time needed
for all missing edges to be added we denote with Xi the random variable counting the
number of steps needed until the ith of the m missing edges is added. We would like to
analyze Pr [X1 ≤ T,X2 ≤ T, . . . ,Xm ≤ T ] for an appropriately chosen number of steps
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T . Note that the events Xi < T and Xj < T are not independent and indeed can be
positively or negatively correlated. Nevertheless, independent of the conditioning onto
any of the events Xj < T , we have that Pr [X1 ≤ T ] ≤ 1− (1− 9

2n)T ≤ 1− 1√
m

for an
appropriately chosen T = Ω(n logm), where m is again the number of missing edges at
time t. Thus,

Pr [X1 ≤ T,X2 ≤ T, . . . ,Xm ≤ T ] =

= Pr [X1 ≤ T |X2 ≤ T, . . . ,Xm ≤ T ] · Pr [X2 ≤ T |X3, . . . , Xm ≤ T ] · . . . · Pr [Xm ≤ T ]

≤
(

1− 1√
m

)m
= O

(
e−
√
m
)

= O
(
e−k

1/4
)

This shows that the triangulation process takes with probability at least 1−O
(
e−k

1/4
)

at least Ω(n logm) = O(n log k) steps to complete.

2.3 The two-hop walk: Discovery through pull

In this section, we analyze the two-hop walk process on undirected connected graphs,

which is described by the following simple iteration: In each round, for each node u, we

add edge (u,w) where w is drawn uniformly at random from N1
t (v), where v is drawn

uniformly at random from N1
t (u). The two-hop walk yields the following pull-based

resource discovery protocol. In each round, each node u contacts a random neighbor v,

receives the identity of a random neighbor w of v, and sends its identity to w. The main

result of this section is that the two-hop walk process transforms an arbitrary connected

n-node graph to a complete graph in O(n log2 n) rounds with high probability. We also

establish an Ω(n log n) lower bound on the two-hop walk for almost all n-node graphs.

2.3.1 Upper bound

As for the triangulation process, we establish the O(n log2 n) upper bound by showing

that the minimum degree of the graph increases by a constant factor (or equals n− 1)

in O(n log n) rounds with high probability. For analyzing the growth in the degree

of a node u, we consider two overlapping cases. The first case is when the two-hop

neighborhood of u is not too large, i.e., |N2
t (u) | < δ0/2, and the second is when the

two-hop neighborhood of u is not too small, i.e., |N2
t (u) | ≥ δ0/4. As in the analysis

of the triangulation process, we also use the notions of strongly and weakly tied based

on how many edges connect a node to a given set; it is more convenient to work with
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2.3 The two-hop walk: Discovery through pull

a different threshold. We say that a node v is weakly tied to a set of nodes S if v has

less than δ0/4 edges to S (i.e. dt (v, S) < δ0/4), and strongly tied to S if v has at

least δ0/4 edges to S (i.e. dt (v, S) ≥ δ0/4).

Lemma 10 (When the two-hop neighborhood is not too large). There exists
T = O(n log n) such that either

∣∣N2
T (u)

∣∣ ≥ δ0/2 or dT (u) ≥ min {2δ0, n− 1} with
probability at least 1− 1/n2.

Proof. By the definition of δ0, d0 (w) ≥ δ0 for all w in N1
0 (u). Let X be the first round

at which |N2
X (u) | ≥ δ0/2. We consider two cases. If X is at most cn log n for a constant

c to be specified later, then the claim of the lemma holds. In the remainder of this
proof we consider the case where X is greater than cn log n; thus, for 0 ≤ t ≤ cn log n,
|N2

t (u) | < δ0/2.
Consider any node w in N1

0 (u). Since d0 (w) ≥ δ0 and |N2
t (u) | < δ0/2, w has at

least δ0/2 edges to nodes in N1
0 (u). Fix a node v in N2

0 (u). In the following, we first
show that in O(n log n) rounds, v is strongly tied to the neighbors of u with probability
at least 1−1/n3. Let T1 denote the first round at which v has is strongly tied to N1

T1
(u),

i.e., when |N1
T1

(v) ∩ N1
T1

(u) | ≥ δ0/4. We know that v has at least one neighbor, say
w1, in N1

0 (u). Consider any t < T1. Since v is weakly tied to N1
0 (u) at time t, w1

has at least δ0/4 neighbors in N1
0 (u) which do not have an edge to v at time t. This

implies

Pr
[
v connects to a node in N1

0 (u) through w1 in round t
]
≥ 1
n
· 1

4
=

1
4n

Let e1 denote the event
{
v connects to a node in N1

0 (u)
}

, and X1 be the number
of rounds for e1 to occur. When e1 occurs, let w2 denote a witness for e1. We note
that w1, w2 ∈ N1

0 (u) ⊆ N1
X1

(u). If v is weakly tied to N1
X1

(u), both w1 and w2 have
at least δ0/4 neighbors in N1

X1
(u) that do not have an edge to v yet. Let e2 denote

the event
{
v connects to a node in N1

X1
(u)
}

, and X2 be the number of rounds for e2
to occur. Then Pr [e2] = 2 Pr [e1] ≥ 1/2n. Similarly, we define e3, X3, . . . , eδ0/4, Xδ0/4

and obtain Pr [ei] ≥ i/(4n). We now apply Lemma 2 to obtain that X1 +X2 + . . . Xδ0/4

is at most 16n lnn with probability at least 1 − 1/n3. Thus, with probability at least
1− |N2

0 (u) |/n3, T1 ≤ 16n lnn. After T1 rounds, we obtain that for any v ∈ N2
0 (u),

Pr [u connects to v in a single round] ≥ δ0/4
2δ0
· 1
n

=
1

8n
.

which implies that with probability at least 1 − 1/n3, u has an edge to every node in
N2

0 (u) in another T2 ≤ 24n lnn rounds.
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Let T3 equal T1 +T2; we set c to be at least 120 ln 2 so that X > 3T3. We thus have
N2

0 (u) ⊆ N1
T3

(u), N3
0 (u) ⊆ N1

T3
(u)∪N2

T3
(u), and N4

0 (u) ⊆ N1
T3

(u)∪N2
T3

(u)∪N3
T3

(u).
We now repeat the above analysis again twice and obtain that at time T = 3T3, N2

0 (u)∪
N3

0 (u)∪N4
0 (u) ⊆ N1

T (u) with probability at least 1−
∣∣N2

0 (u) ∪N3
0 (u) ∪N4

0 (u)
∣∣ /n3 ≥

1−1/n2. By Lemma 1, we have
∣∣N1

T (u)
∣∣ ≥ min {2δ0, n− 1}, thus completing the proof

of the lemma.

Lemma 11 (When the two-hop neighborhood is not too small). There ex-
ists T = O(n log n) such that either

∣∣N2
T (u)

∣∣ is less than δ0/4 or dT (u) is at least
min {(1 + 1/8)δ0, n− 1}, with probability at least 1− 1/n2.

Proof. Let X be the first round at which N2
X (u) < δ0/4. We consider two cases. If X

is at most cn log n for a constant c to be specified later, then the claim of the lemma
holds. In the remainder of this proof we consider the case where X is greater than
cn log n; thus, for 0 ≤ t ≤ cn log n,

∣∣N2
t (u)

∣∣ ≥ δ0/4. If v ∈ N2
0 (u) is strongly tied to

N1
0 (u), then

Pr [u connects to v in a single round] ≥
dt
(
v,N1

0 (u)
)∣∣N1

t (u)
∣∣ · 1

n
≥ δ0/4

(1 + 1/8)δ0
· 1
n

=
2

9n

Thus, in T = 13.5n lnn rounds, u will add an edge to v with probability at least
1 − 1/n3. If there are at least δ0/8 nodes in N2

0 (u) that are strongly tied to N1
0 (u),

then u will add edges to all these nodes in T rounds with probability at least 1− 1/n2.

In the remainder of this proof, we focus on the case where the number of nodes in
N2

0 (u) that are strongly tied to N1
0 (u) at the start of round 0 is less than δ0/8. In

this case, because
∣∣N2

t (u)
∣∣ ≥ δ0/4, more than δ0/8 nodes in N2

0 (u) are weakly tied to
N1

0 (u), and, thus, have at least 3δ0/4 edges to nodes in N2
0 (u) ∪N3

0 (u).

In the following we show u will connect to δ0/8 nodes in O(n log n) rounds with
probability at least 1− 1/n2. For any round t, let Wt denote the set of nodes in N2

t (u)
that are weakly tied to N1

t (u). We refer to a length-2 path from u to a node two hops
away as an out-path. Let P0 denote the set of out-paths to W0. Since we have at least
δ0/8 nodes in N2

0 (u) that are weakly tied to N1
0 (u), |P0| is at least δ0/8 at time t = 0.

Define e1 =
{
u picks an out-path in P0 and connects to node v1 in N2

0 (u)
}

, and X1 to
be the number of rounds for e1 to occur. When 0 ≤ t ≤ X1, for each wi ∈ N1

t (u), let
fi be the number of edges from wi to nodes in N1

t (u) ∪N2
t (u), and pi be the number
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2.3 The two-hop walk: Discovery through pull

of edges from wi to nodes in N2
0 (u) that are weakly tied to N1

0 (u).

Pr [e1] =
∑
i

1
dt (u)

· pi
fi

≥
∑
i

1
dt (u)

· pi
n− 1

=
∑

i pi
(1 + 1/8)δ0(n− 1)

=
|S|

(1 + 1/8)δ0(n− 1)
≥ δ0/8

(1 + 1/8)δ0(n− 1)
≥ 1

9n
.

After X1 rounds, u will pick an out-path in P0 and connect such a v1. Define P1 to
be a set of out-paths from u to WX1 . We now place a lower bound on |P1 \ P0|. Since
v1 ∈ N2

0 (u) is added to N1
X1

(u), those out-paths in P0 consisting of edges from v1 to
nodes in N1

0 (u) are not in P1. The number of out-paths we lose because of this is at
most δ0/4. But v1 also has at least 3δ0/4 edges to N2

0 (u) ∪ N3
0 (u). The end points

of these edges are in N1
X1

(u) ∪ N2
X1

(u). If more than δ0/8 of them are in N1
X1

(u),
then dX1 (u) ≥ (1 + 1/8)δ0. Now let’s consider the case that less than δ0/8 such end
points are in N1

X1
(u). This means the number of edges from v1 to N2

X1
(u) is at least

3δ0/4 − δ0/4 − δ0/8 = 3δ0/8. Among the end points of these edges, if more than
δ0/8 of them are strongly tied to N1

X1
(u), then the degree of u will become at least

(1 + 1/8)δ0 in O(n log n) rounds with probability 1 − 1/n2 by our earlier argument.
If not, we know that more than δ0/4 newly added edges are pointing to nodes that
are weakly tied to N1

X1
(u). Thus, |P1 \ P0| is by at least δ0/4. |S| ≥ 2 · δ0/8. Define

e2 = {u picks an out-path in P1 and connects to node v2}, and X2 to be the number
of rounds for e2 to occur. During time X1 ≤ t ≤ X2, Pr [e2] is at least 2 · 1

9n . Similarly,
we define e3, X3, . . . , eδ0/8, Xδ0/8 and derive Pr [ei] ≥ i/(9n). By Lemma 2, the number
of rounds for dt (u) ≥ (1 + 1/8)δ0 is bounded by

T = X1 +X2 + · · ·+Xδ0/8 ≤ (2 + 1)9n lnn = 27n lnn

with probability at least 1− 1/n2, completing the proof of this lemma.

Theorem 12 (Upper bound for two-hop walk process). For connected undirected
graphs, the two-hop walk process completes in O(n log2 n) rounds with high probability.

Proof. We first show that in time T = O(n log n) time, the minimum degree of the
graph increases by a factor of 1/8, i.e., δT ≥ min {(1 + 1/8)δ0, n− 1}. Then we can
apply this argument O(log n) times, and thus, complete the proof of this theorem.

For each u where d0 (u) < min {(1 + 1/8)δ0, n− 1}, we analyze by the following 2
cases. First, if |N2

0 (u) | ≥ δ0/2, by Lemma 11 we know as long as |N2
t (u) | ≥ δ0/4 for all

t ≥ 0, dT (u) ≥ min {(1 + 1/8)δ0, n− 1} with probability 1−1/n2 where T = O(n log n).
Whenever the condition is not satisfied, we know at least δ0/4 nodes in N2

0 (u) has been
moved to N1

T (u), which means dT (u) ≥ min {(1 + 1/4)δ0, n− 1}.
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2. DIFFUSION UNDER ORGANIC DYNAMICS

Second, if |N2
0 (u) | < δ0/2, by Lemma 10 we know as long as |N2

t (u) | < δ0/2 for all
t ≥ 0, dT (u) ≥ min {(1 + 1/8)δ0, n− 1} with probability 1−1/n2 where T = O(n log n).
Whenever the condition is not satisfied, we are back to the analysis in the first case, and
the minimum degree will become min {(1 + 1/8)δ0, n− 1} with probability 1− 1/n2.

Combine the above 2 cases, since we at most have n nodes whose degree is be-
tween δ0 and min {(1 + 1/8)δ0, n− 1}, the minimum degree of G will become at least
min {(1 + 1/8)δ0, n− 1} in O(n log n) rounds with probability 1− 1/n.

Now we can apply the above argument O(log n) times, and have shown the two-hop
walk process completes in O(n log2 n) with high probability.

2.3.2 Lower bound

Theorem 13 (Lower bound for two-hop walk process). For any connected undi-
rected graph G that has k ≥ 1 edges less than the complete graph the two-hop process
takes Ω(n log k) steps to complete with probability at least 1−O

(
e−k

1/4
)

.

The proof of Theorem 13 is essentially the same as Theorem 9, and is omitted here.

2.4 Two-hop walk in directed graphs

In this section, we analyze the two-hop walk process in directed graphs. We say that

the process terminates at time t if for every node u and every node v, Gt contains the

edge (u, v) whenever u has a path to v in G0.

Theorem 14. On any n-node directed graph, the two-hop walk terminates in O(n2 log n)
rounds with high probability. Furthermore, there exists a (weakly connected) directed
graph for which the process takes Ω(n2 log n) rounds to terminate.

Proof. Consider any pair of nodes, u and v. Consider a shortest path from u to v

(v0, v1, v2, . . . , vm), where v0 = u, vm = v and m ≤ n. Fix a time step t. Let ei denote
the event an edge is added from vi to vi+2 in step t. The probability of occurrence of
ei is Pr [ei] ≥ 1/n2. All the ei’s are independent from one another.

Pr [∪iei] ≥
∑
i

Pr [ei]−
∑
i

∑
j

Pr [ei ∩ ej ]

=
∑
i

Pr [ei]−
∑
i

∑
j

Pr [ei] Pr [ej ]

≥ m
1
n2
−m(m− 1)

1
n4

≥ m

n2
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2.4 Two-hop walk in directed graphs

Let X1 denote the number of steps it takes for the length of the above path to decrease
by 1. It is clear that E[X1] ≤ n2/m. In general, let Xi denote the number of steps it
takes for the length of the above path to decrease by i. By Lemma 2, the number of
steps it takes for the above path to shrink to an edge is at most 4n2 lnn with probability
1/n3. Taking a union bound over all the edges yields the desired upper bound.

For the lower bound, consider a graph G0 with the node set {1, 2, . . . , n} and the
edge set

{(3i, j), (3i+1, j) : 0 ≤ i < n/4, 3n/4 ≤ j < n}
⋃
{(3i, 3i+1), (3i+1, 3i+2) : 0 ≤ i < n/4}.

The only edges that need to be added by the two-hop process are the edges (3i, 3i+ 2)
for 0 ≤ i < n/4. The probability that node 3i adds the edge (3i, 3i + 2) in any round
is at most 16/n2. The probability that edge (3i, 3i + 2) is not added in (n2 lnn)/32
rounds is at least 1/

√
n. Since the events associated with adding each of these edges

are independent, the probability that all the n/3 edges are added in (n2 lnn)/32 rounds
is at most (1− 1/

√
n)n/3 ≤ e−

√
n/3, completing the lower bound proof.

The lower bound in the above theorem takes advantage of the fact that the initial

graph is not strongly connected. Extending the above analysis for strongly connected

graphs appears to be much more difficult since the events corresponding to the addition

of new edges interact in significant ways. We present an Ω(n2) lower bound for a

strongly connected graph by a careful analysis that tracks the event probabilities with

time and takes dependencies into account.

Theorem 15. There exists a strongly connected directed graph G0 for which the ex-
pected number of rounds taken by the two-hop process is Ω(n2).

Proof. The graph G0 = (V,E) is depicted in Figure 2.2 and formally defined as G0 =
(V,E) where V = {1, 2, . . . , n} with n being even, and

E = {(i, j) : 1 ≤ i, j ≤ n/2}∪{(i, i+ 1) : n/2 ≤ i < n}∪{(i, j) : i > j, i > n/2, i, j ∈ V } .

