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Abstract

Aspnes et al [2] introduced an innovative game for modeling the containment of the spread
of viruses and worms (security breaches) in a network. In this model, nodes choose to install
anti-virus software or not on an individual basis while the viruses or worms start from a node
chosen uniformly at random and spread along paths consisting of insecure nodes. They showed
the surprising result that a pure Nash Equilibrium always exists when all nodes have identical
installation costs and identical infection costs.

In this paper we present a substantial generalization of the model of [2] that allows for
arbitrary security and infection costs, and arbitrary distributions for the starting point of the
attack. More significantly, our model GNS(d) incorporates a network locality parameter d which
represents a hop-limit on the spread of infection as accounted for in the strategic decisions, due
to either the intrinsic nature of the infection or the extent of neighborhood information that is
available to a node.

We determine that the network locality parameter plays a key role in the existence of pure
Nash equilibria (NE): local (d = 1) and global games (d =∞) have pure NE, while for GNS(d)
games with 1 < d < ∞, pure NE may not exist, and in fact, it is NP-complete to determine
whether a given instance has a pure NE. For local and global games, we also characterize the
price of anarchy in terms of the maximum degree and vertex expansion of the contact network;
these suggest natural heuristics to aid a network planner in enforcing efficient equilibria.

We design a general LP-based framework for approximating the NP-complete problem of
finding a socially optimal configuration in our game. Our framework yields a 2d-approximation
for general GNS(d) games, and an O(log n)-approximation for the global model where n is the
number of network nodes; the latter result improves on the approximation bound of O(log1.5 n)
of [2] achieved for a special case of our global model.

We study the characteristics of NE and the quality of our approximations empirically in two
distinct classes of graphs: random geometric graphs and power law graphs. We find that in
local and global games on these real-world networks, best response dynamics converge in linear
or sub-linear time and have costs comparable to the social optimum. Finally, we study the
performance of our approximation algorithms, and find that the approximation guarantees with
respect to social cost are much better in practice than our theoretical bounds.
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1 Introduction

Over the recent decades, there has been a explosive growth in the use of personal digital devices of
various kinds, which are connected to the Internet through new technologies, such as BlueTooth and
Wi-Fi to allow ubiquitous access. This has, unfortunately, been accompanied by significant increase
in worm attacks that exploit bugs in these new technologies, and which have a new and growing
“medium” to spread on - recent attacks, e.g., Cabir and CommWorm, that span multiple networks
are expected to become increasingly prevalent in future. While, effective anti-virus software and
patches are readily available, the average user is very independent and does not often care to be
proactive about installing the most effective anti-virus software, and downloading the latest patches,
partially because of the cost of the software and the effort involved, which we refer to as the security
cost. Indeed, a large fraction of devices are estimated to be without adequate anti-virus protection.
If a user does not install protective software, they would incur a cost if his device gets attacked,
due to downtime, loss of revenue, and cost of reinstalling systems; we refer to these as the infection
cost. If enough other nodes in the network are secured, the likelihood of a specific device getting
infected would go down (as a result of the “herd immunity”), leading to a natural game theoretic
scenario. A number of different non-cooperative game formulations have been developed to study
this basic problem, e.g., [2, 3, 9, 16, 18, 23, 28]; one issue with many of these formulations is that
they involve utility functions that require quite a lot of non-local information to compute, and it
is not clear how implementable such games might be.

In this paper, we present a generalized network security game model GNS(d), which incorpo-
rates arbitrary contact networks through an undirected graph G and heterogeneous nodes with
individual security and infection costs. Our model is parametrized by network locality parame-
ter d, which represents the extent of neighborhood information that is available to a node when
making strategic security decisions, which is a departure from earlier models which require global
information for making decisions. Qualitatively, we consider three important cases with respect to
d. The case d = 1, which we refer to as the local infection model, is most well-suited for ad hoc
wireless networks and social networks, when certain actions initiated by an insecure node could
adversely affect immediate neighbors, friends, or email contacts. For this case, our model can be
viewed as a variant of the IDS model of [20]. The case d = ∞, which we refer to as the global
infection model, is most well-suited for the highly infectious worms and viruses in the Internet that
can be transmitted in an hop-unlimited manner through unsuspecting insecure nodes, under the
assumption that individual nodes have complete information. Our GNS(∞) model is a general-
ization of the elegant model of [2] (in that we allow different security costs, infection costs, and
initial infection probabilities). The intermediate case 1 < d <∞ applies to the majority of network
security hazards where the transmission may be hop-limited and nodes may only have limited local
information about the topology and security decisions taken by others. Our main results are the
following.

1. Existence of pure Nash equilibria (NE): We show that the locality parameter d plays
a significant role in the structure of the resulting games. Both the extremes of GNS(1) and
GNS(∞) turn out to be ordinal potential games, and a pure NE can be computed by best
response dynamics – that is, every sequence of best response steps by the individual players
converges to a pure NE. However, for every d in the range (1,∞), we show that there exist an
instance of GNS(d) that does not have a pure equilibrium. Further, we show that the price
of anarchy for a GNS(1) game (which, informally, is the maximum ratio of the cost of a pure
NE to the social optimum — see Section 3 for formal definitions) is at most the maximum
degree of the contact graph, while that for GNS(∞) is inversely proportional to the vertex
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expansion of the contact graph, which improves the bound of [2].

2. Complexity of computing pure NE: While there is a simple combinatorial characteriza-
tion for the existence of pure NE in GNS(d) for all d, we show that for 1 < d <∞, deciding if
an arbitrary instance of GNS(d) has a pure NE is NP-complete. For GNS(1), we show that
finding a pure NE of least cost is NP-complete; a corresponding result for GNS(∞) is in [2].

3. Approximating the social optimum: We show that computing the social optimum is
NP-complete for a GNS(d) game, for any d; the case of d =∞ was shown by [2]. We design
a general framework for finding a strategy vector for the players in polynomial time, whose
cost is at most 2d times that of the optimal, for any fixed d. In particular, this implies that
for d = 1, we obtain a 2-approximation. For d =∞, we provide a different algorithm within
the framework that yields an O(log n)-approximation, where n is the number of nodes in
the network; this improves on the approximation bound of O(log1.5 n) of [2] achieved for a
special case of the GNS(∞). We note that the recent independent work of [11] also yields an
O(log n)-approximation algorithm for the d =∞ case.

