Existence Theorems and Approximation Algorithms for Generalized Network Security Games

V.S. Kumar1 R. Rajaraman2 Z. Sun2 R. Sundaram2

1Virginia Bioinformatics Institute
Virginia Tech

2Department of Computer Science
Northeastern University
Outline

1. Introduction
 - Motivation and examples
 - Model and definitions

2. Our results
 - Existence of pure NE
 - Approximating the social optimum
 - Simulation study

3. Concluding remarks
 - Future work
Outline

1 Introduction
 • Motivation and examples
 • Model and definitions

2 Our results
 • Existence of pure NE
 • Approximating the social optimum
 • Simulation study

3 Concluding remarks
 • Future work
Motivation

Computer network
Motivation

Human contact network
Outline

1. Introduction
 - Motivation and examples
 - Model and definitions

2. Our results
 - Existence of pure NE
 - Approximating the social optimum
 - Simulation study

3. Concluding remarks
 - Future work

V.S. Kumar, R. Rajaraman, Z. Sun, R. Sundaram
Existence Thm and Approx Algo for Gen Netwk Security Games
Game-theoretic model

- Contact graph: $G(V,E)$.
- Strategies: install anti-virus software or not, $a_i \in \{0, 1\}$.
- Security cost/infection cost: C_i, L_i.
- Individual cost: $cost_i(\bar{a}) = a_i C_i + (1 - a_i) L_i p_i(\bar{a})$.
- Social cost: $\sum_i cost_i(\bar{a})$.
- Infection model: we assume infection is initiated at a node (picked with probability proportional to its weight w_i), and transmits over at most d (which is a parameter) hops in the contact graph.
- Generalized Network Security Game: $GNS(d)$.
Outline

1 Introduction
 - Motivation and examples
 - Model and definitions

2 Our results
 - Existence of pure NE
 - Approximating the social optimum
 - Simulation study

3 Concluding remarks
 - Future work
List of results

<table>
<thead>
<tr>
<th></th>
<th>$d = 1$</th>
<th>$1 < d < \infty$</th>
<th>$d = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>existence of pure NE</td>
<td>Yes</td>
<td>No/NP-complete</td>
<td>Yes</td>
</tr>
<tr>
<td>price of anarchy</td>
<td>$\Delta + 1$</td>
<td>$O(1/\alpha(G))$</td>
<td></td>
</tr>
<tr>
<td>approximating social</td>
<td>2</td>
<td>2d</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

- Δ is the max degree in the contact graph.
- $\alpha(G)$ is the vertex expansion of the contact graph.
Aspnes et al 2006 introduced a basic model for \(d = \infty \) case that we have generalized here.
 - Show existence of pure NE in a uniform version.
 - Give an \(O(\log^{3/2} n) \)-approximation for social optimum.

Interdependent security games [Kearns-Ortiz 2004].
 - Similar to our model for special case of \(d = 1 \).
 - Crucial difference in assumption about initial infection.

\(n \)-intertwined games [Omic et al 2009].
 - Based on SIS model for worm spread.

Considerable work in SIR and SIS models in epidemiology.
Existence of pure NE when \(d = \infty \)

Theorem

Every GNS(\(\infty \)) instance has a pure NE.

- The existence proof is a potential function argument.
- Define Threshold of a node, \(t_i \): Bound on number of reachable nodes that would make the node want to secure itself.
- w.l.o.g., assume \(t_1 \geq t_2 \geq \cdots \geq t_m \).
- Define potential function: \(\hat{\Phi}(\vec{a}) = (\Phi_1(\vec{a}), \Phi_2(\vec{a}), \ldots, \Phi_m(\vec{a})) \)
 where \(\Phi_i(\vec{a}) \) is 0 if \(i \) is secure, \(-1\) if \(i \) is insecure and happy, and 1 otherwise.
Example of potential function

- $t_1 = 5$, $t_2 = 4$, $t_3 = 3$, $t_4 = 2$, $t_5 = 1$, $t_6 = 1$, $t_7 = 0$.
- 5 is secured.
- Potential function for this configuration is $(-1, -1, -1, 1, 0, -1, 1)$.
Case 1: unhappy insecure \rightarrow happy secure. One component decreases by 1, while none of the other components increases.