We first establish an upper bound on the probability that edge (i, i + h) is added by
the start of round t, for given i, 1 ≤ i ≤ n − h. Let ph,t denote this probability. The
following base cases are immediate: ph,0 is 1 for h = 1 and h < 0, and 0 otherwise.
Next, the edge (i, i+ h) is in Gt+1 if and only if (i, i+ h) is either in Gt−1 or added in
round t. In the latter case, (i, i + h) is added by a two-hop walk i → i + k → i + h,
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2. DIFFUSION UNDER ORGANIC DYNAMICS

Figure 2.2: Lower bound example for two-hop walk process in directed graphs

where −i < k ≤ n− i. Since the out-degree of every node is at least n/2, for any k the
probability that i takes such a walk is at most 4/n2.

ph,t+1 ≤ ph,t +
4
n2

n−i∑
k>−i

pk,tph−k,t

= ph,t +
4
n2

(
i−1∑
k=1

ph+k,t +
h−1∑
k=1

pk,tph−k,t +
n−i∑

k=h+1

pk,t

)
(2.1)

We show by induction on t that

ph,t ≤
(
αt

n2

)h−1

, for all t ≤ εn2 (2.2)

where α and ε are positive constants that are specified later.
The induction base is immediate. For the induction step, we use the induction

hypothesis for t and Equation 2.1 and bound ph,t+1 as follows.

ph,t+1 ≤
(
αt

n2

)h−1

+
4
n2

(
i−1∑
k=1

(
αt

n2

)h+k−1

+
h−1∑
k=1

(
αt

n2

)k−1(αt
n2

)h−k−1

+
n−i∑

k=h+1

(
αt

n2

)k−1
)

≤
(
αt

n2

)h−1

+
4
n2

(
(h− 1)

(
αt

n2

)h−2

+
(
αt

n2

)h 2
1− αt/n2

)

≤
(
αt

n2

)h−1

+ (h− 1)
(
αt

n2

)h−2 1
n2

(
4 +

4ε2

(1− αε)

)
≤

(
αt

n2

)h−1

+ (h− 1)
(
αt

n2

)h−2 α

n2

≤
(
α(t+ 1)
n2

)h−1

.

(In the second inequality, we combine the first and third summations and bound them
by their infinite sums. In the third inequality, we use t ≤ εn2. For the fourth inequality,
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2.4 Two-hop walk in directed graphs

we set α sufficiently large so that α ≥ 4 + 4/(1−αε). The final inequality follows from
Taylor series expansion.)

For an integer x, let Cx denote the cut ({u : u ≤ x}, {v, v > x}). We say that a cut
Cx is untouched at the start of round t if the only edge in Gt crossing the cut Cx is
the edge (x, x+ 1); otherwise, we say Cx is touched. Let X denote the smallest integer
such that CX is untouched. We note that X is a random variable that also varies with
time. Initially, X = n/2.

We divide the analysis into several phases, numbered from 0. A phase ends when
X changes. Let Xi denote the value of X at the start of phase i; thus X0 = n/2.
Let Ti denote the number of rounds in phase i. A new edge is added to the cut CXi
only if either Xi selects edge (Xi, Xi + 1) as its first hop or a node u < Xi selects
u → Xi → Xi + 1. Since the degree of every node is at least n/2, the probability
that a new edge is added to the cut Ci is at most 2/n+ n(4/n2) = 6/n, implying that
E[Ti] ≥ n/6.

We now place a bound on Xi+1. Fix a round t ≤ εn2, and let Ex denote the event
that Cx is touched by round t. We first place an upper bound on the probability of Ex
for arbitrary x using Equation 2.2.

Pr[Ex] ≤
∑
h≥2

h

(
αt

n2

)h−1

≤ αt(4− 3(αt)/n2 + (αt)2/n4)
n2(1− (αt)/n2)3

,

for t ≤ εn2, where we use the inequality
∑

h≥2 h
2δh = δ(4 − 3δ + δ2)/(1 − δ)3 for

0 < δ < 1. We set ε sufficiently small so that (4− 3ε+ ε2)/(1− ε)3 ≤ 5, implying that
the above probability is at most 5ε.

If Ex were independent from Ey for x 6= y, then we can invoke a straightforward
analysis using a geometric probability distribution to argue that E[Xi+1 − Xi] is at
most 1/(1− 5ε) = O(1). The preceding independence does not hold, however; in fact,
for y > x, Pr[Ey mod Ex] > Pr[Ey]. We show that the impact of this correlation is
very small when x and y are sufficiently far apart. We consider a sequence of cuts
Cx1 , Cx2 , . . . , Cx` , . . . where x0 = Xi+2 and x` = x`−1 + c`, for a constant c chosen suf-
ficiently large. We bound the conditional probability of Ex` given Ex`−1

∩Ex`−2
· · ·Ex1
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as follows.

Pr[Ex` |Ex`−1
∩ Ex`−2

· · ·Ex1 ]

=
Pr[Ex` ∩ Ex`−1

∩ Ex`−2
· · ·Ex1 ]

Pr[Ex`−1
∩ Ex`−2

· · ·Ex1 ]

≤
Pr[Ex`−1

∩ Ex`−2
· · ·Ex1 ∩ (Cx` ∩ (Cx`−1

∪ · · · ∪ Cx1) = ∅)]
Pr[Ex`−1

∩ Ex`−2
· · ·Ex1 ]

+

Pr[Ex`−1
∩ Ex`−2

· · ·Ex1 ∩ (Cx` ∩ (Cx`−1
∪ · · · ∪ Cx1) 6= ∅)

Pr[Ex`−1
∩ Ex`−2

· · ·Ex1 ]

≤
Pr[Ex`−1

∩ Ex`−2
· · ·Ex1 ] Pr[a new edge is added from (x`−1 + 1, x`) to (x` + 1, n]]

Pr[Ex`−1
∩ Ex`−2

· · ·Ex1 ]
Pr[an edge spanning at least c` hops is added across Cx` ]

Pr[Ex`−1
∩ Ex`−2

· · ·Ex1 ]

≤ Pr[Ex` ] +
((αt)/n2)c`−1

(1− αt/n2)2(t/n2)`

≤ 5ε+ ε = 6ε,

where we set c sufficiently large in the last step. Since Xi+1 is at most the smallest x`
such that Cx` is untouched, we obtain that

E[Xi+1 −Xi] ≤ 2 +
∑
`≥2

(6ε)`c`2 = O(1).

We thus obtain that after ε′n phases, E[X] is O(n), where ε′ is chosen sufficiently small
so that n − E[X] is Ω(n). Since the expected length of each phase is at least n/6, it
follows that the expected number of rounds it takes for the two-hop process to complete
is Ω(n2) rounds.

2.5 Conclusion

We have analyzed two natural gossip-based discovery processes in networks and showed

almost-tight bounds on their convergence in arbitrary networks. Our processes are mo-

tivated by the resource discovery problem in distributed networks as well as by the

evolution of social networks. We would like to study variants of the processes that take

into account failures associated with forming connections, the joining and leaving of

nodes, or having only only a subset of nodes to participate in forming connections. We

believe our techniques can be extended to analyze such situations as well. From a tech-

nical standpoint, the main problem left open by our work is to resolve the logarithmic
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factor gap between the upper and lower bounds. It is not hard to show that from the

perspective of increasing the minimum degree by a constant factor, our analysis is tight

up to constant factors. It is conceivable, however, that a sharper upper bound can be

obtained by an alternative analysis that uses a “smoother” measure of progress.
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Chapter 3

Diffusion under adversarial

dynamics

In Chapter 2, we study diffusion under organic dynamics, where the network is altered

by the diffusion process itself. In this chapter, we study similar problems, but under

adversarial dynamics.

We study the fundamental problem of diffusion (also known as information spread-

ing or gossip) in dynamic networks. In gossip, or more generally, k-gossip, there are k

pieces of information (or tokens) that are initially present in some nodes and the prob-

lem is to disseminate the k tokens to all nodes. The goal is to accomplish the task in as

few rounds of distributed computation as possible. It’s not hard to show an O(n+ k)

upper bound if the network is static (e.g. using delay sequence argument). However,

the problem is especially challenging in dynamic networks where the network topology

can change from round to round and can be controlled by an on-line adversary.

The focus of this chapter is on the power of token-forwarding algorithms, which do

not manipulate tokens in any way other than storing and forwarding them. We first

consider a worst-case adversarial model first studied by Kuhn, Lynch, and Oshman [89]

in which the communication links for each round are chosen by an adversary, and

nodes do not know who their neighbors for the current round are before they broadcast

their messages. Our main result is an Ω(nk/ log n) lower bound on the number of

rounds needed for any deterministic token-forwarding algorithm to solve k-gossip. This

resolves an open problem raised in [89], improving their lower bound of Ω(n log k), and

matching their upper bound of O(nk) to within a logarithmic factor. Our lower bound
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also extends to randomized algorithms against an adversary that knows in each round

the outcomes of the random coin tosses in that round. Our result shows that one cannot

obtain significantly efficient (i.e., subquadratic) token-forwarding algorithms for gossip

in the adversarial model of [89]. We next show that token-forwarding algorithms can

achieve subquadratic time in the offline version of the problem, where the adversary

has to commit all the topology changes in advance at the beginning of the computation.

We present two polynomial-time offline token-forwarding algorithms to solve k-gossip:

(1) an O(min{nk, n
√
k log n}) round algorithm, and (2) an (O(nε), log n) bicriteria

approximation algorithm, for any ε > 0, which means that if L is the number of rounds

needed by an optimal algorithm, then our approximation algorithm will complete in

O(nεL) rounds and the number of tokens transmitted on any edge is O(log n) in each

round. Our results are a step towards understanding the power and limitation of token-

forwarding algorithms in dynamic networks.

In Section 3.1 we formally define the k-gossip problem and the online/offline models

we considered. Related work is in Section 3.2. We show the Ω(nk/ log n) lower bound

in Section 3.3, and present our algorithms in Section 3.4. Finally, we conclude and give

open problems in Section 3.5.

3.1 Model and problem statement

In this section, we formally define the k-gossip problem, the online and offline models,

and token-forwarding algorithms.

The k-gossip problem. In this problem, k different tokens are assigned to a set V of

n ≥ k nodes, where each node may have any subset of the tokens, and the goal is to

disseminate all the k tokens to all the nodes.

The online model. Our online model is the worst-case adversarial model of [89]. Nodes

communicate with each other using anonymous broadcast. We assume a synchronized

communication. At the beginning of round r, each node in V decides what message to

broadcast based on its internal state and coin tosses (for a randomized algorithm); the

adversary chooses the set of edges that forms the communication network Gr over V for

round r. We adopt a strong adversary model in which adversary knows the outcomes of

the random coin tosses used by the algorithm in round r at the time of constructing Gr
but is unaware at this time of the outcomes of any randomness used by the algorithm
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in future rounds. The only constraint on Gr is that it be connected; this is the same

as the 1-interval connectivity model of [89].

As observed in [89], the above model is equivalent to the adversary knowing the

messages to be sent in round r before choosing the edges for round r. We do not

place any bound on the size of the messages, but require for our lower bound that each

message contains at most one token. Finally, we note that under the strong adversary

model, there is a distinction between randomized algorithms and deterministic algo-

rithms since a randomized algorithm may be able to exploit the fact that in any round

r, while the adversary is aware of the randomness used in that round, it does not know

the outcomes of any randomness used in subsequent rounds.

The offline model. In the offline model, we are given a sequence of networks 〈Gr〉
where Gr is a connected communication network for round r. As in the online model,

we assume that in each round at most one token is broadcast by any node. It can be

easily seen that the k-gossip problem can be solved in nk rounds in the offline model;

so we may assume that the given sequence of networks is of length at most nk.

Token-forwarding algorithms. Informally, a token-forwarding algorithm is one that

does not combine or alter tokens, only stores and forwards them. Formally, we call an

algorithm for k-gossip a token-forwarding algorithm if for every node v, token t, and

round r, v contains t at the start of round r of the algorithm if and only if either v has

t at the start of the algorithm or v received a message containing t prior to round r.

Finally, several of our arguments are probabilistic. We use the term “with high

probability” to mean with probability at least 1 − 1/nc, for a constant c that can be

made sufficiently high by adjusting related constant parameters.

3.2 Related work

Information spreading (or dissemination) in networks is one of the most basic problems

in computing and has a rich literature. The problem is generally well-understood on

static networks, both for interconnection networks [93] as well as general networks [96,

17]. In particular, the k-gossip problem can be solved in O(n+k) rounds on any n-static

network [122]. There also have been several papers on broadcasting, multicasting, and

related problems in static heterogeneous and wireless networks (e.g., see [12, 26, 25, 50]).
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Dynamic networks have been studied extensively over the past three decades. Some

of the early studies focused on dynamics that arise out of faults, i.e., when edges or

nodes fail. A number of fault models, varying according to extent and nature (e.g.,

probabilistic vs. worst-case) and the resulting dynamic networks have been analyzed

(e.g., see [17, 96]). There have been several studies on models that constrain the

rate at which changes occur, or assume that the network eventually stabilizes (e.g.,

see [7, 57, 66]).

There also has been considerable work on general dynamic networks. Some of the

earliest studies in this area include [8, 23] which introduce general building blocks for

communication protocols on dynamic networks. Another notable work is the local

balancing approach of [22] for solving routing and multicommodity flow problems on

dynamic networks. Algorithms based on the local balancing approach continually bal-

ance the packet queues across each edge of the network and drain packets that have

reached their destination. The local balancing approach has been applied to achieve

near-optimal throughput for multicast, anycast, and broadcast problems on dynamic

networks as well as for mobile ad hoc networks [21, 24, 77].

Modeling general dynamic networks has gained renewed attention with the recent

advent of heterogeneous networks composed out of ad hoc, and mobile devices. To ad-

dress the unpredictable and often unknown nature of network dynamics, [89] introduce

a model in which the communication graph can change completely from one round to

another, with the only constraint being that the network is connected at each round.

The model of [89] allows for a much stronger adversary than the ones considered in past

work on general dynamic networks [22, 21, 24]. In addition to results on the k-gossip

problem that we have discussed earlier, [89] consider the related problem of counting,

and generalize their results to the T -interval connectivity model, which includes an

additional constraint that any interval of T rounds has a stable connected spanning

subgraph. The survey of [90] summarizes recent work on dynamic networks.

We note that the model of [89], as well as ours, allow only edge changes from

round to round while the nodes remain fixed. Recently, the work of [18] introduced a

dynamic network model (motivated by P2P networks) where both nodes and edges can

change by a large amount (up to a linear fraction of the network size). They show that

stable amost-everywhere agreement can be efficiently solved in such networks even in

adversarial dynamic settings.
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Recent work of [72, 73] presents information spreading algorithms based on network

coding [10]. As mentioned earlier, one of their important results is that the k-gossip

problem on the adversarial model of [89] can be solved using network coding in O(n+k)

rounds assuming the token sizes are sufficiently large (Ω(n log n) bits). For further

references to using network coding for gossip and related problems, we refer to the

recent works of [72, 73, 19, 42, 53, 106] and the references therein.

Our offline approximation algorithm makes use of results on the Steiner tree packing

problem for directed graphs [48]. This problem is closely related to the directed Steiner

tree problem (a major open problem in approximation algorithms) [46, 130] and the

gap between network coding and flow-based solutions for multicast in arbitrary directed

networks [9, 118].

Finally, we note that there are also a number of studies that solve k-gossip and

related problems using gossip-based processes. In a local gossip-based algorithm, each

node exchanges information with a small number of randomly chosen neighbors in each

round. Gossip-based processes have recently received significant attention because of

their simplicity of implementation, scalability to large network size, and their use in

aggregate computations, e.g., [34, 54, 82, 47, 80, 106, 43] and the references therein. All

these studies assume an underlying static communication network, and do not apply

directly to the models considered in this paper. A related recent work on dynamic

networks is [20] which analyzes the cover time of random walks on dynamic networks.

3.3 Lower bound for online token-forwarding algorithms

In this section, we give an Ω(kn/ log n) lower bound on the number of rounds needed

by any online token-forwarding algorithm for the k-gossip problem against a strong

adversary. As discussed earlier, this immediately implies the same lower bound for

any deterministic online token-forwarding algorithm. Our lower bound applies to even

centralized algorithms and a large class of initial token distributions. We first describe

the adversary strategy.

Adversary: The strategy of the adversary is simple. We use the notion of free edge

introduced in [89]. In a given round r, we call an edge (u, v) to be a free edge if at the

start of round r, u has the token that v broadcasts in the round and v has the token that
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u broadcasts in the round1; an edge that is not free is called non-free. Thus, if (u, v) is

a free edge in a particular round, neither u nor v can gain any new token through this

edge in the round. Since we are considering a strong adversary model, at the start of

each round, the adversary knows for each node v, the token (if any) that v will broadcast

in that round. In round r, the adversary constructs the communication graph Gr as

follows. First, the adversary adds all the free edges to Gr. Let C1, C2, . . . , Cl denote the

connected components thus formed. The adversary then guarantees the connectivity of

the graph by selecting an arbitrary node in each connected component and connecting

them in a line. Figure 3.1 illustrates the construction.