4. Empirical results: We study the characteristics of NE empirically in two distinct classes
of graphs: random geometric graphs and power law graphs. For d = 1, we find that the
convergence time for best response is sub-linear in the number of nodes in both the classes
of graphs, while it is linear for d =∞. Also, for d = 1, we find that the cost of the pure NE
obtained is very close to that of the social optimum, indicating that the pure NE obtained in
real-world networks approximate social optimum very well. For d =∞, we observe that there
may be a significant gap between the cost of the pure NE and that of the social optimum,
even for small networks. Finally, we study the performance of our approximation algorithms
for the social optimum, and find that the approximation guarantees in practice are much
smaller than our theoretical bounds.

Pure NE represent stable operating points for a system with selfish users. Therefore, for a
network planner, understanding and controlling the quality of equilibria reached is an important
issue. Our results suggest locality characteristics of the network or the amount of information
available to the strategic network players have a significant impact on the existence of equilibria.
The non-monotonicity in the existence of NE, with respect to d, is somewhat surprising and suggests
a closer examination of the impact of information on pure NE in such games. While our theoretical
analysis indicates that pure NE may be significantly inferior to the optimum in terms of social
optimum in the worst-case, our experiments suggest that for real-world network models pure NE
obtained by uncoordinated best response dynamics have low cost relative to the social optimum,
especially in the case of d = 1. Additionally, our results on the price of anarchy suggest natural
heuristics to aid a network planner in enforcing efficient equilibria. Finally, the approximations
achieved by our approximation algorithms, both in theory and experiments, indicate that our
proposed algorithms are viable candidates wherever centralized decisions can be made on network
protection mechanisms.
Organization. We discuss related work in Section 2 and our model and definitions in Section 3.
We present the characterization and complexity of NE in Section 4. Our algorithms for computing
the social optimum and our experimental results are discussed in Sections 5 and 6, respectively.
We conclude in Section 7 with a discussion of the implications of our results.
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2 Related Work

Non-cooperative game theory has been used in analyzing a number of problems in traffic and
communication networks, e.g., routing [27], topology control and network formation [13, 24] and
security [18, 26]. The basic questions of interest have usually been about the existence and the
structure of Nash equilibria and the price of anarchy, which is the worst case cost of a Nash
equilibrium to the social optimum, as defined formally later. See [25] for a good introduction on
the use of game theoretic techniques for networking applications.

Several formulations have been proposed for analyzing network security problems and the spread
of epidemics in networks [2, 3, 9, 16, 18, 23, 28]. Our paper directly builds on the formulation of
Aspnes et al. [2], who model the risk of infection for an insecure node v as the probability that
the initial infection, which is assumed to originate at a node chosen uniformly at random, starts in
the same component as v in the subgraph induced by v and the other insecure nodes. They show
the surprising result that pure Nash equilibria always exist in such games. They also establish a
high price of anarchy and give an O(log1.5 n) approximation algorithm for computing the social
optimum, where n is the number of nodes in the network. Their approximation algorithm uses
an O(

√
log n)-approximation for the sparsest cut problem [1], which is based on a semidefinite

programming relaxation of the problem. In this paper, we are able to give a much simpler LP-based
approximation algorithm using the vertex multi-cut problem, which improves the approximation
ratio to O(log n) and also applies to a more general model. Another direction of work is based on
SIS models for the worm spread, e.g., the n-intertwined model [26]. In this model, nodes are in two
states - susceptible or infected. Each infected node spreads the infection to its neighbors with some
probability. Another closely related class of models is that of Interdependent Security games (IDS)
[20], which is similar to our model for the special case of d = 1. One crucial technical difference
between the two models, which leads to two different games, is the assumption about the initial
infection: in IDS, it is assumed to originate independently at different nodes, while in our GNS(1)
model, we assume an initial location is selected according to a given probability distribution.

Our formulation of generalized network security games is largely motivated by mechanisms to
protect communication networks. Some of our model and results, especially the lower bound re-
sults, however, also apply equally well to the spread of diseases and the protection of communities
through vaccinations. The pure Nash equilibria correspond to stable points in the space of vacci-
nation decisions made by individuals, and our approximation algorithms yield public policies for
vaccination that well-approximate the social welfare. There is considerable work in epidemiology,
both from a game-theoretic perspective, as well as on the analysis of disease spreads through SIR
and SIS models [7, 8, 21, 5, 6]. The game-theoretic models adopted in these studies, however, do
not consider the impact of the underlying contact network. Furthermore, there is little work on
quantifying the effect of locality (either in disease spread or in information availability).

3 Model and Definitions

In this section, we present our game-theoretic model for network security.
Contact Graph. Let V denote the set of users/devices (henceforth, referred to as nodes), each
of which is assumed to be an autonomous player. Let G denote the underlying contact graph over
the node set V ; an edge (u, v) ∈ G indicates that nodes u and v are directly connected, so that
if node u is infected by a worm it can potentially spread to node v. Let N(v) denote the set of
neighbors of v in G. We will frequently work with certain subgraphs of G, for which we introduce
the following notation. For any undirected graph H and subset S of vertices of H, we let H[S]
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denote the subgraph of H induced by the vertices in S.
Strategies. The strategy for each node v is the decision of whether to install an anti-virus software
or not; we use a variable av ∈ [0, 1] to denote the probability of securing the device. In this paper,
we focus on pure strategies, i.e., av ∈ {0, 1}. Let ~a denote the strategy vector of all nodes. Following
[2], the attack graph, G~a, is the subgraph of the contact graph induced by the set of insecure nodes
according to ~a. For notational convenience, let ~a[v/x] be the strategy vector obtained by replacing
av by x in the vector ~a.
Infection model. We assume that the infection is initiated at a node chosen from V according
to an arbitrary probability distribution. Let wv denote the probability that node v is chosen as
the initial infection point; for convenience, we introduce the notation w(S) to denote the sum of
wv over all v in S. We parameterize the infection model by d, the maximum number of hops over
which the probability of infection spread is taken into account in the decision making. Thus, for a
given contact graph G and strategy vector ~a, an infection originating at node v infects node u if
and only if u is within d hops of v in G~a. Since G is fixed and d is clear from the context, denote
by Sv(~a) the set of nodes that are within d hops of v in G~a[v/0]. For a given strategy vector ~a,
therefore, the probability that node v gets attacked in this model (denoted by pv(~a)) is w(Sv(~a)).
Generalized Network Security Game GNS(d). We now present our model for a generalized
network security game GNS(d), parameterized by the hop-limit d in the infection model. The
game GNS(d) is specified by a contact graph G, initial infection probability distribution w, and
two costs per network node. Let Cv denote the security cost (installing an anti-virus software)
of user v; we assume the software is fool-proof so that secure nodes do not get attacked. Let Lv