Case 2: unhappy secure \rightarrow happy insecure. All the happy insecure nodes with bigger thresholds are still happy. Happy insecure nodes with smaller thresholds may become unhappy. But the function still decreases lexicographically.
Outline

1. Introduction
 - Motivation and examples
 - Model and definitions

2. Our results
 - Existence of pure NE
 - Approximating the social optimum
 - Simulation study

3. Concluding remarks
 - Future work
Approximation algorithm for social optimum

LP formulation

- Let P_{ij}^d denote the set of all simple paths from i to j of length at most d.
- $\forall v \in V$, $x_v = 1$ if v is secure; $x_v = 0$ otherwise.
- $\forall i, j \in V$, $y_{ij} = 1$ is there is no $p \in P_{ij}^d$ consisting entirely of insecure nodes.

$$\min \sum_v C_v \cdot x_v + \sum_{j \in V} L_j \sum_{i \in V} w_i (1 - y_{ij})$$

s.t.

$$\sum_{v \in p} x_v \geq y_{ij} \quad p \in P_{ij}^d$$

$$x_v \in \{0, 1\} \quad \forall v \in V$$

$$y_{ij} \in \{0, 1\} \quad \forall i, j \in V$$
Objective function of LP

\[
\begin{align*}
\min & \quad \sum_v C_v \cdot x_v + \sum_{j \in V} L_j \sum_{i \in V} w_i (1 - y_{ij}) \\
\text{s.t.} & \quad \sum_{v \in p} x_v \geq y_{ij} \quad p \in P_{ij}^d \\
& \quad x_v \in \{0, 1\} \quad \forall v \in V \\
& \quad y_{ij} \in \{0, 1\} \quad \forall i, j \in V
\end{align*}
\]

- First part of the objective function corresponds to the cost of securing nodes.
- Second part corresponds to the infection cost. For node \(j\), its infection cost is \(L_j\) times the sum of the probabilities of all nodes that have a path to \(j\) of length at most \(d\) consisting entirely of insecure nodes.
Constraints of LP

\[\begin{align*}
\text{min} \quad & \sum_v C_v \cdot x_v + \sum_{j \in V} L_j \sum_{i \in V} w_i (1 - y_{ij}) \\
\text{s.t.} \quad & \sum_{v \in p} x_v \geq y_{ij} \quad p \in P_{ij}^d \\
& x_v \in \{0, 1\} \quad \forall v \in V \\
& y_{ij} \in \{0, 1\} \quad \forall i, j \in V
\end{align*} \]

- Constraint says, in order to separate a pair of nodes \(i \) and \(j \), we need to secure at least one node in every path between these two.
Solving LP

- d is a constant:
 - Number of paths of length at most d is polynomial.
 - So LP is poly-size and can be solved in poly-time.

- d is not a constant:
 - Number of paths superpolynomial; still LP solvable using ellipsoid method.
 - Can also solve an equivalent LP of polynomial size.
LP objective

\[
\begin{align*}
\min & \sum_v C_v \cdot x_v + \sum_{j \in V} L_j \sum_{i \in V} w_i (1 - y_{ij}) \\
\end{align*}
\]

- Let \((x, y)\) denote an optimal solution.
- Round each \(y_{ij}\) to nearest integer.
 - So values at least 1/2 are rounded up to 1 and less than 1/2 rounded down to 0.
- Scale up each \(x_{ij}\) by a factor of 2.
 - If scaled value exceeds 1, set it to 1.
- New solution \((x, y)\) is still feasible and new cost at most twice that before.
It remains to round the x-values.

Simple approach: Each x_{ij} that is at least $1/d$ is rounded up to 1, other x_{ij}s rounded down to 0.

- Yields $2d$-approximation.
- Perhaps acceptable for small d.

For $d = \infty$:

- Need to select a set of nodes to secure such that all pairs of nodes i, j with $y_{ij} = 1$ are separated.
- This is precisely a vertex multicut problem for which x-values give a fractional optimum.
- Use algorithm of Garg-Vazirani-Yannakakis to round the x-values and obtain an $O(\log n)$-approximation.
• Study the convergence time for best response strategies.
• Study the performance of our approximation algorithms.
• Simulate on 2 types of graphs.
 • Random geometric graphs: distributing n^2 nodes uniformly at random in an $n \times n$ square, and add an edge between a pair of nodes if their distance is no more than 1.
 • Preferential attachment graphs.
Convergence time

$d = 1$

$d = \infty$

V.S. Kumar, R. Rajaraman, Z. Sun, R. Sundaram

Existence Thm and Approx Algo for Gen Netwk Security Games
Performance of approx algorithms

Results for preferential attachment graphs.

\(d = 1 \)

\(d = \infty \)
Performance of approx algorithms

Results for random geometric graphs.

\[d = 1 \]

\[d = \infty \]
Introduction
- Motivation and examples
- Model and definitions

Our results
- Existence of pure NE
- Approximating the social optimum
- Simulation study

Concluding remarks
- Future work
Future work

- Incorporate unreliable anti-virus software/vaccination.
 - For a natural probabilistic model, we can show pure NE may not exist.

- Consider other virus/disease transmission models.
 - Again, pure NE may not exist in a probabilistic transmission model.

- In probabilistic models, approximating social optimum is challenging since even estimating the epidemic size given secure nodes is \#P-hard.

- Stackelberg equilibrium: Given a budget of k secure nodes, find low-cost pure NE

- For $d = \infty$, bridge gap between upper ($O(\log n)$) and lower bound ($O(1)$) on approximation ratio achievable in poly-time.