The network Gr thus constructed has exactly l − 1 non-free edges, where l is the

number of connected components formed by the free edges of Gr. If (u, v) is a non-free

edge in Gr, then u, v, or both will gain at most new token through this edge. We refer

to such a token exchange on a non-free edge as a useful token exchange.

We bound the running-time of any token-forwarding algorithm by identifying a

critical structure that quantifies the progress made in each round. We say that a

sequence of nodes v1, v2, . . . , vk is half-empty in round r with respect to a sequence

of tokens t1, t2, . . . , tk if the following condition holds at the start of round r: for all

1 ≤ i, j ≤ k, i 6= j, either vi is missing tj or vj is missing ti. We then say that

〈vi〉 is half-empty with respect to 〈ti〉 and refer to the pair (〈vi〉, 〈ti〉) as a half-empty

configuration of size k.

Lemma 16. If m useful token exchanges occur in round r, then there exists a half-
empty configuration of size at least m/2 + 1 at the start of round r.

Proof. Consider the network Gr in round r. Each non-free edge can contribute at
most 2 useful token exchanges. Thus, there are at least m/2 non-free edges in the
communication graph. Based on the adversary we consider, no useful token exchange
takes place within the connected components induced by the free edges. Useful token
exchanges can only happen over the non-free edges between connected components.
This implies there are at least m/2 + 1 connected components in the subgraph of
Gr induced by the free edges. Let vi denote an arbitrary node in the ith connected
component in this subgraph, and let ti be the token broadcast by vi in round r. For

1For convenience, when a node does not broadcast any token we will view it as broadcasting a

special empty token that every node has. This allows us to avoid treating the empty broadcast as a

special case.
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Figure 3.1: The network constructed by the adversary in a particular round. Note that
if node vi broadcasts token ti, then the 〈vi〉 forms a half-empty configuration with respect
to 〈ti〉 at the start of this round.

i 6= j, since vi and vj are in different connected components, (vi, vj) is a non-free edge
in round r; hence, at the start of round r, either vi is missing tj or vj is missing ti.
Thus, the sequence 〈vi〉 of nodes of size at least m/2 + 1 is half-empty with respect to
the sequence 〈ti〉 at the start of round r.

An important point to note about the definition of a half-empty configuration is

that it only depends on the token distribution; it is independent of the broadcast in

any round. This allows us to prove the following easy lemma.

Lemma 17. If a sequence 〈vi〉 of nodes is half-empty with respect to 〈ti〉 at the start
of round r, then 〈vi〉 is half-empty with respect to 〈ti〉 at the start of round r′ for any
r′ ≤ r.

Proof. The lemma follows immediately from the fact that if a node vi is missing a
token tj at the start of round r, then vi is missing token tj at the start of every round
r′ < r.

Lemmas 16 and 17 suggest that if we can identify a token distribution in which all

half-empty configuration are small, we can guarantee small progress in each round. We

now show that there are many token distributions with this property, thus yielding the

desired lower bound.

Theorem 18. From an initial token distribution in which each node has each token
independently with probability 3/4, any online token-forwarding algorithm will need
Ω(kn/ log n) rounds to complete with high probability against a strong adversary.

43



3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

Proof. We first note that if the number of tokens k is less than 100 log n, then the
Ω(kn/ log n) lower bound is trivially true because even to disseminate one token it will
take Ω(n) rounds in the worst-case. Thus, in the following proof, we focus on the case
where k ≥ 100 log n.

Let El denote the event that there exists a half-empty configuration of size l at
the start of the first round. For El to hold, we need l nodes v1, v2, . . . , vl and l tokens
t1, t2, . . . , tl such that for all i 6= j either vi is missing tj or vj is missing ti. For a pair
of nodes u and v, by union bound, the probability that u is missing tv or v is missing
tu is at most 1/4 + 1/4 = 1/2. Thus, the probability of El can be bounded as follows.

Pr [El] ≤
(
n

l

)
· k!

(k − l)!
·
(

1
2

)(l2)
≤ nl · kl 1

2l(l−1)/2
≤ 22l logn

2l(l−1)/2
.

In the above inequality,
(
n
l

)
is the number of ways of choosing the l nodes that form

the half-empty configuration, k!/(k − l)! is the number of ways of assigning l distinct
tokens, and (1/2)(

l
2) is the upper bound on the probability for each pair i 6= j that

either vi is missing tj or vj is missing ti. For l = 5 log n, Pr [El] ≤ 1/n2. Thus, the
largest half-empty configuration at the start of the first round, and hence at the start of
any round, is of size at most 5 log n with probability at least 1− 1/n2. By Lemma 16,
we thus obtain that the number of useful token exchanges in each round is at most
10 log n, with probability at least 1− 1/n2.

Let Mi be the number of tokens that node i is missing in the initial distribution.
Then Mi is a binomial random variable with E [Mi] = k/4. By a straightforward
Chernoff bound, we have the probability that node i misses less than k/8 tokens is

Pr
[
Mi ≤

k

8

]
= Pr

[
Mi ≤

(
1− 1

2

)
· E [Mi]

]
≤ e−

E[Mi]( 1
2)2

2 = e−
k
32 .

Therefore, the total number of tokens missing in the initial distribution is at least
n · k/8 = Ω(kn) with probability at least 1 − n/e

k
32 ≥ 1 − 1/n2 (k ≥ 100 log n). Since

the number of useful tokens exchanged in each round is at most 10 log n, the number
of rounds needed to complete k-gossip is Ω(kn/ log n) with high probability.

Theorem 18 does not apply to certain natural initial distributions, such as one in

which each token resides at exactly one node. While this class of token distributions

has far fewer tokens distributed initially, the argument of Theorem 18 does not rule out

the possibility that an algorithm, when starting from a distribution in this class, avoids

the problematic configurations that arise in the proof. In the following, Theorem 20

extends the lower bound to this class of distributions.
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3.3 Lower bound for online token-forwarding algorithms

Lemma 19. From any distribution in which each token starts at exactly one node and
no node has more than one token, any online token-forwarding algorithm for k-gossip
needs Ω(kn/ log n) rounds against a strong adversary.

Proof. We consider an initial distribution C where each token is at exactly one node,
and no node has more than one token. Let C∗ be an initial token distribution from
which any online algorithm needs Ω(kn/ log n) rounds. The existence of C∗ follows
from Theorem 18. We construct a bipartite graph on two copies of V , V1 and V2. A
node v ∈ V1 is connected to a node u ∈ V2 if in C∗ u has all the tokens that v has in
C. We will show below that this bipartite graph has a perfect matching with positive
probability.

Given a perfect matching M , we can complete the proof as follows. For v ∈ V2, let
M(v) denote the node in V1 that got matched to v. If there is an algorithm A that
runs in T rounds from starting state C, then we can construct an algorithm A∗ that
runs in the same number of rounds from starting state C∗ as follows. First every node
v deletes all its tokens except for those which M(v) has in C. Then algorithm A∗ runs
exactly as A. Thus, the lower bound of Theorem 18, which applies to A∗, also applies
to A.

It remains to prove that the above bipartite graph has a perfect matching. This
follows from an application of Hall’s Theorem. Consider a set of m nodes in V2. We
want to show their neighborhood in the bipartite graph is of size at least m. We
show this condition holds by the following 2 cases. If m < 3n/5, let Xi denote the
neighborhood size of node i. We know E [Xi] ≥ 3n/4. Then by Chernoff bound

Pr [Xi < m] ≤ Pr [Xi < 3n/5] ≤ e−
(1/5)2E[Xi]

2 = e−
3n
200

By union bound with probability at least 1−n ·e−3n/200 the neighborhood size of every
node is at least m. Therefore, the condition holds in the first case. If m ≥ 3n/5,
we argue the neighborhood size of any set of m nodes is V1 with high probability.
Consider a set of m nodes, the probability that a given token t is missing in all these
m nodes is (1/4)m. Thus the probability that any token is missing in all these nodes is
at most n(1/4)m ≤ n(1/4)3n/5. There are at most 2n such sets. By union bound, with
probability at least 1− 2n · n(1/4)3n/5 = 1− n/2n/5, the condition holds in the second
case.

Theorem 20. From any distribution in which each token starts at exactly one node,
any online token-forwarding algorithm for k-gossip needs Ω(kn/ log n) rounds against
a strong adversary.
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Proof. In this theorem, we extend our proof in Lemma 19 to the inital distibution C

where each token starts at exactly one node, but nodes may have multiple tokens. We
prove this theorem by the following two cases.

First case, when at least n/2 nodes start with some token. This implies that k ≥
n/2. Focus on the n/2 nodes with tokens. Each of them has at least one unique token.
By the same argument used in Lemma 19, disseminating these n/2 distinct tokens to
n nodes takes Ω(n2/ log n) rounds. Thus, in this case the number of rounds needed is
Ω(kn/ log n).

Second case, when less than n/2 nodes start with some token. In this case, the
adversary can group these nodes together, and treat them as one super node. There is
only one edge connecting this super node to the rest of the nodes. Thus, the number
of useful token exchange provided by this super node is at most one in each round. If
there exsits an algorithm that can disseminate k tokens in o(kn/ log n) rounds, then
the contribution by the super node is o(kn/ log n). And by the same argument used in
Lemma 19 we know dissemination k tokens to n/2 nodes (those start with no tokens)
takes Ω(kn/ log n) rounds. Thus, the theorem also holds in this case.

3.4 Subquadratic time offline token-forwarding algorithms

In this section, we give two centralized algorithms for the k-gossip problem in the offline

model. We present an O(min{n
√
k log n, nk}) round algorithm in Section 3.4.1. Then

we present a bicriteria (O(nε), log n)-approximation algorithm in Section 3.4.2, which

means if L is the number of rounds needed by an optimal algorithm where one token is

broadcast by every node per round, then our approximation algorithm will complete in

O(nεL) rounds and the number of tokens broadcast by any node is O(log n) in any given

round. Both of these algorithms uses a directed capacitated leveled graph constructed

from the sequence of communication graphs which we call the evolution graph.

Evolution graph: Let V be the set of nodes. Consider a dynamic network of l rounds

numbered 1 through l and letGi be the communication graph for round i. The evolution

graph for this network is a directed capacitated graph G with 2l+ 1 levels constructed

as follows. We create 2l + 1 copies of V and call them V0, V2, . . . , V2l. Vi is the set of

nodes at level i and for each node v in V , we call its copy in Vi as vi. For i = 1, . . . , l,

level 2i − 1 corresponds to the beginning of round i and level 2i corresponds to the

end of round i. Level 0 corresponds to the network at the start. Note that the end of

46



3.4 Subquadratic time offline token-forwarding algorithms

a particular round and the start of the next round are represented by different levels.

There are three kinds of edges in the graph. First, for every round i and every edge

(u, v) ∈ Gi, we place two directed edges with unit capacity each, one from u2i−1 to

v2i and another from v2i−1 to u2i. We call these edges broadcast edges as they will

correspond to broadcasting of tokens; the unit capacity on each such edge will ensure

that only one token can be sent from a node to a neighbor in one round. Second, for

every node v in V and every round i, we place an edge with infinite capacity from

v2(i−1) to v2i. We call these edges buffer edges as they ensure tokens can be stored at a

node from the end of one round to the end of the next. Finally, for every node v ∈ V
and every round i, we also place an edge with unit capacity from v2(i−1) to v2i−1. We

call these edges as selection edges as they correspond to every node selecting a token

out of those it has to broadcast in round i; the unit capacity ensures that in a given

round a node must send the same token to all its neighbors. Figure 3.2 illustrates our

construction, and Lemma 21 explains its usefulness.

Figure 3.2: An example of how to construct the evolution graph from a sequence of
communication graphs.

Lemma 21. Let there be k tokens, each with a source node where it is present in the
beginning and a set of destination nodes to whom we want to send it. It is feasible
to send all the tokens to all of their destination nodes in a dynamic network using l

rounds, where in each round a node can broadcast only one token to all its neighbors, if
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and only if k directed Steiner trees can be packed in the corresponding evolution graph
with 2l+1 levels respecting the edge capacities, one for each token with its root being the
copy of the source node at level 0 and its terminals being the copies of the destination
nodes at level 2l.

Proof. Assume that k tokens can be sent to all of their destinations in l rounds and fix
one broadcast schedule that achieves this. We will construct k directed Steiner trees
as required by the lemma based on how the tokens reach their destinations and then
argue that they all can be packed in the evolution graph respecting the edge capacities.
For a token i, we construct a Steiner tree T i as follows. For each level j ∈ {0, . . . , 2l},
we define a set Sij of nodes at level j inductively starting from level 2l backwards. Si2l
is simply the copies of the destination nodes for token i at level 2l. Once Si2(j+1) is
defined, we define Si2j (respectively Si2j+1) as: for each v2(j+1) ∈ Si2(j+1), include v2j
(respectively nothing) if token i has reached node v after round j, or include a node u2j

(respectively u2j+1) such that u has token i at the end of round j which it broadcasts
in round j + 1 and (u, v) is an edge of Gj+1. Such a node u can always be found
because whenever v2j is included in Si2j , node v has token i by the end of round j

which can be proved by backward induction staring from j = l. It is easy to see that
Si0 simply consists of the copy of the source node of token i at level 0. T i is constructed
on the nodes in ∪j=2l

j=0 S
i
j . If for a vertex v, v2(j+1) ∈ Si2(j+1) and v2j ∈ Si2j , we add

the buffer edge (v2j , v2(j+1)) in T i. Otherwise, if v2(j+1) ∈ Si2(j+1) but v2j /∈ Si2j , we
add the selection edge (u2j , u2j+1) and broadcast edge (u2j+1, v2(j+1)) in T i, where u
was the node chosen as described above. It is straightforward to see that these edges
form a directed Steiner tree for token i as required by the lemma which can be packed
in the evolution graph. The argument is completed by noting that any unit capacity
edge cannot be included in two different Steiner trees as we started with a broadcast
schedule where each node broadcasts a single token to all its neighbors in one round,
and thus all the k Steiner trees can be simultaneously packed in the evolution graph
respecting the edge capacities.

Next assume that k Steiner trees as in the lemma can be packed in the evolution
graph respecting the edge capacities. We construct a broadcast schedule for each token
from its Steiner tree in the natural way: whenever the Steiner tree Ti corresponding
to token i uses a broadcast edge (u2j−1, v2j) for some j, we let the node u broadcast
token i in round j. We need to show that this is a feasible broadcast schedule. First we
observe that two different Steiner trees cannot use two broadcast edges starting from
the same node because every selection edge has unit capacity, thus there are no conflicts
in the schedule and each node is asked to broadcast at most one token in each round.
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Next we claim by induction that if node v2j is in T i, then node v has token i by the
end of round j. For j = 0, it is trivial since only the copy of the source node for token
i can be included in T i from level 0. For j > 0, if v2j is in T i, we must reach there by
following the buffer edge (v2(j−1), v2j) or a broadcast edge (u2j−1, v2j). In the former
case, by induction node v has token i after round j− 1 itself. In the latter case, node u
which had token i after round j− 1 by induction was the neighbor of node v in Gj and
u broadcast token i in round j, thus implying node v has token i after round j. From
the above claim, we conclude that whenever a node is asked to broadcast a token in
round j, it has the token by the end of round j − 1. Thus the schedule we constructed
is a feasible broadcast schedule. Since the copies of all the destination nodes of a token
at level 2l are the terminals of its Steiner tree, we conclude all the tokens reach all of
their destination nodes after round l.

3.4.1 An O(min{n
√

k log n, nk}) round algorithm

Our algorithm is given in Algorithm 1 and analyzed in Lemma 22 and 23.

Lemma 22. Let there be k ≤ n tokens at given source nodes and let v be an arbitrary
node. Then, all the tokens can be sent to v using broadcasts in O(n) rounds.

Proof. By lemma 21, we will be done in n + k rounds if we can show that k paths,
one from every source vertex at level 0 to v2(n+k), can be packed in the corresponding
evolution graph with 2(n + k) + 1 levels respecting the edge capacities. For this, we
consider the evolution graph and add to it a special vertex v−1 at level −1 and connect
it to every source at level 0 by an edge of capacity 1. (Multiple edges get fused with
corresponding increase in capacity if multiple tokens have the same source.) We claim
that the value of the min-cut between v−1 and v2(n+k) is at least k. Before proving this,
we complete the proof of the claim assuming this. By the max flow min cut theorem,
the max flow between v−1 and v2(n+k) is at least k. Since we connected v−1 with each
of the k token sources at level 0 by a unit capacity edge, it follows that unit flow can be
routed from each of these sources at level 0 to v2(n+k) respecting the edge capacities.
It is easy to see that this implies we can pack k paths, one from every source vertex at
level 0 to v2(n+k), respecting the edge capacities.

