
Approximation Algorithms for Key Management
in Secure Multicast

Agnes Chan1, Rajmohan Rajaraman1, Zhifeng Sun1, and Feng Zhu2

1 Northeastern University, Boston, MA 02115, USA
2 Cisco Systems, San Jose, CA, USA

Abstract. Many data dissemination and publish-subscribe systems that
guarantee the privacy and authenticity of the participants rely on sym-
metric key cryptography. An important problem in such a system is to
maintain the shared group key as the group membership changes. We
consider the problem of determining a key hierarchy that minimizes the
average communication cost of an update, given update frequencies of
the group members and an edge-weighted undirected graph that cap-
tures routing costs. We first present a polynomial-time approximation
scheme for minimizing the average number of multicast messages needed
for an update. We next show that when routing costs are considered,
the problem is NP-hard even when the underlying routing network is a
tree network or even when every group member has the same update
frequency. Our main result is a polynomial time constant-factor approx-
imation algorithm for the general case where the routing network is an
arbitrary weighted graph and group members have nonuniform update
frequencies.

1 Introduction

A number of data dissemination and publish-subscribe systems, such as interac-
tive gaming, stock data distribution, and video conferencing, need to guarantee
the privacy and authenticity of the participants. Many such systems rely on sym-
metric key cryptography, whereby all legitimate group members share a common
key, henceforth referred to as the group key, for group communication. An impor-
tant problem in such a system is to maintain the shared group key as the group
membership changes. The main security requirement is confidentiality: only valid
users should have access to the multicast data. In particular this means that any
user should have access to the data only during the time periods that the user
is a member of the group.

There have been several proposals for multicast key distribution for the In-
ternet and ad hoc wireless networks [2, 7, 8, 18, 24]. A simple solution proposed
in early Internet RFCs is to assign each user a user key; when there is a change
in the membership, a new group key is selected and separately unicast to each
of the users using their respective user keys [8, 7]. A major drawback of such a
key management scheme is its prohibitively high update cost in scenarios where
member updates are frequent.

The focus of this paper is on a natural key management approach that uses
a hierarchy of auxiliary keys to update the shared group key and maintain the
desired security properties. Variations of this approach, commonly referred to as
the Key Graph or the Logical Key Hierarchy scheme, were proposed by several
independent groups of researchers [2, 4, 21, 23, 24]. The main idea is to have a
single group key for data communication, and have a group controller (a special
server) distribute auxiliary subgroup keys to the group members according to a
key hierarchy. The leaves of the key hierarchy are the group members and every
node of the tree (including the leaves) has an associated auxiliary key. The key
associated with the root is the shared group key. Each member stores auxiliary
keys corresponding to all the nodes in the path to the root in the hierarchy.
When an update occurs, say at member u, then all the keys along the path from
u to the root are rekeyed from the bottom up (that is, new auxiliary keys are
selected for every node on the path). If a key at node v is rekeyed, the new key
value is multicast to all the members in the subtree rooted at v using the keys
associated with the children of v in the hierarchy.3 It is not hard to see that
the above key hierarchy approach, suitably implemented, yields an exponential
reduction in the number of multicast messages needed on a member update, as
compared to the scheme involving one auxiliary key per user.

The effectiveness of a particular key hierarchy depends on several factors in-
cluding the organization of the members in the hierarchy, the routing costs in the
underlying network that connects the members and the group controller, and the
frequency with which individual members join or leave the group. Past research
has focused on either the security properties of the key hierarchy scheme [3] or
concentrated on minimizing either the total number of auxiliary keys updated or
the total number of multicast messages [22], not taking into account the routing
costs in the underlying communication network.

1.1 Our contributions

In this paper, we consider the problem of designing key hierarchies that minimize
the average update cost, given an arbitrary underlying routing network and given
arbitrary update frequencies of the members, which we refer henceforth to as
weights. Let S denote the set of all group members. For each member v, we are
given a weight wv representing the update probability at v (e.g., a join/leave
action at v). Let G denote an edge-weighted undirected routing network that
connects the group members with a group controller r. The cost of any multicast
from r to any subset of S is determined by G. The cost of a given key hierarchy
is then given by the weighted average, over the members v, of the sum of the
costs of the multicasts performed when an update occurs at v. A formal problem
definition is given in Section 2.