denote the infection cost of user v (recovering from a worm attack in case an insecure node v gets
attacked). Then, the cost to node v is defined as

costv (ā) = avCv + (1− av)Lv · pv (ā) .

A pure Nash equilibrium (henceforth, pure NE) is a strategy vector ~a such that no node v has
any incentive to switch his strategy, if all other nodes’ strategies are fixed. ~a is a Nash equilibrium
if costv(~a[v/x]) ≥ costv(~a) for x ∈ {0, 1}. Therefore, a pure NE is a natural configuration to aim
for in a non-cooperative game. It is easy to verify that the following characterization of a pure NE
(shown in [2] for the special case where G is the complete graph) holds.

Lemma 1. For v ∈ V , let tv = Cv/Lv. A strategy vector ~a ∈ {0, 1}n is a pure NE if the following
conditions hold: (i) for all v such that av = 0, w(Sv(~a)) ≤ tv, and (ii) for all v such that av = 1,
w(Sv(~a[v/0])) > tv.

Social cost. The total social cost of a strategy profile is the sum of the individual costs, which
is cost (ā) =

∑n
v=1 costv (ā). A socially optimum strategy is a vector ~a that minimizes this cost -

this is not necessarily (and is not usually) a pure NE. Therefore, the cost of a pure NE relative to
the social cost is an important measure; the maximum such ratio (i.e., over all possible pure NE)
is also known as the price of anarchy [22].

For convenience, Table 1 summarizes our notations.

4 Nash equilibria

4.1 The local infection model: d = 1

For the local infection model, we show that a pure NE always exists. Our proof is by a reduction
to a result of Borodin et al. [10] on existence of subgraphs with restricted degree sequences; their
result is based on a potential function argument.
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Table 1: A list of notations.

Notations Explanation
G Contact graph.
G[S] Subgraph of G induced by the vertices in S.
Cv Security cost for node v
Lv Infection cost for node v
~a Strategy vector of nodes.
G~a Attack graph, i.e. the subgraph of the contact graph induced by the set of insecure

nodes according to ~a.
~a[v/x] Strategy vector obtained by replacing av by x in the vector ~a.
Sv(~a) Set of nodes that are within d hops of v in G~a[v/0].
wv Probability that node v is chosen as the initial infection point.
w(S) Sum of wv over all v in S.

costv(~a) Cost to node v given strategy vector ~a.
GNS(d) Generalized network security game parameterized by the disease hop limit d.

Theorem 2. Every GNS(1) instance has a pure NE.

Proof. We first define two functions a : V → R and b : V → R. For each v ∈ V , a(v) =
w(N(v))−Cv

Lv
+w(v) and b(v) = Cv

Lv
−w(v). We argue next, using a generalization of an argument due

to [10], that there exists a partition V = A∪B such that for each v ∈ A, we have w(A∩N(v)) ≤ a(v)
and for each v ∈ B, we have w(B ∩ N(v)) ≤ b(v). Consider the following function that defines a
potential for each partition (A,B).

R(A,B) =
∑

v∈Aw(v) (w(A ∩N(v))− 2a(v))
+

∑
v∈B w(v) (w(B ∩N(v))− 2b(v))

Among all the partitions, we take a partition (A∗, B∗) minimizing R and assert that (A∗, B∗) is the
partition we need. Suppose that a vertex x belongs to A∗, and w(A∗∩N(x)) > a(x). Now we move
x from A∗ to B∗ to obtain the partition (A′ = A∗ \ {x}, B′ = B∗ ∪ {x}). Because a(x) + b(x) ≥
w(N(x)), we have w(N(x) ∩ B∗) ≤ b(x). It is easy to verify that R(A∗, B∗) − R(A′, B′) equals
w(x) (w(N(x) ∩A∗)− 2a(x)) +w(x)w(N(x)∩A∗)−w(x) (w(N(x) ∩B∗)− 2b(x))−w(x)w(N(x)∩
B∗) = 2w(x) (w(N(x) ∩A∗)− a(x))− 2w(x) (w(N(x) ∩B∗)− b(x)) > 0. This means R(A∗, B∗) >
R(A′, B′), which is a contradiction. A similar inequality follows if there is a vertex x ∈ B∗ with
w(B∗∩N(x)) > b(x). Therefore, such a vertex x doesn’t exist implying that (A∗, B∗) is the desired
partition.

Given such a partition (A,B), we establish the existence of pure NE. Let ~a be a strategy vector
with av = 1 for all v ∈ A and av = 0 for all v ∈ B; i.e., A denotes the set of secure nodes. Then, we
argue that ~a is indeed a pure NE. First consider the case where v ∈ A. Then v is secure and pays cost
Cv. If v changes strategy, its expected infection cost is Lv (w(N(v) ∩B) + w(v)). Since v ∈ A, we
have w(N(v) ∩ A) ≤ a(v) = w(N(v))− Cv/Lv + w(v). Therefore, Cv ≤ Lv (w(N(v) ∩B) + w(v)),
i.e. v won’t change its strategy. Next consider v ∈ B. Then v is not secure and its expected
infection cost is Lv (w(N(v) ∩B) + w(v)). If v changes strategy, its cost is Cv. Since v ∈ B, we
have w(N(v) ∩B) ≤ b(v) = Cv/Lv −w(v). Therefore, Lv (w(N(v) ∩B) + w(v)) ≤ Cv, i.e. v won’t
change its strategy. Thus it follows that ~a is a Nash equilibrium.
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When the security and infection costs are uniform, we show that for the case of d = 1, the
maximum ratio of the cost of a pure NE to the social optimum is bounded by the maximum degree.