To prove our claimed bound on the min cut, consider any cut of the evolution graph
separating v−1 from v2(n+k) and let S be the set of the cut containing v−1. If S includes
no vertex from level 0, we are immediately done. Otherwise, observe that if v2j ∈ S for
some 0 ≤ j < (n+ k) and v2(j+1) /∈ S, then the value of the cut is infinite as it cuts the
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Figure 3.3: An example of building directed Steiner tree in the evolution graph G based
on token dissemination process. Token t starts from node B. Thus, the Steiner tree is
rooted at B0 in G. Since B0 has token t, we include the infinite capacity buffer edge
(B0, B2). In the first round, node B broadcasts token t, and hence we include the selection
edge (B0, B1). Nodes A and C receive token t from B in the first round, so we include
edges (B1, A2), (B1, C2). Now A2, B2, and C2 all have token t. Therefore we include the
edges (A2, A4), (B2, B4), and (C2, C4). In the second round, all of A, B, and C broadcast
token t, we include edges (A2, A3), (B2, B3), (C2, C3). Nodes D and E receive token t from
C. So we include edges (C3, D4) and (C3, E4). Notice that nodes A and B also receive
token t from C, but they already have token t. Thus, we don’t include edges (C3, B4) or
(C3, A4).

buffer edge of infinite capacity out of v2j . Thus we may assume that if v2j ∈ S, then
v2(j+1) ∈ S. Also observe that since each of the communication graphs G1, . . . , Gn+k

are connected, if the number of vertices in S from level 2(j + 1) is no more than the
number of vertices from level 2j and not all vertices from level 2(j+ 1) are in S, we get
at least a contribution of 1 in the value of the cut. But since the total number of nodes
is n and v2(n+k) /∈ S, there must be at least k such levels, which proves the claim.

Theorem 23. Algorithm 1 solves the k-gossip problem using O(min{n
√
k log n, nk})

rounds with high probability in the offline model.

Proof. It is trivial to see that if k ≤
√

log n, then the algorithm will end in nk rounds
and each node receives all the k tokens. Assume k >

√
log n. By Lemma 22, all the
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Algorithm 1 O(min{n
√
k log n, nk}) round algorithm in the offline model

Require: A sequence of communication graphs Gi, i = 1, 2, . . .
Ensure: Schedule to disseminate k tokens.

1: if k ≤
√

log n then
2: for each token t do
3: For the next n rounds, let every node who has token t broadcast the token.
4: end for
5: else
6: Choose a set S of 2

√
k log n random nodes.

7: for each vertex in v ∈ S do
8: Send each of the k tokens to vertex v in O(n) rounds.
9: end for

10: for each token t do
11: For the next 2n

√
(log n)/k rounds, let every node who has token t broadcast

the token.
12: end for
13: end if

tokens can be sent to all the nodes in S using O(n
√
k log n) rounds. Now fix a node v

and a token t. Since token t is broadcast for 2n
√

(log n)/k rounds, there is a set Stv of
at least 2n

√
(log n)/k nodes from which v is reachable within those rounds. It is clear

that if S intersects Stv, v will receive token t. Since the set S was picked uniformly at
random, the probability that S does not intersect Stv is at most

(n−2n
√

(logn)/k

2
√
k logn

)(
n

2
√
k logn

) <

(
n− 2n

√
(log n)/k
n

)2
√
k logn

≤ 1
n4
.

Thus every node receives every token with probability 1 − 1/n3. It is also clear that
the algorithm finishes in O(n

√
k log n) rounds.

Algorithm 1 can be derandomized using the standard technique of conditional

expectations, shown in Algorithm 2. Given a sequence of communication graphs,

if node u broadcasts token t for ∆ rounds and every node that receives token t

also broadcasts t during that period, then we say node v is within ∆ broadcast dis-

tance to u if and only if v receives token t by the end of round ∆. Let S be a set

of nodes, and |S| ≤ 2
√
k log n. We use Pr [u;S]T to denote the probability that
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the broadcast distance from node u to set X is greater than 2n
√

(log n)/k, where

X = S ∪
{

pick 2
√
k log n− |S| nodes uniformly at random from V \ T

}
, and P (S, T )

denotes the sum, over all u in V , of Pr [u;S]T .

Algorithm 2 Derandomized algorithm for Step 6 in Algorithm 1

Require: A sequence of communication graphs Gi, i = 1, 2, . . ., and k ≥
√

log n
Ensure: A set of 2

√
k log n nodes S such that the broadcast distance from every node

u to S is within 2n
√

(log n)/k.

1: Set S and T be ∅.
2: for each v ∈ V do
3: T = T ∪ {v}
4: if P (S ∪ {v}, T ) ≤ P (S, T ) then
5: S = S ∪ {v}
6: end if
7: end for
8: return S

Lemma 24. The set S returned by Algorithm 2 contains at most 2
√
k log n nodes, and

the broadcast distance from every node to S is at most 2n
√

(log n)/k.

Proof. Let us view the process of randomly selecting 2
√
k log n nodes as a computation

tree. This tree is a complete binary tree of height n. There are n + 1 nodes on any
root-leaf path. The level of a node is its distance from the root. The computation
starts from the root. Each node at the ith level is labeled by bi ∈ {0, 1}, where 0 means
not including node i in the final set and 1 means including node i in the set. Thus,
each root-leaf path, b1b2 . . . bn, corresponds to a selection of nodes. For a node a in the
tree, let Sa (resp., Ta) denote the sets of nodes that are included (resp., lie) in the path
from root to a.

By Theorem 23, we know that for the root node r, we have P (∅, Sr) = P (∅, ∅) ≤
1/n3. If c and d are the children of a, then Tc = Td, and there exists a real 0 ≤ p ≤ 1 such
that for each u in V , Pr [u;Sa]Ta equals pPr [u;Sc]Tc + (1− p) Pr [u;Sd]Td. Therefore,
P (Sa, Ta) equals pP (Sc, Tc)+(1−p)P (Sd, Td). We thus obtain that min{P (Sc, Tc), P (Sd, Td)} ≤
P (Sa, Ta). Since we set S to be X in {Sc, Sd} that minimizes P (X,Tc), we maintain
the invariant that P (S, T ) ≤ 1/n3. In particular, when the algorithm reaches a leaf
l, we know P (Sl, V ) ≤ 1/n3. But a leaf l corresponds to a complete node selection,
so that Pr [u;Sl]V is 0 or 1 for all u, and hence P (Sl, V ) is an integer. We thus have
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P (Sl, V ) = 0, implying that the broadcast distance from node u to set Sl is at most
2n
√

(log n)/k for every l. Furthermore, |Sl| is 2k
√

log n by construction.

Finally, note that Step 4 of Algorithm 2 can be implemented in polynomial time,
since for each u in V , Pr [u;S]T is simply the ratio of two binomial coefficients with
a polynomial number of bits. Thus, Algorithm 2 is a polynomial time algorithm with
the desired property.

3.4.2 An (O(nε), log n)-approximation algorithm

Here we introduce an (O(nε), log n)-approximation algorithm for the k-gossip problem

in the offline model. This means, if the k-gossip problem can be solved on any n-node

dynamic network in L rounds, then our algorithm will solve the k-gossip problem on

any dynamic network in O(nεL) rounds, assuming each node is allowed to broadcast

O(log n) tokens, instead of one, in each round. Our algorithm is an LP based one, which

makes use of the evolution graph defined earlier. The following is a straightforward

corollary of Lemma 21.

Corollary 25. The k-gossip problem can be solved in l rounds if k directed Steiner
trees can be packed in the corresponding evolution graph, where for each token, the root
of its Steiner tree is a source node at level 0, and the terminals are all the nodes at
level 2l.

Packing Steiner trees in general directed graphs is NP-hard to approximate even

within Ω(m1/3−ε) for any ε > 0 [48], where m is the number of edges in the graph.

Thus, our algorithm focuses on solving Steiner tree packing problem with relaxation on

edge capacities, allowing the capacity to blow up by a factor of O(log n). First, we write

down the LP for the Steiner tree packing problem (maximizing the number of Steiner

trees packed with respect to edge capacities). Let T be the set of all possible Steiner

trees, and ce be the capacity of edge e. For each Steiner tree T ∈ T, we associate a

variable xT with it. If xT = 1, then Steiner tree T is in the optimal solution; if xT = 0,

it’s not. After relaxing the integral constraints on xT ’s, we have the following LP,

referred to as P henceforth. Let F (P) denote the optimal fractional solution for P.

max
∑

T∈T xT
s.t.

∑
T :e∈T xT ≤ ce ∀e ∈ E

xT ≥ 0 ∀T ∈ T
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Lemma 26 ([48]). There is an O(nε)-approximation algorithm for the fractional max-
imum Steiner tree packing problem in directed graphs.

Let L be the number of rounds that an optimal algorithm uses with every node

broadcasting at most one token per round. We give an algorithm that takes O(nεL)

rounds with every node broadcasting O(log n) tokens per round. Thus ours is an

(O(nε), O(log n)) bicriteria approximation algorithm, shown in Algorithm 3.

Algorithm 3 (O(nε), O(log n))-approximation algorithm

Require: A sequence of communication graphs G1, G2, . . .

Ensure: Schedule to disseminate k tokens.

1: Initialize the set of Steiner trees S = ∅.
2: for i = 1→ 2nε do
3: Find L∗ such that with the evolution graph G constructed from level 0 to level

2L∗, the approximate value for F (P) is k/nε. In this step, we use the algorithm
of [48] to approximate F (P).

4: Let x∗T be the value of the variable xT in the solution from step 3. The number
of non-zero x∗T ’s is polynomial with respect to k. Using randomized rounding,
with probability x∗T include T in the solution, S = S ∪ {T}. Otherwise, don’t
include T .

5: Remove communication graphs G1, G2, . . . , GL∗ from the sequence, and reduce
the remaining graphs’ indices by L∗.

6: end for
7: Use Corollary 25 to convert the set of Steiner trees S into a token dissemination

schedule.

Theorem 27. Algorithm 3 achieves an O(nε) approximation to the k-gossip problem
while broadcasting O(log n) tokens per round per node, with high probability.

Proof. We show the following three claims: (i) In Step 7, |S| ≥ k with probability at
least 1− 1/ek/4. This is the correctness of Algorithm 3, saying it can find the schedule
to disseminate all k tokens. (ii) The number of rounds in the schedule produced by
Algorithm 3 is at most O(nε) times the optimal one. (iii) In the token dissemination
schedule, the number of tokens sent over an edge is O(log n) in any round with high
probability.

First, we prove claim (i). Let Xi denote the sum of non-zero x∗T ’s in iteration i.
X =

∑2nε

i=1Xi. We know E [Xi] = k/nε. Thus, E [X] = 2nεk/nε = 2k, which is the
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expected number of Steiner trees in set S. By Chernoff bound, we have

Pr [X ≤ k] = Pr
[
X ≤

(
1− 1

2

)
E [X]

]
≤ e−

(1/2)2E[X]
2 = e−

(1/2)2·2k
2 =

1
ek/4

Thus, |S| ≥ k with probability at least 1− 1/ek/4 in Step 7.
Next we prove claim (ii). Let L denote the number of rounds needed by an optimal

algorithm. Since in Step 3 we used the O(nε)-approximation algorithm in [48] to solve
F (P), we know L∗ ≤ L. There are 2nε iterations. Thus, the number of rounds needed
by Algorithm 3 is at most 2nεL∗ ≤ 2nεL, which is an O(nε)-approximation on the
number of rounds.

Lastly we prove claim (iii). When Algorithm 3 does randomized rounding in Step 4,
some constraint

∑
T :e∈T xT ≤ ce in P may be violated. In the evolution graph, ce = 1.

Let Y denote the sum of x∗T ’s in this constraint. We have E [Y ] ≤ ce = 1. By Chernoff
bound,

Pr [Y ≥ E [Y ] + log n] = Pr
[
Y ≥

(
1 +

log n
E [Y ]

)
E [Y ]

]
≤ e

−E[Y ]
h“

1+ logn
E[Y ]

”
ln
“
1+ logn

E[Y ]

”
− logn

E[Y ]

i
≤ 1
nlog logn

Thus, the number of tokens sent over a given edge is O(log n) with probability at least
1 − 1/nlog logn. Since there are only polynomial number of edges, no edge will carry
more than O(log n) tokens in a single round with high probability.

3.5 Conclusion and open questions

In this paper, we studied the power of token-forwarding algorithms for gossip in dy-

namic networks. We showed a lower bound of Ω(nk/ log n) rounds for any online token

forwarding algorithm against a strong adversary; our bound matches the known upper

bound of O(nk) up to a logarithmic factor. We note that our lower bound also ex-

tends to randomized algorithms if the adversary is allowed to be adaptive; that is, the

adversary is allowed to make its decision in each step with knowledge of the random

coin tosses made by the algorithm in that step (but without knowledge of the random-

ness used in future steps). This leaves us with an important open question: what is the

complexity of randomized online token-forwarding algorithms against a weak adversary

that is unaware of the randomness used by the algorithm in each round? Furthermore,
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for small token sizes (e.g., O(log n) bits) even the best (randomized) online algorithm

we know based on network coding takes O(nk/ log n) rounds [73]. In contrast, we show

that in the offline setting there exist centralized token-forwarding algorithms that run

in O(n1.5
√

log n) time. An interesting open problem is to obtain tight bounds on offline

token-forwarding algorithms.
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Chapter 4

Controlling negative diffusion

In Chapter 2 and Chapter 3, we have studied how to enable positive diffusion under

both organic and adversarial dynamics. In this chapter, we switch gear to controlling

negative diffusion.

Over the recent decades, there has been an explosive growth in the use of personal

digital devices of various kinds. This has, unfortunately, been accompanied by signif-

icant increase in worm attacks. While, effective anti-virus software and patches are

readily available, the average user is very independent and does not often loading these

latest patches due to software cost and other efforts involved. Also if enough other

nodes in the network are secured, the likelihood of a specific device getting infected

would go down, leading to a natural game theoretic scenario. Aspnes et al [15] intro-

duced an innovative game for modeling the containment of the spread of viruses and

worms (security breaches) in a network. In this model, nodes choose to install anti-

virus software or not on an individual basis while the viruses or worms start from a

node chosen uniformly at random and spread along paths consisting of insecure nodes.

They showed the surprising result that a pure Nash Equilibrium always exists when all

nodes have identical installation costs and identical infection costs.

In this chapter we present a substantial generalization of the model of [15] that

allows for arbitrary security and infection costs, and arbitrary distributions for the

starting point of the attack. More significantly, our model GNS(d) incorporates a

network locality parameter d which represents a hop-limit on the spread of infection

as accounted for in the strategic decisions, due to either the intrinsic nature of the

infection or the extent of neighborhood information that is available to a node.
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We determine that the network locality parameter plays a key role in the existence

of pure Nash equilibria (NE): local (d = 1) and global games (d = ∞) have pure NE,

while for GNS(d) games with 1 < d < ∞, pure NE may not exist, and in fact, it

is NP-complete to determine whether a given instance has a pure NE. For local and

global games, we also characterize the price of anarchy in terms of the maximum degree

and vertex expansion of the contact network; these suggest natural heuristics to aid a

network planner in enforcing efficient equilibria.

We design a general LP-based framework for approximating the NP-complete prob-

lem of finding a socially optimal configuration in our game. Our framework yields a

2d-approximation for general GNS(d) games, and an O(log n)-approximation for the

global model where n is the number of network nodes; the latter result improves on

the approximation bound of O(log1.5 n) of [15] achieved for a special case of our global

model.

We study the characteristics of NE and the quality of our approximations empiri-

cally in two distinct classes of graphs: random geometric graphs and power law graphs.

We find that in local and global games on these real-world networks, best response

dynamics converge in linear or sub-linear time and have costs comparable to the social

optimum. Finally, we study the performance of our approximation algorithms, and

find that the approximation guarantees with respect to social cost are much better in

practice than our theoretical bounds.

4.1 Related Work

Non-cooperative game theory has been used in analyzing a number of problems in

traffic and communication networks, e.g., routing [117], topology control and network

formation [59, 107] and security [71, 112]. The basic questions of interest have usually

been about the existence and the structure of Nash equilibria and the price of anarchy,

which is the worst case cost of a Nash equilibrium to the social optimum, as defined

formally later. See [111] for a good introduction on the use of game theoretic techniques

for networking applications.

