Approximation Algorithms for Key Management in Secure Multicast

A. Chan¹ R. Rajaraman¹ Z. Sun¹ F. Zhu²

¹Department of Computer Science
Northeastern University

²Cisco Systems

COCOON, 2009
Outline

1 Introduction
 - Motivation and examples
 - Problem definition

2 Our results
 - Uniform multicast
 - Nonuniform multicast

3 Main approximation algorithm
 - Key ingredients
 - Approximation algorithm
Motivation

- Publish-subscribe systems need to guarantee the privacy and authenticity of the participants.
 - Interactive gaming, stock data distribution, video conferencing, etc.
- Most systems rely on symmetric key cryptography to multicast messages.
 - We refer to key being used as group key.
- Any user should have access to the data only during the time periods that the user is a member of the group.
 - Need to update group key when set of group members changes.
Key update cost models

- Minimize the number of update messages sent. Motivation: consume minimum resources at the server.
- Minimize the total routing cost of update messages. Motivation: reduce network traffic.
- We consider both update models.
Key update approaches

- Naive approach: update one member at a time using his/her public key.
- Logical key hierarchy.
 - A single group key for data communication.
 - A group controller distribute *auxiliary subgroup key* to the group members according to a key hierarchy.
 - Each member stores auxiliary keys corresponding to all the nodes in the path to the root in the hierarchy.
Example of a logical key hierarchy

- **GK** is the group key.
- **K**’s are auxiliary keys.
- Each user holds keys that lie along the path to the root.
 - **U₃** has key **GK**, **K₂**, **K₂₁** and **U₃**’s public key.
- When there is an update at a leaf, need to change group key.
 - View each leaf as a subgroup of users; whenever a user joins/leaves, an update occurs at the leaf.
Example: routing cost of update messages

If u_2 requests key update, the cost will be $2 + 3 + 4 + 4 = 13$.
Outline

1. **Introduction**
 - Motivation and examples
 - Problem definition

2. **Our results**
 - Uniform multicast
 - Nonuniform multicast

3. **Main approximation algorithm**
 - Key ingredients
 - Approximation algorithm

A. Chan, R. Rajaraman, Z. Sun, F. Zhu

Approx Algorithms for Key Management in Secure Multicast
An instance of the Key Hierarchy Problem is given by the tuple (S, w, G, c).

- S is the set of group members.
- $w : S \rightarrow \mathbb{Z}$ is the weight function (capturing the update probabilities).
- $G = (V, E)$ is the underlying communication network with $V \supseteq S \cup \{r\}$ where r is a distinguished node representing the group controller.
- $c : E \rightarrow \mathbb{Z}$ gives the cost of the edges in G.
Cost of key hierarchy

- A hierarchy on a set \(X \subseteq S \) to be a rooted tree \(H \) whose leaves are the elements of \(X \).

- Cost of a member \(x \) with respect to \(H \) is given by

\[
\sum_{\text{ancestor } u \text{ of } x} \sum_{\text{child } v \text{ of } u} M(T_v)
\]

- \(T_v \) is the set of leaves in the subtree of \(T \) rooted at \(v \).
- \(M(Y) \) is the cost of multicasting from the root \(r \) to \(Y \) in \(G \).

- Cost of a hierarchy \(H \) over \(X \) is the sum of the weighted costs of all the members of \(X \) with respect to \(H \).
If u_2 requests key update, the cost will be $2 + 3 + 4 + 4 = 13$.
Uniform and non-uniform multicast model

- Minimizing the number of update messages is a special case of minimizing the routing cost of update messages.
- Refer minimizing the number of update messages as **uniform multicast model**.
- Refer minimizing the routing cost of update messages as **nonuniform multicast model**.
Outline

1. Introduction
 - Motivation and examples
 - Problem definition

2. Our results
 - Uniform multicast
 - Nonuniform multicast

3. Main approximation algorithm
 - Key ingredients
 - Approximation algorithm

A. Chan, R. Rajaraman, Z. Sun, F. Zhu

Approx Algorithms for Key Management in Secure Multicast
Results for uniform multicast model

- Identical update probabilities: We compute the optimal key hierarchy in polynomial time.
- General update probabilities: We give a PTAS (polynomial time approximation scheme).
 - Cost of this key hierarchy is within $1 + \epsilon$ times the cost of the optimal key hierarchy, where $\epsilon > 0$ and can be arbitrarily small.
Outline

1. Introduction
 - Motivation and examples
 - Problem definition

2. Our results
 - Uniform multicast
 - Nonuniform multicast

3. Main approximation algorithm
 - Key ingredients
 - Approximation algorithm
Results for nonuniform multicast model

Hardness results:

- The Key Hierarchy Problem is NP-complete when group members have different weights and the routing network is a tree.
- The Key Hierarchy Problem is NP-complete when group members have the same weights and the routing network is a general graph.