Lemma 3. When security and infection costs are uniform, and wv = 1/n ∀v, the price of anarchy
in GNS(1) is at most ∆ + 1, where ∆ is the maximum degree of the contact graph.

Proof. Let C and L denote the security and infection costs, respectively. Suppose C > L(∆+1)/n.
Then no node is secured in any pure NE and therefore, the cost of any pure NE is at most L(∆+1).
In the optimum strategy, each node has a cost of C if it is secured, or at least L/n otherwise.
Therefore the optimal cost is at least L, and the lemma follows in this case.

Next, consider the case C ≤ L(∆ + 1)/n. In any pure NE, any node has cost at most C, and
therefore the cost of a pure NE is at most Cn. If C ≤ L/n, the optimum cost is also Cn, and
therefore, we assume C ≥ L/n. In an optimum solution, each node has cost at least L/n, and
therefore, the optimal cost is at least L. Therefore, the price of anarchy in this case is at most
∆ + 1.

4.2 The global infection model: d =∞

In this section, we consider the global model (d =∞); thus, any node v is capable of infecting any
other node u as long there is a path of insecure nodes between v and u in the contact graph G. In
this special case, our model is a generalization of the model of [2] in that we allow different security
costs, infection costs, and initial infection probabilities.

Theorem 4. Every GNS(∞) instance has a pure NE.

Proof. Let tv = Cv/Lv; we refer to tv as the threshold for v. We relabel the n nodes so that
t1 ≥ t2 ≥ . . . ≥ tn, where we break ties arbitrarily. Given a strategy vector ~a, we say that a secure
node v is happy if w(Sv(~a[v/0])) > tv, and unhappy otherwise. Similarly, an insecure node v is
happy if w(Sv(~a)) ≤ tv, and unhappy otherwise. Recall that when d =∞, Sv(~a) is the set of nodes
that can reach v in G~a.

Consider the following potential function.

Φ̂(~a) = (Φ1(~a),Φ2(~a), . . . ,Φn(~a))

where Φv(~a) is 0 if v is secure, −1 if v is insecure and happy, and 1 otherwise. We next show this
potential always lexicographically decreases. There are two cases:

1. Some node v switches from being an insecure unhappy node to being a secure happy node,
changing the strategy vector from ~a to ~b. In this case w(Sv(~a)) > tv. Since the set of
secure nodes in ~b is a superset of the set of secure nodes in ~a, it follows that for any node u,
w(Su(~b)) ≤ w(Su(~a)); it thus follows that no insecure happy node in ~a can become unhappy
in ~b. Therefore, the vth component of the potential decreases by 1, while none of the other
components increases.

2. Some node v switches from being secure to not being secure, changing the strategy vector
from ~a to ~b. In this case, w(Sv(~b)) ≤ tv. We thus have the vth component of the potential
changing from 0 to −1. Consider any node u 6= v. If u is secure, then the uth component of the
potential is unchanged. Otherwise, consider two cases. If v and u are in different connected
components, then w(Su(~b)) = w(Su(~a)), implying that the uth component of the potential
is unchanged. If v and u are in the same connected component, then w(Su(~b)) = w(Sv(~b));
thus, if u is happy in ~a but unhappy in ~b, then it must be the case that tu < tv, implying
that u > v. Thus, the only components of the potential that can increase are the components
greater than v, implying that the potential decreases lexicographically.
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Since the value of each column in the potential vector is between −1 and 1, and this potential vector
lexicographically decreases, we conclude that this process converges to a pure Nash equilibrium (in
fact, in at most 3n steps).

Even when the security and infection costs are uniform, [2] showed that the price of anarchy
is Ω(n). We give a more precise characterization in terms of the vertex expansion of the contact
graph. For any graph H over vertex set V , the vertex expansion α(H) is defined as the largest
number c such that for any subset V ′ of the vertices such that |V ′| ≤ |V |/2, the set of vertices in
V \ V ′ that are adjacent to a vertex in V ′ is at least c|V ′|.

Lemma 5. When security and infection costs are uniform, and wv = 1/n ∀v, the price of anarchy
in any GNS(∞) game is O(1/α(G)).

Proof. First we calculate the lower bound for social optimum. Let ~a be the strategy vector of
a social optimum, and S1, S2, . . . , Sm denote the connected components in G~a. Without loss of
generality, we can assume |S1| ≤ |S2| ≤ . . . ≤ |Sm|. We consider the following 3 cases:

1.
∑

i |Si| < n/2, where n is the total number of nodes in G. In this case more than half of the
nodes are secure. Thus, social optimal cost is at least Cn/2.

2.
∑

i |Si| ≥ n/2 and |Sm| ≥ n/4. Then social optimal cost is at least
∑

v∈Sm
costv(~a) ≥

n
4L

n/4
n = Ln/16.

3.
∑

i |Si| ≥ n/2 and |Sm| < n/4. Then there must be a j such that
∑

i≤j |Si| ≥ n/4. Let
S = ∪i≤jSi. Then the number of neighbors of set S in G is at least α(G)|S| ≥ α(G)n/4. This
implies social optimal cost is at least Cα(G)n/4.

Therefore, the lower bound for social optimum is min{Cn/2, Ln/16, Cα(G)n/4}.
Next we calculate the upper bound for NE cost. Let ~a be the strategy vector of a NE. Again,

let S1, S2, . . . , Sm denote the connected components in G~a. |S1| ≤ |S2| ≤ . . . ≤ |Sm|. We consider
the following 2 cases.