Several formulations have been proposed for analyzing network security problems

and the spread of epidemics in networks [15, 16, 35, 67, 71, 94, 126]. This thesis

directly builds on the formulation of Aspnes et al. [15], who model the risk of infection
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for an insecure node v as the probability that the initial infection, which is assumed

to originate at a node chosen uniformly at random, starts in the same component as v

in the subgraph induced by v and the other insecure nodes. They show the surprising

result that pure Nash equilibria always exist in such games. They also establish a high

price of anarchy and give an O(log1.5 n) approximation algorithm for computing the

social optimum, where n is the number of nodes in the network. Their approximation

algorithm uses an O(
√

log n)-approximation for the sparsest cut problem [14], which is

based on a semidefinite programming relaxation of the problem. In this thesis, we are

able to give a much simpler LP-based approximation algorithm using the vertex multi-

cut problem, which improves the approximation ratio to O(log n) and also applies to

a more general model. Another direction of work is based on SIS models for the worm

spread, e.g., the n-intertwined model [112]. In this model, nodes are in two states -

susceptible or infected. Each infected node spreads the infection to its neighbors with

some probability. Another closely related class of models is that of Interdependent

Security games (IDS) [81], which is similar to our model for the special case of d = 1.

One crucial technical difference between the two models, which leads to two different

games, is the assumption about the initial infection: in IDS, it is assumed to originate

independently at different nodes, while in our GNS(1) model, we assume an initial

location is selected according to a given probability distribution.

Our formulation of generalized network security games is largely motivated by mech-

anisms to protect communication networks. Some of our model and results, especially

the lower bound results, however, also apply equally well to the spread of diseases and

the protection of communities through vaccinations. The pure Nash equilibria corre-

spond to stable points in the space of vaccination decisions made by individuals, and our

approximation algorithms yield public policies for vaccination that well-approximate

the social welfare. There is considerable work in epidemiology, both from a game-

theoretic perspective, as well as on the analysis of disease spreads through SIR and SIS

models [32, 31, 85, 30, 33]. The game-theoretic models adopted in these studies, how-

ever, do not consider the impact of the underlying contact network. Furthermore, there

is little work on quantifying the effect of locality (in disease spread or in information

availability).
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4.2 Model and Definitions

In this section, we present our game-theoretic model for network security.

Contact Graph. Let V denote the set of users/devices (henceforth, referred to as

nodes), each of which is assumed to be an autonomous player. Let G denote the

underlying contact graph over the node set V ; an edge (u, v) ∈ G indicates that nodes

u and v are directly connected, so that if node u is infected by a worm it can potentially

spread to node v. Let N(v) denote the set of neighbors of v in G. We will frequently

work with certain subgraphs of G, for which we introduce the following notation. For

any undirected graph H and subset S of vertices of H, we let H[S] denote the subgraph

of H induced by the vertices in S.

Strategies. The strategy for each node v is the decision of whether to install an anti-

virus software or not; we use a variable av ∈ [0, 1] to denote the probability of securing

the device. In this paper, we focus on pure strategies, i.e., av ∈ {0, 1}. Let ~a denote

the strategy vector of all nodes. Following [15], the attack graph, G~a, is the subgraph of

the contact graph induced by the set of insecure nodes according to ~a. For notational

convenience, let ~a[v/x] be the strategy vector obtained by replacing av by x in the

vector ~a.

Infection model. We assume that the infection is initiated at a node chosen from V

according to an arbitrary probability distribution. Let wv denote the probability that

node v is chosen as the initial infection point; for convenience, we introduce the notation

w(S) to denote the sum of wv over all v in S. We parameterize the infection model by

d, the maximum number of hops over which the probability of infection spread is taken

into account in the decision making. Thus, for a given contact graph G and strategy

vector ~a, an infection originating at node v infects node u if and only if u is within d

hops of v in G~a. Since G is fixed and d is clear from the context, denote by Sv(~a)

the set of nodes that are within d hops of v in G~a[v/0]. For a given strategy vector ~a,

therefore, the probability that node v gets attacked in this model (denoted by pv(~a))

is w(Sv(~a)).

Generalized Network Security Game GNS(d). We now present our model for a

generalized network security game GNS(d), parameterized by the hop-limit d in the

infection model. The game GNS(d) is specified by a contact graph G, initial infection

probability distribution w, and two costs per network node. Let Cv denote the security
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cost (installing an anti-virus software) of user v; we assume the software is fool-proof

so that secure nodes do not get attacked. Let Lv denote the infection cost of user v

(recovering from a worm attack in case an insecure node v gets attacked). Then, the

cost to node v is defined as

costv (ā) = avCv + (1− av)Lv · pv (ā) .

A pure Nash equilibrium (henceforth, pure NE) is a strategy vector ~a such that no

node v has any incentive to switch his strategy, if all other nodes’ strategies are fixed.

~a is a Nash equilibrium if costv(~a[v/x]) ≥ costv(~a) for x ∈ {0, 1}. Therefore, a pure NE

is a natural configuration to aim for in a non-cooperative game. It is easy to verify that

the following characterization of a pure NE (shown in [15] for the special case where G

is the complete graph) holds.

Lemma 28. For v ∈ V , let tv = Cv/Lv. A strategy vector ~a ∈ {0, 1}n is a pure NE
if the following conditions hold: (i) for all v such that av = 0, w(Sv(~a)) ≤ tv, and (ii)
for all v such that av = 1, w(Sv(~a[v/0])) > tv.

Social cost. The total social cost of a strategy profile is the sum of the individual

costs, which is cost (ā) =
∑n

v=1 costv (ā). A socially optimum strategy is a vector ~a that

minimizes this cost - this is not necessarily (and is not usually) a pure NE. Therefore,

the cost of a pure NE relative to the social cost is an important measure; the maximum

such ratio (i.e., over all possible pure NE) is also known as the price of anarchy [88].

For convenience, Table 4.1 summarizes our notations.

4.3 Nash equilibria

4.3.1 The local infection model: d = 1

For the local infection model, we show that a pure NE always exists. Our proof is by

a reduction to a result of Borodin et al. [41] on existence of subgraphs with restricted

degree sequences; their result is based on a potential function argument.

Theorem 29. Every GNS(1) instance has a pure NE.

Proof. We first define two functions a : V → R and b : V → R. For each v ∈ V ,
a(v) = w(N(v))−Cv

Lv
+w(v) and b(v) = Cv

Lv
−w(v). We argue next, using a generalization
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Table 4.1: A list of notations.

Notations Explanation

G Contact graph.
G[S] Subgraph of G induced by the vertices in S.
Cv Security cost for node v
Lv Infection cost for node v
~a Strategy vector of nodes.
G~a Attack graph, i.e. the subgraph of the contact graph induced

by the set of insecure nodes according to ~a.
~a[v/x] Strategy vector obtained by replacing av by x in the vector

~a.
Sv(~a) Set of nodes that are within d hops of v in G~a[v/0].
wv Probability that node v is chosen as the initial infection point.
w(S) Sum of wv over all v in S.

costv(~a) Cost to node v given strategy vector ~a.
GNS(d) Generalized network security game parameterized by the dis-

ease hop limit d.
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of an argument due to [41], that there exists a partition V = A ∪B such that for each
v ∈ A, we have w(A ∩N(v)) ≤ a(v) and for each v ∈ B, we have w(B ∩N(v)) ≤ b(v).
Consider the following function that defines a potential for each partition (A,B).

R(A,B) =
∑

v∈Aw(v) (w(A ∩N(v))− 2a(v))

+
∑

v∈B w(v) (w(B ∩N(v))− 2b(v))

Among all the partitions, we take a partition (A∗, B∗) minimizing R and assert that
(A∗, B∗) is the partition we need. Suppose that a vertex x belongs to A∗, and w(A∗ ∩
N(x)) > a(x). Now we move x from A∗ to B∗ to obtain the partition (A′ = A∗ \
{x}, B′ = B∗ ∪ {x}). Because a(x) + b(x) ≥ w(N(x)), we have w(N(x) ∩ B∗) ≤ b(x).
It is easy to verify that R(A∗, B∗) − R(A′, B′) equals w(x) (w(N(x) ∩A∗)− 2a(x)) +
w(x)w(N(x)∩A∗)−w(x) (w(N(x) ∩B∗)− 2b(x))−w(x)w(N(x)∩B∗) = 2w(x) (w(N(x) ∩A∗)− a(x))−
2w(x) (w(N(x) ∩B∗)− b(x)) > 0. This means R(A∗, B∗) > R(A′, B′), which is a con-
tradiction. A similar inequality follows if there is a vertex x ∈ B∗ with w(B∗∩N(x)) >
b(x). Therefore, such a vertex x doesn’t exist implying that (A∗, B∗) is the desired
partition.

Given such a partition (A,B), we establish the existence of pure NE. Let ~a be a
strategy vector with av = 1 for all v ∈ A and av = 0 for all v ∈ B; i.e., A denotes the
set of secure nodes. Then, we argue that ~a is indeed a pure NE. First consider the case
where v ∈ A. Then v is secure and pays cost Cv. If v changes strategy, its expected
infection cost is Lv (w(N(v) ∩B) + w(v)). Since v ∈ A, we have w(N(v)∩A) ≤ a(v) =
w(N(v))−Cv/Lv+w(v). Therefore, Cv ≤ Lv (w(N(v) ∩B) + w(v)), i.e. v won’t change
its strategy. Next consider v ∈ B. Then v is not secure and its expected infection cost
is Lv (w(N(v) ∩B) + w(v)). If v changes strategy, its cost is Cv. Since v ∈ B, we have
w(N(v) ∩ B) ≤ b(v) = Cv/Lv − w(v). Therefore, Lv (w(N(v) ∩B) + w(v)) ≤ Cv, i.e.
v won’t change its strategy. Thus it follows that ~a is a Nash equilibrium.

When the security and infection costs are uniform, we show that for the case of

d = 1, the maximum ratio of the cost of a pure NE to the social optimum is bounded

by the maximum degree.

Lemma 30. When security and infection costs are uniform, and wv = 1/n ∀v, the
price of anarchy in GNS(1) is at most ∆ + 1, where ∆ is the maximum degree of the
contact graph.

Proof. Let C and L denote the security and infection costs, respectively. Suppose
C > L(∆ + 1)/n. Then no node is secured in any pure NE and therefore, the cost of
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any pure NE is at most L(∆ + 1). In the optimum strategy, each node has a cost of C
if it is secured, or at least L/n otherwise. Therefore the optimal cost is at least L, and
the lemma follows in this case.

Next, consider the case C ≤ L(∆ + 1)/n. In any pure NE, any node has cost at
most C, and therefore the cost of a pure NE is at most Cn. If C ≤ L/n, the optimum
cost is also Cn, and therefore, we assume C ≥ L/n. In an optimum solution, each node
has cost at least L/n, and therefore, the optimal cost is at least L. Therefore, the price
of anarchy in this case is at most ∆ + 1.

4.3.2 The global infection model: d =∞

In this section, we consider the global model (d = ∞); thus, any node v is capable of

infecting any other node u as long there is a path of insecure nodes between v and u

in the contact graph G. In this special case, our model is a generalization of the model

of [15] in that we allow different security costs, infection costs, and initial infection

probabilities.

Theorem 31. Every GNS(∞) instance has a pure NE.

Proof. Let tv = Cv/Lv; we refer to tv as the threshold for v. We relabel the n nodes
so that t1 ≥ t2 ≥ · · · ≥ tn, where we break ties arbitrarily. Given a strategy vector ~a,
we say that a secure node v is happy if w(Sv(~a[v/0])) > tv, and unhappy otherwise.
Similarly, an insecure node v is happy if w(Sv(~a)) ≤ tv, and unhappy otherwise. Recall
that when d =∞, Sv(~a) is the set of nodes that can reach v in G~a.

Consider the following potential function.

Φ̂(~a) = (Φ1(~a),Φ2(~a), . . . ,Φn(~a))

where Φv(~a) is 0 if v is secure, −1 if v is insecure and happy, and 1 otherwise. We next
show this potential always lexicographically decreases. There are two cases:

1. Some node v switches from being an insecure unhappy node to being a secure
happy node, changing the strategy vector from ~a to ~b. In this case w(Sv(~a)) > tv.
Since the set of secure nodes in ~b is a superset of the set of secure nodes in ~a, it
follows that for any node u, w(Su(~b)) ≤ w(Su(~a)); it thus follows that no insecure
happy node in ~a can become unhappy in ~b. Therefore, the vth component of the
potential decreases by 1, while none of the other components increases.

2. Some node v switches from being secure to not being secure, changing the strategy
vector from ~a to~b. In this case, w(Sv(~b)) ≤ tv. We thus have the vth component of
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the potential changing from 0 to −1. Consider any node u 6= v. If u is secure, then
the uth component of the potential is unchanged. Otherwise, consider two cases.
If v and u are in different connected components, then w(Su(~b)) = w(Su(~a)),
implying that the uth component of the potential is unchanged. If v and u are in
the same connected component, then w(Su(~b)) = w(Sv(~b)); thus, if u is happy in
~a but unhappy in ~b, then it must be the case that tu < tv, implying that u > v.
Thus, the only components of the potential that can increase are the components
greater than v, implying that the potential decreases lexicographically.

Since the value of each column in the potential vector is between −1 and 1, and this
potential vector lexicographically decreases, we conclude that this process converges to
a pure Nash equilibrium (in fact, in at most 3n steps).

Even when the security and infection costs are uniform, [15] showed that the price

of anarchy is Ω(n). We give a more precise characterization in terms of the vertex

expansion of the contact graph. For any graphH over vertex set V , the vertex expansion

α(H) is defined as the largest number c such that for any subset V ′ of the vertices such

that |V ′| ≤ |V |/2, the set of vertices in V \ V ′ that are adjacent to a vertex in V ′ is at

least c|V ′|.

Lemma 32. When security and infection costs are uniform, and wv = 1/n ∀v, the
price of anarchy in any GNS(∞) game is O(1/α(G)).

Proof. First we calculate the lower bound for social optimum. Let ~a be the strategy
vector of a social optimum, and S1, S2, . . . , Sm denote the connected components in
G~a. Without loss of generality, we can assume |S1| ≤ |S2| ≤ · · · ≤ |Sm|. We consider
the following 3 cases:

1.
∑

i |Si| < n/2, where n is the total number of nodes in G. In this case more than
half of the nodes are secure. Thus, social optimal cost is at least Cn/2.

2.
∑

i |Si| ≥ n/2 and |Sm| ≥ n/4. Then social optimal cost is at least
∑

v∈Sm costv(~a) ≥
n
4L

n/4
n = Ln/16.

3.
∑

i |Si| ≥ n/2 and |Sm| < n/4. Then there must be a j such that
∑

i≤j |Si| ≥
n/4. Let S = ∪i≤jSi. Then the number of neighbors of set S in G is at least
α(G)|S| ≥ α(G)n/4. This implies social optimal cost is at least Cα(G)n/4.

Therefore, the lower bound for social optimum is min{Cn/2, Ln/16, Cα(G)n/4}.

65



4. CONTROLLING NEGATIVE DIFFUSION

Next we calculate the upper bound for NE cost. Let ~a be the strategy vector of a
NE. Again, let S1, S2, . . . , Sm denote the connected components in G~a. |S1| ≤ |S2| ≤
· · · ≤ |Sm|. We consider the following 2 cases.

1. L ≤ C. In this case no one is going to be secure in NE, which implies its
cost is nL. The ratio between NE and the social optimum is no more than
max{2, 16, 4/α(G)}.

2. L > C. The cost of NE is no more than
∑

i L|Si|2/n + Cn. Because this is
a NE, for those who choose to be insecure, L|Si|/2 ≤ C. Therefore, we have∑

i L|Si|2/n+Cn ≤
∑

iC|Si|+Cn ≤ 2Cn. The ratio between NE and the social
optimum is no more than max{4, 32, 8/α(G)}.

Putting these 2 cases together completes the proof of this lemma.

4.3.3 The d-neighborhood infection model: d > 1

Having established the existence of a pure NE for every instance of the generalized

network security game in both the local and the global models, a natural question is

whether pure NE exist for the entire spectrum of d in between these two extremes. In

this section, we show that for any 1 < d < ∞, there exist instances of GNS(d) for

which there are no pure NE. Furthermore, it is NP-complete to determine whether a

pure NE exists for a given instance. We first present the non-existence result which

also provides the basis for the NP-hardness reduction.

Lemma 33. For any fixed d, 1 < d <∞, there exists an instance of GNS(d) in which
no pure NE exists.

Proof. We first consider the case d = 2. Consider the instance defined by the contact
graph in Figure 4.1a. wv = 1/n for all node v. We set the infection cost to be identical,
say L, for all nodes. For nodes D through I, we set the security cost to be high enough
so that in any equilibrium they are all insecure. That leaves nodes A, B, and C, for
whom we set the security cost such that 9Cv/L = 7 + ε for v in {A,B,C}; thus, in any
pure NE ~a, node v in {A, B, C} is secure if and only if |Sv(~a[v/0])| ≥ 7 + ε. We now
consider four cases. If all of A, B, and C are insecure in ~a, then we do not have a pure
NE since |Sv(~a[v/0])| = 9 for each v in {A, B, C}. If exactly one of A, B, or C – say A
– is secure, as shown in Figure 4.1b, then B won’t change its strategy since |SB(~a)| = 7,
but C will change its strategy since |SC(~a)| = 8 (Notice C can reach I, but B cannot).
If exactly two of A, B, C – say A and B – are secure, as shown in Figure 4.1c, then
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B will change its strategy since |SB(~a[B/0])| = 7. Finally, if all three are secure, then
none of A, B, or C will stick to its current strategy since |Sv(~a[v/0])| = 5 for each
v in {A,B,C}. We have thus established that there is no pure NE in the instance of
Figure 4.1a. It is easy to extend the above non-existence proof to larger d by replacing
selected edges in the instance of Figure 4.1a by multi-hop paths.