3 We emphasize here that auxiliary keys in the key hierarchy are only used for main-
taining the group key. Data communication within the group is conducted using the
group key.

• We first consider the objective of minimizing the average number of multicast
messages needed for an update, which is modeled by a routing tree where the
multicast cost to every subset of the group is the same. For uniform multicast
costs, we precisely characterize the optimal hierarchy when all the member
weights are the same, and present a polynomial-time approximation scheme
when member weights are nonuniform. These results appear in Section 3.
• We next show in Section 4 that the problem is NP-hard when multicast costs

are nonuniform, even when the underlying routing network is a tree or when
the member weights are uniform.
• Our main result is a constant-factor approximation algorithm in the general

case of nonuniform member weights and nonuniform multicast costs captured
by an arbitrary routing graph. We achieve a 75-approximation in general, and
achieve improved constants of approximation for tree networks (11 for nonuni-
form weights and 4.2 for uniform weights). These results are in Section 5.

Our approximation algorithms are based on a simple divide-and-conquer
framework that constructs “balanced” binary hierarchies by partitioning the
routing graph using both the member weights and the routing costs. A key in-
gredient of our result for arbitrary routing graphs is the algorithm of [14] which,
given any weighted graph, finds a spanning tree that simultaneously approxi-
mates the shortest path tree from a given node and the minimum spanning tree
of the graph.

Due to space constraints, we have omitted many of the proofs in this paper.
Please refer to the full version of the paper [5] for details.

1.2 Related work

Variants of the key hierarchy scheme studied in this paper were proposed by sev-
eral independent groups [2, 4, 21, 23, 24]. The particular model we have adopted
matches the Key Graph scheme of [24], where they show that a balanced hi-
erarchy achieves an upper bound of O(log n) on the number of multicast mes-
sages needed for any update in a group of n members. In [22], it is shown that
Θ(log n) messages are necessary for an update in the worst case, for a general
class of key distribution schemes. Lower bounds on the amount of communica-
tion needed under constraints on the number of keys stored at a user are given
in [3]. Information-theoretic bounds on the number of auxiliary keys that need
to be updated given member update frequencies are given in [19].

In recent work, [16] and [20] have studied the design of key hierarchy schemes
that take into account the underlying routing costs and energy consumption in
an ad hoc wireless network. The results of [16, 20], which consist of hardness
proofs, heuristics, and simulation results, are closely tied to the wireless net-
work model, relying on the broadcast nature of the medium. In this paper, we
present approximation algorithms for a more basic routing cost model given by
an undirected weighted graph.

The special case of uniform multicast costs (with nonuniform member weights)
bears a strong resemblance to the Huffman encoding problem [11]. Indeed, it can

be easily seen that an optimal binary hierarchy in this special case is given by
the Huffman code. The truly optimal hierarchy, however, may contain internal
nodes of both degree 2 and degree 3, which contribute different costs, respec-
tively, to the leaves. In this sense, the problem seems related to Huffman coding
with unequal letter costs [12], for which a PTAS is given in [6]. The optimization
problem that arises when multicast costs and member weights are both uniform
also appears as a special case of the constrained set selection problem, formu-
lated in the context of website design optimization [10]. Another related problem
is broadcast tree scheduling where the goal is to determine a schedule for broad-
casting a message from a source node to all the other nodes in a heterogeneous
network where different nodes may incur different delays between consecutive
message transmissions [13, 17]. Both the Key Hierarchy Problem and the Broad-
cast Tree problem seek a rooted tree in which the cost for a node may depend on
the degrees of the ancestors; however, the optimization objectives are different.

As mentioned in Section 1.1, our approximation algorithm for the general
key hierarchy problem uses the elegant algorithm of [14] for finding spanning
trees that simultaneously approximates both the minimum spanning tree weight
and the shortest path tree weight (from a given root). Such graph structures,
commonly referred to as shallow-light trees have been extensively studied (e.g.,
see [1, 15]).