1. L ≤ C. In this case no one is going to be secure in NE, which implies its cost is nL. The
ratio between NE and the social optimum is no more than max{2, 16, 4/α(G)}.

2. L > C. The cost of NE is no more than
∑

i L|Si|2/n+Cn. Because this is a NE, for those who
choose to be insecure, L|Si|/2 ≤ C. Therefore, we have

∑
i L|Si|2/n+Cn ≤

∑
iC|Si|+Cn ≤

2Cn. The ratio between NE and the social optimum is no more than max{4, 32, 8/α(G)}.

Putting these 2 cases together completes the proof of this lemma.

4.3 The d-neighborhood infection model: d > 1

Having established the existence of a pure NE for every instance of the generalized network security
game in both the local and the global models, a natural question is whether pure NE exist for the
entire spectrum of d in between these two extremes. In this section, we show that for any 1 < d <∞,
there exist instances of GNS(d) for which there are no pure NE. Furthermore, it is NP-complete to
determine whether a pure NE exists for a given instance. We first present the non-existence result
which also provides the basis for the NP-hardness reduction.

Lemma 6. For any fixed d, 1 < d <∞, there exists an instance of GNS(d) in which no pure NE
exists.
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Proof. We first consider the case d = 2. Consider the instance defined by the contact graph in
Figure 1a. wv = 1/n for all node v. We set the infection cost to be identical, say L, for all nodes.
For nodes D through I, we set the security cost to be high enough so that in any equilibrium they
are all insecure. That leaves nodes A, B, and C, for whom we set the security cost such that
9Cv/L = 7 + ε for v in {A,B,C}; thus, in any pure NE ~a, node v in {A, B, C} is secure if and only
if |Sv(~a[v/0])| ≥ 7 + ε. We now consider four cases. If all of A, B, and C are insecure in ~a, then we
do not have a pure NE since |Sv(~a[v/0])| = 9 for each v in {A, B, C}. If exactly one of A, B, or C
– say A – is secure, as shown in Figure 1b, then B won’t change its strategy since |SB(~a)| = 7, but
C will change its strategy since |SC(~a)| = 8 (Notice C can reach I, but B cannot). If exactly two
of A, B, C – say A and B – are secure, as shown in Figure 1c, then B will change its strategy since
|SB(~a[B/0])| = 7. Finally, if all three are secure, then none of A, B, or C will stick to its current
strategy since |Sv(~a[v/0])| = 5 for each v in {A,B,C}. We have thus established that there is no
pure NE in the instance of Figure 1a. It is easy to extend the above non-existence proof to larger
d by replacing selected edges in the instance of Figure 1a by multi-hop paths.

(a) An instance of a contact graph
that has no pure NE.

(b) Residual graph when A chooses
to secure itself.

(c) Residual graph when A and B
choose to secure themselves

Figure 1: No pure NE example with nonuniform security costs and infection costs.

In the above non-existence proof, nodes have different security costs and infection costs. We
can extend the proof to the case of uniform security costs and infection costs by inserting additional
nodes in the proximity of those nodes in the above instance that have lower security costs, as shown
in the following lemma.

Lemma 7. For any fixed d, 1 < d <∞, there exists an instance of GNS(d) in which no pure NE
exists.

Proof. We first consider the case d = 2. Consider the instance defined by the contact graph in
Figure 2a. wv = 1/n for all node v. We set the infection cost to be L and security cost to
be C = (10 + ε)L/15 for all nodes. Thus, in any pure NE ~a, node v is secure if and only if
|Sv(~a[v/0])| ≥ 10 + ε. Therefore, nodes D through O are all insecure in any pure NE. We now
consider four cases. If all of A, B, and C are insecure in ~a, then we do not have a pure NE since
|Sv(~a[v/0])| = 13 for each v in {A, B, C}. If exactly one of A, B, or C – say A – is secure, as shown
in Figure 2b, then B won’t change its strategy since |SB(~a)| = 10, but C will change its strategy
since |SC(~a)| = 11. If exactly two of A, B, C – say A and B – are secure, as shown in Figure 2c,
then B will change its strategy since |SB(~a[B/0])| = 10. Finally, if all three are secure, then none of
A, B, or C will stick to its current strategy since |Sv(~a[v/0])| = 7 for each v in {A, B, C}. We have
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thus established that there is no pure NE in the instance of Figure 2a. It is also easy to extend the
above non-existence proof to larger d by replacing selected edges in the instance of Figure 2a by
multi-hop paths.

(a) An instance of a contact graph
that has no pure NE.

(b) Residual graph when A chooses
to secure itself.

(c) Residual graph when A and B
choose to secure themselves.

Figure 2: No pure NE example with uniform security costs and infection costs.

We next show that it is, in fact, NP-complete to determine whether a given instance of the
generalized network security game with 1 < d < ∞ has a pure NE. It is easy to argue that the
problem is in NP since one can efficiently verify whether a given strategy vector ~a is a pure NE. In
the remainder of this section, we focus on the hardness reduction.

Our starting point is the non-existence instance defined in the Lemma 6. We observe that if
the security cost of exactly one of the three nodes in {G, H, I}, say G, is reduced so that G always
secures itself, then we do have a pure NE in which C secures itself, while A and B are insecure.
Thus, if we can control the decision of G through an external input, then we can use the above
instance as a gadget which has the property: it has a pure NE if and only if G is secure. We now
show how to use this gadget to obtain an NP-hardness reduction.

Theorem 8. The problem of determining if a GNS(d) instance, 1 < d < ∞, has a pure NE is
NP-complete.

Proof. We reduce 3SAT problem to a GNS(2) instance, and show that a given formula φ is satis-
fiable if and only if the corresponding game has a pure NE. The reduction is shown in Figure 3.
For each variable X in the formula, we create two nodes in the contact graph, X and X̄, which
are connected to each other. For each literal l in the formula, we create a node, and connect it
with corresponding variable. For each clause C, we create a gadget, treat node G as clause node,
and connect it to its 3 literal nodes. The costs for gadget nodes are as before. The costs of literal
nodes are set such that their “threshold” – the number of insecure nodes that can tolerate without
securing themselves – is 1. And the threshold for X is set to be a + 1 where a is the number of
adjacent literal nodes; the threshold for X̄ is set to be b + 1 where b is the number of adjacent
literal nodes. We add padding nodes between edges (X, X̄), (X, I), (X̄, I), and (C, I). We set their
security costs to be 0, so they always wish to be secure.