(a) An instance of a contact

graph that has no pure NE.

(b) Residual graph when A

chooses to secure itself.

(c) Residual graph when A and

B choose to secure themselves

Figure 4.1: No pure NE example with nonuniform security costs and infection costs.

In the above non-existence proof, nodes have different security costs and infection

costs. We can extend the proof to the case of uniform security costs and infection costs

by inserting additional nodes in the proximity of those nodes in the above instance that

have lower security costs, as shown in the following lemma.

Lemma 34. For any fixed d, 1 < d <∞, there exists an instance of GNS(d) in which
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4. CONTROLLING NEGATIVE DIFFUSION

no pure NE exists.

Proof. We first consider the case d = 2. Consider the instance defined by the contact
graph in Figure 4.2a. wv = 1/n for all node v. We set the infection cost to be L and
security cost to be C = (10 + ε)L/15 for all nodes. Thus, in any pure NE ~a, node v is
secure if and only if |Sv(~a[v/0])| ≥ 10+ε. Therefore, nodes D through O are all insecure
in any pure NE. We now consider four cases. If all of A, B, and C are insecure in ~a, then
we do not have a pure NE since |Sv(~a[v/0])| = 13 for each v in {A, B, C}. If exactly
one of A, B, or C – say A – is secure, as shown in Figure 4.2b, then B won’t change
its strategy since |SB(~a)| = 10, but C will change its strategy since |SC(~a)| = 11. If
exactly two of A, B, C – say A and B – are secure, as shown in Figure 4.2c, then B will
change its strategy since |SB(~a[B/0])| = 10. Finally, if all three are secure, then none
of A, B, or C will stick to its current strategy since |Sv(~a[v/0])| = 7 for each v in {A, B,
C}. We have thus established that there is no pure NE in the instance of Figure 4.2a.
It is also easy to extend the above non-existence proof to larger d by replacing selected
edges in the instance of Figure 4.2a by multi-hop paths.

We next show that it is, in fact, NP-complete to determine whether a given instance

of the generalized network security game with 1 < d < ∞ has a pure NE. It is easy

to argue that the problem is in NP since one can efficiently verify whether a given

strategy vector ~a is a pure NE. In the remainder of this section, we focus on the

hardness reduction.

Our starting point is the non-existence instance defined in the Lemma 33. We

observe that if the security cost of exactly one of the three nodes in {G, H, I}, say G, is

reduced so that G always secures itself, then we do have a pure NE in which C secures

itself, while A and B are insecure. Thus, if we can control the decision of G through an

external input, then we can use the above instance as a gadget which has the property:

it has a pure NE if and only if G is secure. We now show how to use this gadget to

obtain an NP-hardness reduction.

Theorem 35. The problem of determining if a GNS(d) instance, 1 < d < ∞, has a
pure NE is NP-complete.

Proof. We reduce 3SAT problem to a GNS(2) instance, and show that a given formula
φ is satisfiable if and only if the corresponding game has a pure NE. The reduction is
shown in Figure 4.3. For each variable X in the formula, we create two nodes in the
contact graph, X and X̄, which are connected to each other. For each literal l in the
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(a) An instance of a contact

graph that has no pure NE.

(b) Residual graph when A

chooses to secure itself.

(c) Residual graph when A and

B choose to secure themselves.

Figure 4.2: No pure NE example with uniform security costs and infection costs.

formula, we create a node, and connect it with corresponding variable. For each clause
C, we create a gadget, treat node G as clause node, and connect it to its 3 literal nodes.
The costs for gadget nodes are as before. The costs of literal nodes are set such that
their “threshold” – the number of insecure nodes that can tolerate without securing
themselves – is 1. And the threshold for X is set to be a + 1 where a is the number
of adjacent literal nodes; the threshold for X̄ is set to be b + 1 where b is the number
of adjacent literal nodes. We add padding nodes between edges (X, X̄), (X, I), (X̄, I),
and (C, I). We set their security costs to be 0, so they always wish to be secure.

We first show if φ is satisfiable, then there is a pure NE in this game. For vari-
able node X, if its assignment is true, then make it secure. For literal node I, if its
assignment is false, then make it secure. If a clause is true, then make it secure. All
the other nodes are insecure. We now argue that the defined strategy vector is a pure
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NE. If a variable node X is secure, then all the literal nodes connected to it are not
secure, X̄ is not secure, while all the literal nodes connected to X̄ are secure. Since
the formula is satisfiable, all the clause nodes are secure. It is clear that X̄ is happy,
since its threshold is b+ 1 and X is secure. Similarly X is happy since if it were to be
insecure, it will be in a component with size a + 2 which is bigger than its threshold.
All the literal nodes connected to X are happy, because for each of them, the only
two adjacent nodes are secure. And all the literal nodes connected to X̄ are happy,
because if any of them does not secure itself, it will be in a component with size 2,
which is bigger than its threshold. All the clause nodes are happy because the formula
is satisfiable, at least one of its literal is true, which means at least one of its literal
nodes is insecure, hence this clause node has to secure itself because its threshold is 6.
And within each gadget, we can make node C to secure itself (together with the nodes
D, E, and F) to make all the nodes in the gadget happy. We thus have a pure NE in
the game instance.

Next, we argue if the game has a pure NE, then the formula is satisfiable. Suppose
we have a pure NE strategy vector ~a. For each variable node X, if X is secure, we
assign X to be true for the SAT formula; and false otherwise. We know that in any
pure NE, the clause node in each gadget has to be secure. Furthermore, exactly only
of X and X̄ is secure. If X is secure, then X̄ and all the literal nodes connected to X
have to be insecure, while all the literal nodes connected to X̄ have to be secure. Since
all the clause nodes are happy, at least one of its literal nodes is not secure, implying
that in each clause at least one of the literals is true. This establishes that the formula
is satisfiable.

In sum, the formula is satisfiable if and only if the security game has Nash equilib-
rium. It is easy to see that the above reduction can be carried out in polynomial time,
thus yielding the NP-hardness of the problem.

4.4 Optimizing social welfare: NP-completeness and ap-

proximation algorithms

4.4.1 NP-completeness of computing the social optimum

We show that computing the social optimum is NP-complete in GNS(d) games for all

d. The result for d =∞ follows from Aspnes et al. [15], even for the special case where

all security costs, infection costs, and initial infection probabilities are uniform. We

now establish NP-completeness for all d > 0.
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Figure 4.3: Reduction from 3SAT to GNS(d). Xi’s refer to variables in the boolean
formula. Iij refers to the jth literal in the ith clause. And Ci’s refer to the clauses.
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Lemma 36. Computing the social optimum for an instance of GNS(d) is NP-complete
for all d.

Proof. We construct a reduction from vertex cover on regular graphs, which is also NP-
complete [63]. Consider an instance of vertex cover specified by an r-regular graph G =
(V,E). We construct an instance I of the GNS(d) problem as follows. Let H = (V ′, E′)
be a graph obtained by splitting each edge e = (u, v) ∈ E by d − 1 auxiliary nodes
ve,1, . . . , ve,d−1, so that V ′ = V ∪ ∪e∈E{ve,1, . . . , ve,d−1}, and E′ consists of the edges
∪e=(u,v)∈E{(u, ve,1), (v, ve,d−1), (ve,1, ve,2), . . . , (ve,d−2, ve,d−1)}. For all nodes v ∈ V , let
them have the same secure cost C and infection cost L. And we set C = L(r(d−1)+1)

|V ′| +1.
For each u ∈ V ′ \ V , we have Lu = 1/|V ′|3 and Cu = (C + L)|V ′|. This ensures all
nodes in V ′ \ V are insecure, and

∑
u∈V ′\V costu(~a) ≤ ε for small constant ε, for any

strategy ~a.
Let B = {v ∈ V : av = 1} for a pure strategy ~a, and let b = |B|. It is easy to

verify that cost(~a) = L|V |(r(d−1)+1)
|V ′| + b + ε + 2L

|V ′| |{e = (u, v) : u, v ∈ V, au = av = 0}|.
Therefore, when we set L > |V | · |V ′|, B is a vertex cover in G of size k, if and only if
the social optimum in I is at most L|V |(r(d−1)+1)

|V ′| + k + ε.

For d = 1, we also show that while a pure NE always exists, finding the least cost

one is NP-complete.

Lemma 37. Finding the least cost pure NE in a given instance of GNS(1) is NP-
complete.

Proof. Our proof is a reduction from Vertex Cover. LetG be an instance of vertex cover.
We construct an instance I of the game in the following manner. We set the contact
graph to be H = (V ′, E′) with V ′ = V ∪∪i∈VA(i), where the set A(i) = {vi,1, . . . , vi,t},
for t ≥ ∆(G), where ∆(G) is the maximum degree of G. The set E′ consists of E along
with the edges (i, j), for all i ∈ V and j ∈ A(i). The security and infection costs for all
nodes in V are identical, C and L, respectively. Set C = (t+1)L

|V ′| +1. For nodes in V ′\V ,
these corresponding costs are C ′ = L′(1 + ε)/|V ′| and L′ = 1/M , respectively, where
M ≥ |V ′|2t. We assume that the initial infection probability distribution is uniform.
Therefore, the contribution, costv(~a) of a node v ∈ V ′ \ V to the total cost cost(~a) for
any strategy vector ~a is at most max{C ′, 2L′/|V ′|}, and the total contribution of all
such nodes is at most 1. We show that the least cost NE has cost very close to the
social optimum.

Let A be a vertex cover for G, with |A| = a. Consider the following strategy vector
~a: for each i ∈ A, we have ai = 1 and avi,j = 0 for all j, and for i 6∈ A, we have ai = 0
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and avi,j = 1 for all j. Following Lemma 28, this vector is a NE because: (i) for each
node i ∈ A, there are at least t insecure neighbors (namely, the nodes vi,j), (ii) for each
i 6∈ A, the number of insecure neighbors is at most ∆(G) ≤ C|V ′|/L, where ∆(G) is the
maximum degree of G, (iii) if i ∈ A, each node vi,j has no insecure neighbor, and since
C ′|V ′|/L′ = 1 + ε, such a node won’t change its strategy, and (iv) if i 6∈ A, each node
vi,j has an insecure neighbor and it will stay being secure. As in the proof of Lemma
36, cost(~a) ≤ L+ |A|+1. Therefore, if G has a vertex cover of size k, the reduced game
instance has a pure NE of cost at most L+ k + 1.

For the converse, let ~a be the strategy vector of a NE, and A = {i : ai = 1} ∩ V .
As in the proof of Lemma 36, cost(~a) = L+ |A|+ 2L

|V ′| |{(u, v) : au = av = 0, u, v ∈ V }|,
which implies if A is not a vertex cover for G, cost(~a) > L+ |A|. Therefore, the lemma
follows.

4.4.2 Approximating the social optimum

We describe a general framework to derive approximation algorithms for GNS(d) games

for all d. For fixed d, we achieve an approximation ratio of 2d. For d = ∞, we obtain

an approximation ratio of O(log n). Our framework involves the following three steps.

1. Formulate a linear programming relaxation.

2. Let x be the optimum LP solution. Partially round and filter the variables. Let

x′ be the resulting solution.

3. Round the x′ solution appropriately - for constant d, this involves solving a suit-

able covering problem, while for d =∞ this reduces to a vertex separator problem.

4.4.2.1 An LP Formulation

Let P dij denote the set of all simple paths from i to j of length at most d. Let xv be the

indicator variable for node v that is 1 if v is secured. Let yij be the indicator variable

for nodes i and j that is 1 if there is no path P ∈ P dij consisting entirely of insecure

nodes. By abuse of notation, for i = j, we assume yii = 1 if node i has been secured,

i.e., xi = 1. We start with the following integer programming formulation P of the

social optimum.
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min
∑

v Cv · xv +
∑

j∈V Lj
∑

i∈V wi(1− yij)

s.t.
∑

v∈p xv ≥ yij p ∈ P dij (4.1)

xv ∈ {0, 1} ∀v ∈ V

yij ∈ {0, 1} ∀i, j ∈ V

The objective function can be interpreted in the following manner: the first part

corresponds to the cost of securing nodes, and the second part corresponds to the

infection cost, which, for node j is Lj times the sum of the probabilities of all nodes

that have a path to j of length at most d consisting entirely of insecure nodes. The

first constraint says that in order to separate a pair of nodes i and j, we need to secure

at least one node in every path P ∈ P dij between these two. For i = j, we define the

only path P in P dij to consist of the node i.

We relax the IP to a linear program (LP) by changing the last two constraints to

0 ≤ xv ≤ 1 and 0 ≤ yij ≤ 1.

4.4.2.2 Solving the LP and partial rounding and filtering

We now perform the following steps.

(1) Solve the LP: for any fixed d, the number of paths of length at most d, |P dij | is at

most nO(1), and therefore, the above program can be solved in polynomial time. When

d is not a constant, the program cannot be written down efficiently but we can solve

it in polynomial time using the ellipsoid method. This requires the construction of a

polynomial time separation oracle, which, given a candidate solution (~x, ~y), can decide

if it is feasible, or finds a constraint that is infeasible. Such a separation oracle can be

designed as follows: define the cost of a path to be the sum of the weights xv of the

nodes on the path. For each pair i, j, compute the shortest path from i to j in the

graph restricted to the d-hop neighborhood of node i. If this distance exceeds yij , the

constraints for all the paths p ∈ P dij are satisfied. Else, the constraint corresponding to

the shortest such path is violated.

Ellipsoid-based methods are, however, expensive to implement in practice. For the

case d = ∞, we address this drawback by solving an equivalent polynomial-sized LP

in which we introduce a “distance variable” for each pair of nodes and replace the
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exponentially-many path constraints given in (4.1) with polynomially-many triangle

inequality constraints, and linear number of lower bounds on the distances. It is this

more compact LP that we solve in our experiments.

(2) Construct a new vector ~y′ in the following manner: for each i, j, y′ij = 0 if yij ≤ 1/2

and y′ij = 1 if yij > 1/2. Next, let x′v = min{2xv, 1}, for all v ∈ V .

4.4.2.3 Final rounding

We now round the vector ~x′ to an integral solution. For d = 1, it is easy to see that

~x′ is already integral, since each constraint only has two variables. We now consider

general d. Consider a pair of nodes i and j such that y′ij = 1. By constraint (4.1), along

every path p of length at most d between i and j, the sum, over v ∈ p, of x′v is at least

1. It follows that along every such path p, there exists at least one vertex v ∈ p with

x′v ≥ 1/d. Consider now the following filtering procedure: if x′v ≤ 1/d, we set x′′v = 0;

otherwise, we set x′′v = 1. It is clear that all the constraints of the LP are satisfied, and

the cost of ~x′′ is at most d times the cost of ~x′, yielding a final 2d approximation.

We finally consider the d = ∞ case. In this case, we are left with a minimum

weighted vertex multi-cut problem, where we would like to determine the minimum

weight of vertices that can separate all the pairs (i, j) for which y′ij = 1. The elegant LP

rounding algorithm of [68] yields an integral solution for the vertex multi-cut problem,

whose cost is O(log n) times the cost of fractional solution. We can thus find a set X

of vertices to secure such that all pairs of vertices for which y′ij = 1 are separated and∑
v∈X Cv is at most O((log n)

∑
v Cvx

′
v).

Putting the above analyses together, we have the following.

Theorem 38. For any fixed d, the social optimum for an instance of GNS(d) can be
approximated to within a factor of 2d in polynomial time. For d = ∞, we obtain an
O(log n)-approximation to the social optimum, where n is the number of nodes in the
contact graph.

4.5 Experimental results

We now empirically study the properties of NE and the performance of our algorithms.

We use two classes of graphs: (i) random geometric graphs formed by distributing

n2 nodes uniformly at random in an n × n square and add an edge between a pair
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of nodes if there distance is no more than 1, and (ii) power law graphs generated

by preferential attachment process [27]. These two graph classes are very different,

with the former being a model for wireless networks, while the latter suited for the

Internet [62], World Wide Web [27], and email networks [58]. Also, they have very

contrasting properties, e.g., the latter class has larger separators, and we expect to see

effects of these differences. We set the infection costs to be identical for every node

(this can be done without loss of generality for the pure NE analysis) and the security

costs are chosen uniformly at random between 0 and the infection cost.