Approximation results:

- An 11-approximation algorithm when the routing network is a tree.
- A 75-approximation algorithm when the routing network is a general graph.
Outline

1. Introduction
 - Motivation and examples
 - Problem definition

2. Our results
 - Uniform multicast
 - Nonuniform multicast

3. Main approximation algorithm
 - Key ingredients
 - Approximation algorithm

A. Chan, R. Rajaraman, Z. Sun, F. Zhu
Approx Algorithms for Key Management in Secure Multicast
Divide and conquer

Lemma

For any instance, there exists a 3-approximate binary hierarchy.

So we can focus on finding a good binary key hierarchy.

- Firstly, *partition* the member set into 2 subsets.
- Then find a “good” binary key hierarchy for each subset recursively.
- Lastly, *combine* these 2 binary key hierarchies.

Keys of partitioning:

- Make close users “close” in the hierarchy.
- Balance the weight of binary hierarchy.
Let T_1 be a “good” binary hierarchy for member set X.

Let T_2 be a “good” binary hierarchy for member set Y.

Define $\text{combine}(T_1, T_2)$ to be the following. Add a new root r, and make T_1 the left subtree, T_2 the right subtree.
Assume the routing network is a tree, controller is the root, and members are the leaves.

\[\frac{W(S)}{3} \leq W(X), \quad W(Y) \leq 2\frac{W(S)}{3}, \] where \(S = X \cup Y \) and \(W(\cdot) \) is the total weight of the members in the set.
Our approximation algorithm uses the elegant algorithm of Khuller-Raghavachari-Young for finding spanning trees that simultaneously approximates both the minimum spanning tree and the shortest path tree. An \((\alpha, \beta)\)-LAST of a given weighted graph \(G\) is a spanning tree \(T\) of \(G\), such that

- shortest path in \(T\) from root to any vertex is at most \(\alpha\) times the shortest path from the root to the vertex in \(G\),
- total weight of \(T\) is at most \(\beta\) times the minimum spanning tree of \(G\).
Approximating the multicast cost

- If the routing network is a graph, the optimum multicast to a member set is obtained by a minimum Steiner tree, computing which is NP-hard.

- There is an easy 2-approximation algorithm using a minimum spanning tree (MST) in the metric space defined by the routing graph.

- So we approximate $M(Y)$ by the cost of MST connecting the root r to Y in the complete graph $G(Y)$ whose vertex set is $S \cup \{r\}$ and the weight of edge (u, v) is the shortest path distance between u and v in the routing graph G.
1. Introduction
 - Motivation and examples
 - Problem definition

2. Our results
 - Uniform multicast
 - Nonuniform multicast

3. Main approximation algorithm
 - Key ingredients
 - Approximation algorithm

A. Chan, R. Rajaraman, Z. Sun, F. Zhu
Approx Algorithms for Key Management in Secure Multicast
ApproxGraph(S)

- If S is singleton, return trivial hierarchy with one node.
- Compute complete graph on $S \cup \{\text{root}\}$; weight of (u, v) is the length of shortest path between u and v in the original routing graph.
- Compute minimum spanning tree on this complete graph.
- Compute an (α, β)-LAST L of MST(S).
- $(X, v) = \text{partition}(L)$.
- Let Δ be the cost from root to partition node v. If $\Delta \leq M(S)/5$, $T_1 = \text{ApproxGraph}(X)$. Otherwise, $T_1 = \text{PTAS}(X)$. $T_2 = \text{ApproxGraph}(Y)$.
- $T_2 = \text{ApproxGraph}(Y)$.
- Return $\text{combine}(T_1, T_2)$.
Proof sketch of constant approximation ratio

Theorem

Algorithm ApproxGraph is a constant-factor approximation.

Proof uses **induction** on the number of members in S.

- $ALG(S)$ cost of hierarchy produced by ApproxGraph.
- $OPT(S)$ cost of optimal hierarchy.
- $ALG(S) = ALG(X) + ALG(Y) + W(S)[M(X) + M(Y)]$.
- $OPT(S) \geq OPT(X) + OPT(Y)$.
Case 1: $\Delta > M(S)/5$

- Distance from r to any elem in X is bigger than Δ.
- This distance is close to shortest path in the original graph.
- Multicast cost to any subset of X is “roughly” the same. Use PTAS to get better approx on $ALG(X)$.
- Apply induction hypothesis on Y.

(α, β)-LAST of routing network
Case 2: $\Delta \leq M(S)/5$

- Apply induction hypothesis on both X and Y.
Open problems

- Hardness result for uniform multicast cost but non-uniform key update probabilities.
- Dynamic maintenance of key hierarchies when members change update probabilities.
- Design key hierarchies where members have a bound on the number of auxiliary keys they store.