We first show if φ is satisfiable, then there is a pure NE in this game. For variable node X, if
its assignment is true, then make it secure. For literal node I, if its assignment is false, then make
it secure. If a clause is true, then make it secure. All the other nodes are insecure. We now argue
that the defined strategy vector is a pure NE. If a variable node X is secure, then all the literal
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nodes connected to it are not secure, X̄ is not secure, while all the literal nodes connected to X̄ are
secure. Since the formula is satisfiable, all the clause nodes are secure. It is clear that X̄ is happy,
since its threshold is b + 1 and X is secure. Similarly X is happy since if it were to be insecure,
it will be in a component with size a + 2 which is bigger than its threshold. All the literal nodes
connected to X are happy, because for each of them, the only two adjacent nodes are secure. And
all the literal nodes connected to X̄ are happy, because if any of them does not secure itself, it will
be in a component with size 2, which is bigger than its threshold. All the clause nodes are happy
because the formula is satisfiable, at least one of its literal is true, which means at least one of its
literal nodes is insecure, hence this clause node has to secure itself because its threshold is 6. And
within each gadget, we can make node C to secure itself (together with the nodes D, E, and F) to
make all the nodes in the gadget happy. We thus have a pure NE in the game instance.

Next, we argue if the game has a pure NE, then the formula is satisfiable. Suppose we have
a pure NE strategy vector ~a. For each variable node X, if X is secure, we assign X to be true
for the SAT formula; and false otherwise. We know that in any pure NE, the clause node in each
gadget has to be secure. Furthermore, exactly only of X and X̄ is secure. If X is secure, then X̄
and all the literal nodes connected to X have to be insecure, while all the literal nodes connected
to X̄ have to be secure. Since all the clause nodes are happy, at least one of its literal nodes is not
secure, implying that in each clause at least one of the literals is true. This establishes that the
formula is satisfiable.

In sum, the formula is satisfiable if and only if the security game has Nash equilibrium. It
is easy to see that the above reduction can be carried out in polynomial time, thus yielding the
NP-hardness of the problem.

Figure 3: Reduction from 3SAT to GNS(d). Xi’s refer to variables in the boolean formula. Iij
refers to the jth literal in the ith clause. And Ci’s refer to the clauses.
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5 Optimizing social welfare: NP-completeness and approximation
algorithms

5.1 NP-completeness of computing the social optimum

We show that computing the social optimum is NP-complete in GNS(d) games for all d. The result
for d =∞ follows from Aspnes et al. [2], even for the special case where all security costs, infection
costs, and initial infection probabilities are uniform. We now establish NP-completeness for all
d > 0.

Lemma 9. Computing the social optimum for an instance of GNS(d) is NP-complete for all d.

Proof. We construct a reduction from vertex cover on regular graphs, which is also NP-complete [15].
Consider an instance of vertex cover specified by an r-regular graph G = (V,E). We construct an in-
stance I of the GNS(d) problem as follows. Let H = (V ′, E′) be a graph obtained by splitting each
edge e = (u, v) ∈ E by d−1 auxiliary nodes ve,1, . . . , ve,d−1, so that V ′ = V ∪∪e∈E{ve,1, . . . , ve,d−1},
and E′ consists of the edges ∪e=(u,v)∈E{(u, ve,1), (v, ve,d−1), (ve,1, ve,2), . . . , (ve,d−2, ve,d−1)}. For
all nodes v ∈ V , let them have the same secure cost C and infection cost L. And we set
C = L(r(d−1)+1)

|V ′| +1. For each u ∈ V ′ \V , we have Lu = 1/|V ′|3 and Cu = (C+L)|V ′|. This ensures
all nodes in V ′ \ V are insecure, and

∑
u∈V ′\V costu(~a) ≤ ε for small constant ε, for any strategy ~a.

Let B = {v ∈ V : av = 1} for a pure strategy ~a, and let b = |B|. It is easy to verify that
cost(~a) = L|V |(r(d−1)+1)

|V ′| + b+ ε+ 2L
|V ′| |{e = (u, v) : u, v ∈ V, au = av = 0}|. Therefore, when we set

L > |V | · |V ′|, B is a vertex cover in G of size k, if and only if the social optimum in I is at most
L|V |(r(d−1)+1)

|V ′| + k + ε.

For d = 1, we also show that while a pure NE always exists, finding the least cost one is
NP-complete.

Lemma 10. Finding the least cost pure NE in a given instance of GNS(1) is NP-complete.

Proof. Our proof is a reduction from Vertex Cover. Let G be an instance of vertex cover. We
construct an instance I of the game in the following manner. We set the contact graph to be
H = (V ′, E′) with V ′ = V ∪ ∪i∈VA(i), where the set A(i) = {vi,1, . . . , vi,t}, for t ≥ ∆(G), where
∆(G) is the maximum degree of G. The set E′ consists of E along with the edges (i, j), for all i ∈ V
and j ∈ A(i). The security and infection costs for all nodes in V are identical, C and L, respectively.
Set C = (t+1)L

|V ′| + 1. For nodes in V ′ \ V , these corresponding costs are C ′ = L′(1 + ε)/|V ′| and
L′ = 1/M , respectively, where M ≥ |V ′|2t. We assume that the initial infection probability
distribution is uniform. Therefore, the contribution, costv(~a) of a node v ∈ V ′ \ V to the total cost
cost(~a) for any strategy vector ~a is at most max{C ′, 2L′/|V ′|}, and the total contribution of all
such nodes is at most 1. We show that the least cost NE has cost very close to the social optimum.