Our main experimental observations are the following.

1. Convergence time for best response strategies: We find that best response works

pretty well in practice. For d = ∞, we find the convergence time to be linear in

the number of nodes for both graph classes, while it seems to be sub-linear in the

case of d = 1. For the d-neighborhood model, with 1 < d < ∞, best response

does not converge to a NE quite often, suggesting that even on average, these

games do not have NE.

2. Structural properties of NE and the quality of NE : We find that high degree nodes

tend to be secured in the NE for the local game. Additionally, we find that the

cost of NE is very low for d = 1 in both the graph classes, but it is somewhat

high for d =∞.

3. Performance of our approximation algorithms for the social optimum: While

we show a worst case bound of O(log n) for approximating the social optimum

(Section 4.4), we find that our algorithms perform much better in practice. For

d = 1, the approximation bound is very close to 1; while for d = ∞, it seems to

be a constant.

4.5.1 Convergence times for best response strategies

We implement best response in a round robin fashion on both the graph classes and

study the convergence time; note that the results of Section 4.3 imply that this converges

to a NE. Figure 4.4a shows that the convergence time of the global model for random

geometric and power law graphs grows linearly with the number of nodes. Figure 4.4b

shows the corresponding plots for the local model and they seem to grow much slower
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than in the d =∞ case. Also, for the d-neighborhood model, we find that best response

often does not converge to a NE.

(a) Convergence time in the global model (d =

∞) for random geometric graphs and power law

graphs.

(b) Convergence time in the local model (d =

1) for random geometric graphs and power law

graphs.

Figure 4.4: Convergence time.

4.5.2 Structural properties of NE

In Figure 4.5, we examine the degrees of secured nodes in the NE computed by best

response on power law graph with 5000 vertices, and we find that they tend to be

high. In fact, the degree distribution of the secured nodes seems to mirror the overall

77



4. CONTROLLING NEGATIVE DIFFUSION

degree distribution in the graph. We also study the quality of NE in the local and

global models. Figure 4.6a and 4.6b show that the cost of NE is very low for the local

model in both graph classes. The ratio to optimal value is at most 1.3. In contrast,

Figure 4.7a and 4.7b show that this ratio is larger for the global model, about 7 in both

graph classes. We note that this ratio is for the case of non-uniform costs; we expect

the ratio to be smaller with uniform costs, especially for power-law graphs owing to

their high vertex expansion.

Figure 4.5: Properties of secured nodes in NE in power law graphs.

4.5.3 Empirical performance of approximation algorithms

We now study the empirical performance of the algorithms we design in Section 4.4 for

approximating the social optimum. Since computing social optimum is very expensive,

we use LP optimal values as lower bound. Figure 4.6a and 4.6b show that our approxi-

mation algorithm’s cost is almost the same as the LP lower bound for the local model.

For the global model, Figure 4.7a and 4.7b show that the approximation algorithm’s

cost is within a constant of the LP lower bound, in contrast to the worst case O(log n)

bound we prove. Additionally, we observe that our approximation algorithm has a

much better guarantee for power law graphs than for random geometric graphs.
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(a) The costs of the LP solution, our approxima-

tion algorithm, and the Nash equilibrium com-

puted by best response, for the local model in

random geometric graphs.

(b) The costs of the LP solution, our approxima-

tion algorithm, and the Nash equilibrium com-

puted by best response, for the local model in

power law graphs.

Figure 4.6: Costs comparison for the local model.
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(a) The costs of the LP solution, our approxima-

tion algorithm, and the Nash equilibrium com-

puted by best response, for the global model in

random geometric graphs.

(b) The costs of the LP solution, our approxima-

tion algorithm, and the Nash equilibrium com-

puted by best response, for the global model in

power law graphs.

Figure 4.7: Costs comparison for the global model.
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4.6 Conclusion

Non-cooperative games have been recognized as a useful paradigm for studying de-

centralized network security problems; however, the resources needed for individual

decision making are important issues for the implementability of such games. In this

paper, we have developed a framework for network security games parametrized by

the amount of local information available for individual decision making. We find this

parameter plays an important role in the structure of the equilibria, and needs to be

taken into account in such analysis.

NE are considered as natural operating configurations in such systems with selfish

users. Therefore, ensuring that the system has efficient NE is desirable (equivalently, a

low price of anarchy (PoA)) for network planners. Specifically, if the network planner

has a limited budget to secure k nodes, an important design problem is to choose a

subset of nodes to secure so that the graph restricted to the remaining nodes has low

PoA; such a strategy is also referred to as a Stackelberg strategy for the network planner

[111]. Lemmas 30 and 32, which bound the PoA in terms of the network parameters,

suggest natural heuristics to design stackelberg strategies for the network planner. We

discuss this briefly below.

In the neighborhood model, Lemma 30 shows that PoA is bounded by ∆ + 1.

Therefore, given a budget to secure k nodes, the Stackelberg question is to choose

a subset of nodes to secure, so that the maximum degree of the residual graph is

minimized. An analogous question, dual to this, is the following: for a given target

maximum degree ∆′, choose the smallest set k of nodes to secure so that the maximum

degree in the residual graph is ∆′. Both these versions are NP-complete to solve

optimally, but greedy heuristics are likely to perform well. In the global model, Lemma

32 shows that the PoA is bounded by 1/α(G). The analogous question of finding an

optimal Stackelberg strategy is NP-complete in this case also. We can use the spectral

clustering algorithm of [78], which finds an (α, ε) clustering of low cost using at most

an ε fraction of the edges, while ensuring that each cluster has expansion at least α, as

a natural heuristic for this problem.
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Chapter 5

Controlling negative diffusion in

the presence of risk behavior

changes

In Chapter 4, we analyzed intervention strategies assuming the behavior of each indi-

vidual remains the same before and after taking interventions, which is not an accurate

assumption in some real world scenarios. Previous studies have shown imperfect in-

terventions and risk behavior changes can lead to perverse outcomes. Thus, in this

chapter, we study how to control negative diffusion with the presence of risk behavior

changes.

From the results in Chapter 4, we can see that Nash equilibrium may not exist

even without risk behavior changes. Using game theory in the presence of risk behavior

changes is going to be extremely difficult. In this chapter, we formulate a network-based

model and use random graph techniques to understand how risk behavior change in con-

junction with failure of prophylactic interventions can lead to perverse outcomes where

“less (intervention) is more (effective)”. Our model captures the distinction between

one- and two-sided risk behavior change. In one-sided situations (e.g. influenza/H1N1)

it is sufficient for either individual in an interaction to exhibit risk behavior change

whereas in two-sided situations (e.g. AIDS/HIV) it is necessary for both individuals

in the interaction to exhibit risk behavior change, for a potential transmission of the

disease. A central discovery is that the phenomenon of perversity occurs at differing

levels of intervention coverage depending upon the “sidedness” of the interaction. Fur-
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thermore, again dependent on the “sidedness,” targeting highly connected nodes can

be strictly worse than uniformly random interventions at the same level of coverage.

In Section 5.1, we formally define our model. In Section 5.2, we explain our first

finding where less intervention can be more effective. In Section 5.3, we explain our

second finding where targeted intervention strategy can be worse than random inter-

vention strategy. Section 5.4 backs up our findings with comprehensive simulations.

And we conclude this Chapter in Section 5.5.

5.1 Models

We obtain our results through both analytical techniques and simulations on a range

of networks including preferential attachment networks [28] and large synthetic and

real-world networks. For our analyses, we adopt the SIR model of epidemics defined on

networks. Let G = (V,E) denote an undirected social contact graph, where V denotes a

set of people (referred to as nodes henceforth) and (u, v) ∈ E denotes a contact between

nodes u and v (see Figure 5.1(a) for an example). If node u becomes infectious, it will

infect each of its susceptible neighbors independently with probability p (referred as

base transmissivity). Each node in the graph is either vaccinated (e.g., nodes B or

F in Figure 5.1(b)) or not (e.g., nodes A or C in Figure 5.1(b)). If a node u is not

vaccinated, we label it as UV. The vaccine fails with probability pf . If a node u’s

vaccine fails, we label it as VF; otherwise, we label it VS. Both UV and VF nodes are

susceptible. We assume that vaccine failure is a stochastic event and that (vaccinated)

nodes do not know if (their own) vaccination succeeded or not. If a node with vaccine

failure is infected then its risk behavior changes, i.e., it increases its contacts to some

of its’ neighbors, resulting in boosted transmissivity pm - in the one-sided model a node

infects all its susceptible neighbors with boosted transmissivity pm, while in the two-

sided model, it only infects those neighbors with boosted transmissivity pm that have

also had a failed vaccination. In the rest of the paper, we use pv to denote the probability

that a node is vaccinated, under a campaign of uniformly random vaccination.

The disease transmission process is thus defined by the tuple (p, pm, pf , pv) in the

following manner: every node is labeled with UV, VS, VF with probability 1 − pv,
pv(1− pf ), and pvpf , respectively. All nodes labeled VS are removed from the graph.

Each edge (u, v) connecting two surviving nodes u and v, is “open” (or retained in the
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graph, in the language of percolation, which corresponds to disease transmission on this

edge), or “closed” (or removed from the graph), with some probability depending on

the model - (i) in the one-sided model, edge (u, v) is open with probability p, if both u

and v are labeled UV, and is open with probability pm if one of u and v is labeled VF;

(ii) in the two-sided model, edge (u, v) is open with probability p, unless both u and

v are labeled VF. Following the well known correspondence between bond percolation

and disease transmission, the connected component containing a specific node u is

the (random) subset of nodes infected, if the disease starts at u. If the components

resulting from one random instance of the above stochastic process are C1, C2, . . . , Ck,

then
∑

i |Ci|
2 /n denotes the expected outbreak size of the disease starting from a

random initial node. In our analysis, we use this as a measure of epidemic severity.

5.2 Perversity and sidedness

We first report on our finding that both one-sided and two-sided behavior changes can

lead to perverse outcomes (less vaccination is more effective) across a wide range of

contact networks. One-sided behavior change leads to perverse outcomes at low levels

of intervention, in which the epidemic severity increases with pv, up to a point, as shown

in Figure 5.2, 5.3, and 5.4. Two-sided behavior change leads to perverse outcomes at

high levels of intervention, in which the epidemic severity starts increasing beyond

a threshold value of pv. We mathematically establish the phenomena of perversity

and non-monotonicity for graphs generated according to the Erdös-Renyi model [108],

denoted by G(n, p), in which each edge between a pair of nodes is chosen independently

with probability p. We prove rigorously that there exist p, pm, and pf , such that (i)

in the one-sided model, it almost surely holds that the epidemic severity is o(n) for

both pv = 0 and pv = 1, yet Θ(n) for some pv in (0, 1); (ii) in the two-sided model,

the epidemic severity is Θ(n) for both pv = 0 and pv = 1, yet o(n) for some pv in

(0, 1). This implies that there is a choice of parameters (which turns out to be be quite

broad), such that as the vaccinated fraction pv is varied, the epidemic severity shows a

non-monotone behavior.

Theorem 39. For the Erdös-Rényi random graph model G(n, p), there exist p, pm,
and pf , such that (i) in the one-sided model, it almost surely holds that the epidemic
severity is o(n) for both pv = 0 and pv = 1, yet Θ(n) for some pv in (0, 1); (ii) in the

85



5. CONTROLLING NEGATIVE DIFFUSION IN THE PRESENCE OF
RISK BEHAVIOR CHANGES

Figure 5.1: Sidedness of risk behavior change: the one-sided and two-sided models.
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Figure 5.2: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.25 and
ps = 0.35.

Figure 5.3: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.
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Figure 5.4: Epidemic severity with different intervention success probabilities in one-sided
(left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking
interventions, and y-axis is the expected percentage of nodes getting infected. p = 0.25,
and pm = 0.5.

two-sided model, the epidemic severity is Θ(n) for both pv = 0 and pv = 1, yet o(n) for
some pv in (0, 1).

We give a brief sketch of our proof, which is based on recent results of Söderberg [120]

and Bollobás et al [39] on heterogeneous random graphs. We refer the reader to supple-

mentary information for details. Consider the model of heterogeneous random graphs

denoted by G(N,K, r, c), where (i)K is a positive integer, (ii) r = {r1, . . . , rK} is a prob-

ability vector, (iii) c = (cij) is a K×K matrix, (iv) each node j = 1, . . . , N , is assigned

a type i ∈ {1, . . . ,K} with probability ri, and (v) each pair of nodes i, j are connected

by an edge with probability p(i, j) = cij/N . Söderberg [120] and Bollobás et al. [39]

established the following: (i) if the eigenvalues of the matrix {cijrj} are all less than 1,

it is sub-critical (i.e., has no giant component), and (ii) if some eigenvalue is larger than

1, it is super-critical (i.e., has a giant component) with asymptotically ri(1−fi)N nodes

of type i, where fi satisfies the coupled set of equations: fi = exp
(∑

j cijrj(fj − 1)
)

.

We show that if the contact network is generated by the Erdos-Renyi model G(n, c/n),

then the disease transmission process produces a heterogeneous random graph with the

eigenvalue characteristic equation given by

−λ(λ2 − (c(1− pv) + pmcpvpf )λ+ c2(1− pv)pmpvpf − c2(1− pv)pvpf ) = 0.

We show the existence of parameters pv, pf , pm, and c such that the absolute value of

every eigenvalue is smaller than 1.
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We find the phenomenon of perversity exists in a broad class of graphs, and in order

to formally prove its widespread occurrence, we consider locally finite graphs, which

have been widely studied in percolation theory (e.g., see [38]). Locally finite graphs

include infinite graphs in which each node has bounded degree. Using techniques from

percolation theory, we prove that in every locally finite graph G, there exist p, pm, and

pf , such that: (i) the epidemic severity is finite for both pv = 0 and pv = 1, yet infinite

for some pv in (0, 1) in the one-sided model; (ii) the epidemic severity is infinite for both

pv = 0 and pv = 1, yet finite for some pv in (0, 1) in the two-sided model. This result

provides strong evidence of the universality of the phenomenon. As such it begs for a

natural and intuitive explanation. Our best structural understanding at this point is

that this is the consequence of two competing tensions – vaccine success that serves to

contain the spread and risky behavior that, exacerbated by vaccine failure, serves to

boost the contagion. In the one-sided situation since it is sufficient for infection spread

to have just the one party in an interaction exhibiting risky behavior we see perversity

manifesting itself at low levels of vaccination. Whereas, in the two-sided situation since

it is necessary for both the interacting parties to exhibit risky behavior we see perversity

manifesting itself only at high vaccination levels which is a prerequisite for a non-trivial

fraction of parties with failed vaccines to exist.

Theorem 40. For every locally-finite infinite graph G, there exist p, pm, and pf , such
that: (i) the epidemic severity is finite for both pv = 0 and pv = 1, yet infinite for some
pv in (0, 1) in the one-sided model; (ii) the epidemic severity is infinite for both pv = 0
and pv = 1, yet finite for some pv in (0, 1) in the two-sided model.

The phenomenon of non-monotonicity and its dependence on sidedness that we have

identified occurs across a wide range of network models.

5.2.1 Proof of Theorem 39

In this section, we give formal proofs of perversity and non-monotonicity in Erdös-

Rényi random graphs. We have observed the non-monotonicity is pervasive in wide

range of contact graphs, including scale-free graphs, Erdös-Rényi graphs, and other

synthetic or real world graphs. Theorem 39 gives the rigorous proof of one-sided model

and two-sided model for Erdös-Rényi random graphs.
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Lemma 41. Given a complete graph as the contact network, for intervention with
any success probability ps, there exists parameter set p, pm, pv, such that there is non-
monotonicity in two-sided risk behavior model.

Proof. When nobody takes interventions, there are n nodes in the graph, and the
disease transmission probability between each pair of nodes is p = c/n, where c >

1. By [60], there is a giant connected component with high probability (size of the
connected component is Θ(n)).

When everybody takes interventions, psn + o(n) nodes will have successful inter-
ventions with high probability, and thus removed from the graph. The remaining
(1− ps)n + o(n) nodes will all exhibit risk behavior changes. Thus, the disease trans-
mission probability between each pair of nodes is pm = c′/(1 − ps)n, where c′ > 1.
By [60], there is a giant connected component with high probability (size of the con-
nected component is Θ(n)).