Let A be a vertex cover for G, with |A| = a. Consider the following strategy vector ~a: for each
i ∈ A, we have ai = 1 and avi,j = 0 for all j, and for i 6∈ A, we have ai = 0 and avi,j = 1 for all
j. Following Lemma 1, this vector is a NE because: (i) for each node i ∈ A, there are at least t
insecure neighbors (namely, the nodes vi,j), (ii) for each i 6∈ A, the number of insecure neighbors
is at most ∆(G) ≤ C|V ′|/L, where ∆(G) is the maximum degree of G, (iii) if i ∈ A, each node vi,j

has no insecure neighbor, and since C ′|V ′|/L′ = 1 + ε, such a node won’t change its strategy, and
(iv) if i 6∈ A, each node vi,j has an insecure neighbor and it will stay being secure. As in the proof
of Lemma 9, cost(~a) ≤ L+ |A|+ 1. Therefore, if G has a vertex cover of size k, the reduced game
instance has a pure NE of cost at most L+ k + 1.
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For the converse, let ~a be the strategy vector of a NE, and A = {i : ai = 1} ∩ V . As in the
proof of Lemma 9, cost(~a) = L+ |A|+ 2L

|V ′| |{(u, v) : au = av = 0, u, v ∈ V }|, which implies if A is
not a vertex cover for G, cost(~a) > L+ |A|. Therefore, the lemma follows.

5.2 Approximating the social optimum

We describe a general framework to derive approximation algorithms for GNS(d) games for all d.
For fixed d, we achieve an approximation ratio of 2d. For d =∞, we obtain an approximation ratio
of O(log n). Our framework involves the following three steps.

1. Formulate a linear programming relaxation.

2. Let x be the optimum LP solution. Partially round and filter the variables. Let x′ be the
resulting solution.

3. Round the x′ solution appropriately - for constant d, this involves solving a suitable covering
problem, while for d =∞ this reduces to a vertex separator problem.

5.2.1 An LP Formulation

Let P d
ij denote the set of all simple paths from i to j of length at most d. Let xv be the indicator

variable for node v that is 1 if v is secured. Let yij be the indicator variable for nodes i and j
that is 1 if there is no path P ∈ P d

ij consisting entirely of insecure nodes. By abuse of notation,
for i = j, we assume yii = 1 if node i has been secured, i.e., xi = 1. We start with the following
integer programming formulation P of the social optimum.

min
∑

v Cv · xv +
∑

j∈V Lj
∑

i∈V wi(1− yij)

s.t.
∑

v∈p xv ≥ yij p ∈ P d
ij (1)

xv ∈ {0, 1} ∀v ∈ V
yij ∈ {0, 1} ∀i, j ∈ V

The objective function can be interpreted in the following manner: the first part corresponds to
the cost of securing nodes, and the second part corresponds to the infection cost, which, for node
j is Lj times the sum of the probabilities of all nodes that have a path to j of length at most d
consisting entirely of insecure nodes. The first constraint says that in order to separate a pair of
nodes i and j, we need to secure at least one node in every path P ∈ P d

ij between these two. For
i = j, we define the only path P in P d

ij to consist of the node i.
We relax the IP to a linear program (LP) by changing the last two constraints to 0 ≤ xv ≤ 1

and 0 ≤ yij ≤ 1.

5.2.2 Solving the LP and partial rounding and filtering

We now perform the following steps.
(1) Solve the LP: for any fixed d, the number of paths of length at most d, |P d

ij | is at most nO(1),
and therefore, the above program can be solved in polynomial time. When d is not a constant,
the program cannot be written down efficiently but we can solve it in polynomial time using the
ellipsoid method. This requires the construction of a polynomial time separation oracle, which,
given a candidate solution (~x, ~y), can decide if it is feasible, or finds a constraint that is infeasible.
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Such a separation oracle can be designed as follows: define the cost of a path to be the sum of the
weights xv of the nodes on the path. For each pair i, j, compute the shortest path from i to j in the
graph restricted to the d-hop neighborhood of node i. If this distance exceeds yij , the constraints
for all the paths p ∈ P d

ij are satisfied. Else, the constraint corresponding to the shortest such path
is violated.

Ellipsoid-based methods are, however, expensive to implement in practice. For the case d =∞,
we address this drawback by solving an equivalent polynomial-sized LP in which we introduce a
“distance variable” for each pair of nodes and replace the exponentially-many path constraints
given in (1) with polynomially-many triangle inequality constraints, and linear number of lower
bounds on the distances. It is this more compact LP that we solve in our experiments.
(2) Construct a new vector ~y′ in the following manner: for each i, j, y′ij = 0 if yij ≤ 1/2 and y′ij = 1
if yij > 1/2. Next, let x′v = min{2xv, 1}, for all v ∈ V .

5.2.3 Final rounding

We now round the vector ~x′ to an integral solution. For d = 1, it is easy to see that ~x′ is already
integral, since each constraint only has two variables. We now consider general d. Consider a pair
of nodes i and j such that y′ij = 1. By constraint (1), along every path p of length at most d
between i and j, the sum, over v ∈ p, of x′v is at least 1. It follows that along every such path p,
there exists at least one vertex v ∈ p with x′v ≥ 1/d. Consider now the following filtering procedure:
if x′v ≤ 1/d, we set x′′v = 0; otherwise, we set x′′v = 1. It is clear that all the constraints of the LP
are satisfied, and the cost of ~x′′ is at most d times the cost of ~x′, yielding a final 2d approximation.

We finally consider the d = ∞ case. In this case, we are left with a minimum weighted vertex
multi-cut problem, where we would like to determine the minimum weight of vertices that can
separate all the pairs (i, j) for which y′ij = 1. The elegant LP rounding algorithm of [17] yields an
integral solution for the vertex multi-cut problem, whose cost is O(log n) times the cost of fractional
solution. We can thus find a set X of vertices to secure such that all pairs of vertices for which
y′ij = 1 are separated and

∑
v∈X Cv is at most O((log n)

∑
v Cvx

′
v).

Putting the above analyses together, we have the following.

Theorem 11. For any fixed d, the social optimum for an instance of GNS(d) can be approximated
to within a factor of 2d in polynomial time. For d = ∞, we obtain an O(log n)-approximation to
the social optimum, where n is the number of nodes in the contact graph.

6 Experimental results

We now empirically study the properties of NE and the performance of our algorithms. We use
two classes of graphs: (i) random geometric graphs formed by distributing n2 nodes uniformly at
random in an n × n square and add an edge between a pair of nodes if there distance is no more
than 1, and (ii) power law graphs generated by preferential attachment process [4]. These two
graph classes are very different, with the former being a model for wireless networks, while the
latter suited for the Internet [14], World Wide Web [4], and email networks [12]. Also, they have
very contrasting properties, e.g., the latter class has larger separators, and we expect to see effects
of these differences. We set the infection costs to be identical for every node (this can be done
without loss of generality for the pure NE analysis) and the security costs are chosen uniformly at
random between 0 and the infection cost.

Our main experimental observations are the following.
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1. Convergence time for best response strategies: We find that best response works pretty well in
practice. For d =∞, we find the convergence time to be linear in the number of nodes for both
graph classes, while it seems to be sub-linear in the case of d = 1. For the d-neighborhood
model, with 1 < d <∞, best response does not converge to a NE quite often, suggesting that
even on average, these games do not have NE.

2. Structural properties of NE and the quality of NE : We find that high degree nodes tend to be
secured in the NE for the local game. Additionally, we find that the cost of NE is very low
for d = 1 in both the graph classes, but it is somewhat high for d =∞.

3. Performance of our approximation algorithms for the social optimum: While we show a worst
case bound of O(log n) for approximating the social optimum (Section 5), we find that our
algorithms perform much better in practice. For d = 1, the approximation bound is very
close to 1; while for d =∞, it seems to be a constant.

6.1 Convergence times for best response strategies

We implement best response in a round robin fashion on both the graph classes and study the
convergence time; note that the results of Section 4 imply that this converges to a NE. Figure 4a
shows that the convergence time of the global model for random geometric and power law graphs
grows linearly with the number of nodes. Figure 4b shows the corresponding plots for the local
model and they seem to grow much slower than in the d = ∞ case. Also, for the d-neighborhood
model, we find that best response often does not converge to a NE.

(a) Convergence time in the global model (d =∞) for
random geometric graphs and power law graphs.

(b) Convergence time in the local model (d = 1) for
random geometric graphs and power law graphs.

Figure 4: Convergence time.

6.2 Structural properties of NE

In Figure 5, we examine the degrees of secured nodes in the NE computed by best response on
power law graph with 5000 vertices, and we find that they tend to be high. In fact, the degree
distribution of the secured nodes seems to mirror the overall degree distribution in the graph. We
also study the quality of NE in the local and global models. Figure 6a and 6b show that the cost of
NE is very low for the local model in both graph classes. The ratio to optimal value is at most 1.3.
In contrast, Figure 7a and 7b show that this ratio is larger for the global model, about 7 in both
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graph classes. We note that this ratio is for the case of non-uniform costs; we expect the ratio to be
smaller with uniform costs, especially for power-law graphs owing to their high vertex expansion.

Figure 5: Properties of secured nodes in NE in power law graphs.

6.3 Empirical performance of approximation algorithms

We now study the empirical performance of the algorithms we design in Section 5 for approximating
the social optimum. Since computing social optimum is very expensive, we use LP optimal values
as lower bound. Figure 6a and 6b show that our approximation algorithm’s cost is almost the same
as the LP lower bound for the local model. For the global model, Figure 7a and 7b show that the
approximation algorithm’s cost is within a constant of the LP lower bound, in contrast to the worst
case O(log n) bound we prove. Additionally, we observe that our approximation algorithm has a
much better guarantee for power law graphs than for random geometric graphs.

(a) The costs of the LP solution, our approximation al-
gorithm, and the Nash equilibrium computed by best
response, for the local model in random geometric
graphs.

(b) The costs of the LP solution, our approximation
algorithm, and the Nash equilibrium computed by best
response, for the local model in power law graphs.

Figure 6: Costs comparison for the local model.
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(a) The costs of the LP solution, our approximation
algorithm, and the Nash equilibrium computed by best
response, for the global model in random geometric
graphs.

(b) The costs of the LP solution, our approximation
algorithm, and the Nash equilibrium computed by best
response, for the global model in power law graphs.

Figure 7: Costs comparison for the global model.

7 Conclusion

Non-cooperative games have been recognized as a useful paradigm for studying decentralized net-
work security problems; however, the resources needed for individual decision making are important
issues for the implementability of such games. In this paper, we have developed a framework for
network security games parametrized by the amount of local information available for individual
decision making. We find this parameter plays an important role in the structure of the equilibria,
and needs to be taken into account in such analysis.

NE are considered as natural operating configurations in such systems with selfish users. There-
fore, ensuring that the system has efficient NE is desirable (equivalently, a low price of anarchy
(PoA)) for network planners. Specifically, if the network planner has a limited budget to secure
k nodes, an important design problem is to choose a subset of nodes to secure so that the graph
restricted to the remaining nodes has low PoA; such a strategy is also referred to as a Stackel-
berg strategy for the network planner [25]. Lemmas 3 and 5, which bound the PoA in terms of
the network parameters, suggest natural heuristics to design stackelberg strategies for the network
planner. We discuss this briefly below.

In the neighborhood model, Lemma 3 shows that PoA is bounded by ∆ + 1. Therefore, given a
budget to secure k nodes, the Stackelberg question is to choose a subset of nodes to secure, so that
the maximum degree of the residual graph is minimized. An analogous question, dual to this, is the
following: for a given target maximum degree ∆′, choose the smallest set k of nodes to secure so
that the maximum degree in the residual graph is ∆′. Both these versions are NP-complete to solve
optimally, but greedy heuristics are likely to perform well. In the global model, Lemma 5 shows
that the PoA is bounded by 1/α(G). The analogous question of finding an optimal Stackelberg
strategy is NP-complete in this case also. We can use the spectral clustering algorithm of [19],
which finds an (α, ε) clustering of low cost using at most an ε fraction of the edges, while ensuring
that each cluster has expansion at least α, as a natural heuristic for this problem.
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