Now we are going to show there exists a pv, such that, if we apply interventions to
each node independently with probability pv, the epidemic severity will be o(n) with
high probability. Let A be the set of nodes that haven’t taken interventions, B be the
set of nodes that have taken interventions but failed, and C be the set of nodes that
have taken interventions and succeeded. rA = 1 − pv represents the probability of a
random node being in set A, rB = pv (1− ps) represents the probability of a random
node being in set B, and rC = pvps represents the probability of a random node being
in set C. In the two-sided model, disease transmits with probability pm between nodes
in set C, and p otherwise. Set a = c and b = c′/ (1− ps). Let

M =

 arA arB 0
arA brB 0
0 0 0


This yields a model of inhomogeneous random graphs with 3 types of vertices (A, B,
and C). By [120] Theorem 1, if all the eigenvalues of M are less than 1 in absolute value,
then the size of the largest connected component is o (n). Let λ be the eigenvalues of
M .

det (M − λI) = det

 arA − λ arB 0
arA brB − λ 0
0 0 −λ


= −λ

(
(arA − λ) (brB − λ)− a2rArB

)
= −λ

(
λ2 − (arA + brB)λ+ abrArB − a2rArB

)
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Solving det (M − λ) = 0, we have

λ1 =
(arA + brB) +

√
∆

2
, λ2 =

(arA + brB)−
√

∆
2

, λ3 = 0

where ∆ = (arA − brB)2 + 4a2rArB. Since |λ3| ≤ |λ2| ≤ |λ1|, it is sufficient to show
there exists a set of parameters that yields |λ1| < 1. Set c′ = c.

|λ1| =
(arA + brB) +

√
(arA − brB)2 + 4a2rArB

2

=
c (1− pv) + c′pv +

√
(c (1− pv)− c′pv)2 + 4c2pv (1− pv) (1− ps)

2

= c
(1− pv) + pv +

√
((1− pv)− pv)2 + 4pv (1− pv) (1− ps)

2

= c
1 +

√
((1− pv) + pv)

2 − 4pspv (1− pv)
2

= c
1 +

√
1− 4pspv (1− pv)

2

When 0 < pv < 1, 1+
√

1−4pspv(1−pv)
2 is a constant smaller than 1. We can find c > 1

that satisfies c1+
√

1−4pspv(1−pv)
2 < 1. Thus, for intervention with success probability

ps, there exist parameters pv, p, and pm, such that the epidemic size is o (n). This
completes our proof of this lemma.

Lemma 42. Given a complete graph as the contact network, for intervention with
any success probability ps, there exists parameter set p, pm, pv, such that there is non-
monotonicity in one-sided risk behavior model.

Proof. When nobody takes interventions, there are n nodes in the graph, and the
disease transmission probability between each pair of nodes is p = c/n, where c < 1.
By [60], the size of the largest connected component is O (log n) with high probability.

When everybody takes interventions, psn + o (n) nodes will have successful inter-
ventions with high probability, and thus removed from the graph. The remaining
(1− ps)n + o (n) nodes will exhibit risk behavior changes. Thus, the disease trans-
mission probability between each pair of nodes is pm = c′/ (1− ps)n, where c′ < 1.
By [60], the size of the largest connected component is O (log n) with high probability.

Now we are going to show there exists a pv, such that, if we apply interventions to
each node independently with probability pv, the epidemic severity will be Θ (n) with
high probability. Let A be the set of nodes that haven’t taken interventions, B be the
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set of nodes that have taken interventions but failed, and C be the set of nodes that
have taken interventions and succeeded. rA = 1 − pv represents the probability of a
random node being in set A, rB = pv (1− ps) represents the probability of a random
node being in set B, and rC = pvps represents the probability of a random node being
in set C. In the one-sided model, disease transmit with probability p between nodes in
set A, and pm otherwise. Set a = c and b = c′/ (1− ps). Let

M =

 arA brB 0
brA brB 0
0 0 0



This yields a model of inhomogeneous random graphs with 3 types of vertices (A, B,
and C). By [120] Theorem 1, if some eigenvalue of M is larger than 1, then the size of
the largest connected component is Θ (n). Let λ be the eigenvalues of M .

det (M − λI) = det

 arA − λ brB 0
brA brB − λ 0
0 0 −λ


= −λ

(
(arA − λ) (brB − λ)− b2rArB

)
= −λ

(
λ2 − (arA + brB)λ+ abrArB − b2rArB

)

Solving det (M − λ) = 0, we have

λ1 =
(arA + brB) +

√
∆

2
, λ2 =

(arA + brB)−
√

∆
2

, λ3 = 0

where ∆ = (arA − brB)2 + 4b2rArB. Since |λ1| ≥ |λ2| ≥ |λ3|, it is sufficient to show
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there exists a set of parameters that yields |λ1| > 1. Let c = c′.

|λ1| =
(arA + brB) +

√
(arA − brB)2 + 4b2rArB

2

=
c (1− pv) + c′pv +

√
(c (1− pv)− c′pv)2 + 4c′2 pv(1−pv)1−ps

2

= c
(1− pv) + pv +

√
((1− pv)− pv)2 + 4pv(1−pv)1−ps

2

= c
1 +

√
((1− pv)− pv)2 + 4pv (1− pv)− 4pv (1− pv) + 4pv(1−pv)1−ps

2

= c

1 +
√

((1− pv) + pv)
2 + 4pv (1− pv)

(
1

1−ps − 1
)

2

= c
1 +

√
1 + 4pv (1− pv) ps

1−ps

2

When 0 < pv < 1,
1+
q

1+4pv(1−pv) ps
1−ps

2 is a constant greater than 1. We can find c < 1

that satisfies c
1+
q

1+4pv(1−pv) ps
1−ps

2 > 1. Thus, for vaccination with success probability
ps, there exist parameters pv, p, and pm, such that the epidemic size is Θ (n). This
completes our proof of this lemma.

Now we can show the proof of Theorem 39 as follows.

Proof of Theorem 39. We claim the disease transmission process on Erdös-Rényi ran-
dom graph G(n, p∗) with parameter set (p, pm, ps, pv) is the same as the disease trans-
mission process on a complete graph with parameter set (p∗p, p∗pm, ps, pv). It’s simply
because the edge between each pair of nodes “opens” with the same probability in both
random processes. Thus, for any disease transmission process on Erdös-Rényi random
graph, we can reduce it to the corresponding process on a complete graph. Then by
Lemma 41 and 42 we can conclude the statement of this theorem holds.

5.3 Randomized vs. targeted vaccinations

We next report on our finding that targeted vaccination can be strictly worse than

random vaccination for some level of vaccine coverage, and this phenomenon occurs

both for one-sided as well as two-sided behavior change (as shown in Figure 5.5).
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In the literature it has been observed that targeting highly connected individuals for

vaccination lead to better outcomes as opposed to random coverage [127, 55, 35]. Our

finding adds nuance to the existing results when risky behavior is taken into account.

This counterintuitive phenomenon can also be explained by the tug of war between

successful vaccination and risky behavior. If the effect of risky behavior is dominant

then one would expect that targeted vaccination ends up being worse than random

coverage since it is the targeted high-degree individuals that are the most responsible

for creating additional contagion. And, in fact the evidence supports this explanation

in that we see targeted coverage being inferior to random coverage at low levels of

vaccination in the one-sided case but at high levels in the two-sided case.

Figure 5.5: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage
of nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.25,
and ps = 0.35.

5.4 Simulations

In order to validate our findings, we carried out comprehensive simulations over a wide

range of networks, listed in Table 5.1.

The disease transmission is a random process, defined by the parameter set (p, pm, pf , pv).

If a node u becomes infectious, it will infect each of its susceptible neighbors indepen-

dently with probability p, referred as base transmissivity. Each node in the graph is

either vaccinated or not. If a node u is not vaccinated, we label it as UV. If a node u’s
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Table 5.1: Descriptions of the networks used in the paper. For each network we show its
type, name, number of nodes n and edges m.

name n m description

Human con-
tact

NewRiverValley
[29]

74,375 1,888,833 Synthetic human contact network for
New River Valley county in Virginia.

Social commu-
nication

Enron mail [87, 3] 36,691 367,666 Email communication network in a
company.

Peer-to-peer
network

Gnutella [116, 4] 10,876 39,994 Gnutella peer-to-peer file sharing
network from August 2002

Random
graphs

Preferential at-
tachment [28]

100,000 300,000 Generated using Python NetworkX
library.

Erdös and Rényi
[60]

100,000 5,000,000

vaccine fails, we label it as VF. Otherwise, we label it VS. Both UV and VF nodes

are susceptible. If a node with vaccine failure is infected then its risk behavior changes,

resulting in boosted transmissivity pm. In the one-sided model a node infects all its

susceptible neighbors with boosted transmissivity pm, while in the two-sided model it

only infects those neighbors with boosted transmissivity pm that have also had a failed

vaccination. Parameter pv denotes the probability that a node is vaccinated.

In our simulation, every node is labeled with UV, VS, VF with probability 1− pv,
pv(1− pf ), and pvpf , respectively. All nodes labeled VS are removed from the graph.

Each edge (u, v) connecting two surviving nodes u and v is “open”, which corresponds

to disease transmission on this edge, or “close” with some probability depending on

the model - (i) in the one-sided model, edge (u, v) is open with probability p if both

u and v are labeled UV, and is open with probability pm if one of u and v is labeled

VF; (ii) in the two-sided model, edge (u, v) is open with probability p, unless both u

and v are labeled VF. The closed edges are removed from the graph. In the residual

graph, the connected component containing a specific node u is the (random) subset of

nodes infected, if the disease starts at u. Let C1, C2, . . . , Ck be the resulting connected

components, then
∑

i |Ci|
2 /n denotes the expected outbreak size of the disease starting

from a random initial node, which we referred as epidemic severity. Since the disease
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transmission is a random process, for a fixed parameter set we run the simulation for

10 iterations, and take the average value of the epidemic severity. We varified that the

epidemic severity is tightly concentrated around the mean, thus the average value of

the epidemic severity is a good measure.

We want to confirm our findings: (i) both one-sided and two-sided behavior changes

can lead to perverse outcomes (less vaccination is more effective, more precisely, as the

vaccinated fraction pv is varied, the epidemic severity shows a non-monotone behavior);

(ii) in both one-sided and two-sided behavior changes, targeted vaccination can be

strictly worse than random vaccination for some level of vaccine coverage. For each

graph, we run simulations over wide range of parameter set (p, pm, pf , pv), and generate

the following 4 sets of plots to validate our findings.

• First set of plots shows how the change of boosted transmissivity will affect the

perverse outcomes, as shown in Figure 5.6, 5.10, 5.14, and 5.18. The x-axis is

pv (percentage of vaccinated population) and the y-axis is the epidemic severity

(expected percentage of nodes getting infected). We fix the base transmissivity

p and the vaccination success probability ps, then plot the curves for different

boosted transmissivity.

• Second set of plots shows how the change of base transmissivity will affect the

perverse outcomes, as shown in Figure 5.7, 5.11, 5.15, and 5.19. The x-axis is pv
and the y-axis is the epidemic severity. We fix the vaccination success probability

ps and keep the boosted transmissivity pm twice the base transmissivity p (i.e.

pm = 2p), then plot the curves for different base transmissivity.

• Third set of plots shows how the change of vaccination success probability will

affect the perverse outcomes, as shown in Figure 5.8, 5.12, 5.16, and 5.20. The

x-axis is pv and the y-axis is the epidemic severity. We fix the base transmissivity

p and the boosted transmissivity pm, then plot the curves for different vaccination

success probability.

• Fourth set of plots shows the finding that targeted vaccination can be strictly

worse than random vaccination, as shown in Figure 5.9, 5.13, 5.17, and 5.21.

The x-axis is pv and the y-axis is the ratio between the epidemic severity under

targeted vaccination strategy and the epidemic severity under random vaccination
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strategy. If y value is bigger than 1, it means targeted strategy is worse than

random strategy. We fix the base transmissivity p and the vaccination success

probability ps, then plot the curves for different boosted transmissivity.

In order to capture real disease transmission through simulations, we find typical

values of R0, the basic reproduction number, for many diseases such as influenza and

HIV [65, 49, 125]. Then, we devide R0 by the average degree of the graph, and use it

as the base transmissivity p. For vaccination success probability, we use the efficacy for

real vaccines [61, 70, 1].

Figure 5.6: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.25 and
ps = 0.35.

5.5 Conclusion

In conclusion, risk behavior change in conjunction with failure of prophylactic inter-

ventions can have perverse non-monotone effects on the spread of diseases. This study

has explicitly identified sidedness as an attribute of risk behavior change that needs to

be taken into account in public policies for vaccinations and antiviral treatments. For

one-sided risk behavior change, it is imperative to have sufficiently high levels of cover-

age, while two-sided situations require both high coverage as well as programs aimed at

reducing risky behavior. Our results echo the central premise of Blower-McLean that

the development of efficacious prophylactic treatments and increasing their coverage

need to go hand in hand with behavioral intervention strategies. These issues need to
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Figure 5.7: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.

Figure 5.8: Epidemic severity with different intervention success probabilities in one-sided
(left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking
interventions, and y-axis is the expected percentage of nodes getting infected. p = 0.25,
and pm = 0.5.
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Figure 5.9: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage
of nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.25,
and ps = 0.35.

Figure 5.10: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.03 and
ps = 0.35.
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Figure 5.11: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.

Figure 5.12: Epidemic severity with different intervention success probabilities in one-
sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes
taking interventions, and y-axis is the expected percentage of nodes getting infected. p =
0.03, and pm = 0.06.
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Figure 5.13: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of
nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.03,
and ps = 0.35.

Figure 5.14: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.15 and
ps = 0.35.
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Figure 5.15: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.

Figure 5.16: Epidemic severity with different intervention success probabilities in one-
sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes
taking interventions, and y-axis is the expected percentage of nodes getting infected. p =
0.15, and pm = 0.3.
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Figure 5.17: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of
nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.15,
and ps = 0.35.

Figure 5.18: Epidemic severity with different boosted transmissivities in one-sided (left)
and two-sided (right) risk behavior models. x-axis is the percentage of nodes taking in-
terventions, and y-axis is the expected percentage of nodes getting infected. p = 0.2 and
ps = 0.35.
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Figure 5.19: Epidemic severity with different transmissivities in one-sided (left) and two-
sided (right) risk behavior models. x-axis is the percentage of nodes taking interventions,
and y-axis is the expected percentage of nodes getting infected. ps = 0.35, and pm = 2p.

Figure 5.20: Epidemic severity with different intervention success probabilities in one-
sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of nodes
taking interventions, and y-axis is the expected percentage of nodes getting infected. p =
0.2, and pm = 0.4.
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Figure 5.21: Epidemic severity comparison of random and targeted intervention strategies
in one-sided (left) and two-sided (right) risk behavior models. x-axis is the percentage of
nodes taking interventions, and y-axis is the ratio of the epidemic severity in targeted
intervention strategy and the epidemic severity in random intervention strategy. p = 0.2,
and ps = 0.35.

be revisited in the context of new anti-retroviral treatments being considered for HIV

[61].
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Chapter 6

Conclusion

In this dissertation, we have developed and analyzed positive diffusion processes under

both organic dynamics and adversarial dynamics. We have also designed and analyzed

intervention strategies to control negative diffusion. We now conclude by summarizing

our results and by presenting a few directions for future research.

6.1 Enable positive diffusion

In the first half of the dissertation, we considered the question of how to design efficient

algorithms to enable positive diffusion.

• We first looked at diffusion under organic dynamics, where the communication

network is altered by diffusion itself. We proposed two natural and simple pro-

cesses, triangulation and two-hop walk. These two processes are good algorithms

to solve resource discovery, group member discovery, and lots of other prob-

lems. We have shown in undirected graphs both processes complete in O(n log2 n)

rounds, and proved an Ω(n log n) lower bound. This is an almost tight bound with

a logarithmic gap. We also proved that in directed graphs, two-hop walk process

completes in O(n2 log n) rounds, and gave a matching lower bound Ω(n2 log n) in

weakly connected directed graphs, and lower bound Ω(n2) in strongly connected

directed graphs.

• We then looked at diffusion under adversarial dynamics, more specifically, k-

gossip problem. There we adopted the online adversary model proposed in [89],

where Kuhn et al showed an O(kn) upper bound and an Ω(n log k) lower bound.
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We improve their lower bound to Ω(kn/ log n), which is an almost tight bound.

This suggests that under the adversarial model defined in [89], we cannot have

efficient token-forwarding based algorithms. Thus, we designed an O(n
√
k log n)

algorithm and an bicriteria (O(nε), log n) approximation algorithm under offline

adversarial model, where the adversary has to give the whole sequence of com-

munication graphs up in front.

6.2 Control negative diffusion

In the second half of this dissertation, we switch gear to ask the question of how to

control negative diffusion.

• We first designed an O(log n) approximation algorithm for the optimal centralized

intervention strategy, where the algorithm picks a set of nodes in the network to

apply interventions in order to minimize the cost of negative diffusion.

• We then looked at the setting where nodes in the network make their own decision

if they want to secure themselves. We used game theory to show the existence

and non-existence of Nash equilibrium. We also compare the cost of decentralized

solution with the optimal centralized solution, in other word, price of anarchy.

• Last, we analyze negative diffusion in the presence of risk behavior changes. We

have observed and analyzed two counter intuitive phenomena: 1) less interven-

tions can be more effective, and 2) targeted intervention strategy can be worse

than random intervention strategy.
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