2 Problem definition

An instance of the Key Hierarchy Problem is given by the tuple (S,w,G, c),
where S is the set of group members, w : S → Z is the weight function (cap-
turing the update probabilities), G = (V,E) is the underlying communication
network with V ⊇ S∪{r} where r is a distinguished node representing the group
controller, and c : E → Z gives the cost of the edges in G.

Fix an instance (S,w,G, c). We define a hierarchy on a set X ⊆ S to be a
rooted tree H whose leaves are the elements of X. For a hierarchy T over X,
the cost of a member x ∈ X with respect to T is given by∑

ancestor u of x

∑
child v of u

M(Tv) (1)

where Tv is the set of leaves in the subtree of T rooted at v and for any set
Y ⊆ S, M(Y) is the cost of multicasting from the root r to Y in G. The cost
of a hierarchy T over X is then simply the sum of the weighted costs of all the
members of X with respect to T . The goal of the Key Hierarchy Problem is to
determine a hierarchy of minimum cost.

We introduce some notation that is useful for the remainder of the paper.
We use OPT(S) to denote the cost of an optimal hierarchy for S. We extend the
notation W to hierarchies and to sets of members: for any hierarchy T (resp.,
set X of members), W (T) (resp., W (X)) denotes the sum of the weights of the
leaves of T (resp., members in X). Our algorithms often combine a set H of two
or three hierarchies to another hierarchy T ′: combine(H) introduces a new root

node R, makes the root of each hierarchy in H as a child of R, and returns the
hierarchy rooted at R.

Using the above notation, a more convenient expression for the cost of a hier-
archy T over X is the following reorganization of the summation in Equation 1:∑

u∈T

W (Tu)
∑

child v of u

M(Tv) (2)

3 Uniform multicast cost

In this section, we consider the special case of the Key Hierarchy problem where
the multicast cost to any subset of group members is the same. Thus, the objec-
tive is to minimize the average number of multicast messages sent for an update.
We note that the number of multicast messages sent for an update at a member
u is simply the sum of the degrees of its ancestors in the hierarchy (as is evident
from Equation 1).

3.1 Structure of an optimal hierarchy for uniform member weights

When all the members have the same weight, we can easily characterize an
optimal key hierarchy by recursion. Let n be the number of members. When
n = 1, the key hierarchy is just a single node tree. When n = 2, the key hierarchy
is a root with two leaves as children. When n = 3, the key hierarchy is a root with
three leaves as children. When n > 3, we are going to build this key hierarchy
recursively. First divide n members into 3 balanced groups, i.e. the size of each
group is between bn/3c and dn/3e. Then the key hierarchy is a root with 3
children, each of which is the key hierarchy of one of the 3 groups built recursively
by this procedure. It is easy to verify that the cost of this hierarchy is given by:

f(n) =
{

3nblog3 nc+ 4(n− k) when k ≤ n < 2k
3nblog3 nc+ 5n− 6k when 2k ≤ n < 3k

The following theorem is due to [9, 10], where this scenario arises as a special
case of the constrained set selection problem.

Theorem 1 ([9, 10]). For uniform multicast costs and member weights, the
above key hierarchy is optimal.

3.2 A polynomial-time approximation scheme for nonuniform
member weights

We give a polynomial-time approximation scheme for the Key Hierarchy Problem
when the multicast cost to every subset of the group is identical and the members
have arbitrary weights. Given a positive constant ε, we present an polynomial-
time algorithm that produces a (1 +O(ε))-approximation. We assume that 1/ε
is a power of 3; if not, we can replace ε by a smaller constant that satisfies

this condition. We round the weight of every member up to the nearest power
of (1 + ε) at the expense of a factor of (1 + ε) in approximation. Thus, in the
remainder we assume that every weight is a power of (1 + ε). Our algorithm
PTAS(S), which takes as input a set S of members with weights, is as follows.

1. Divide S into two sets, a set H of the 31/ε2
members with the largest weight

and the set L = S −H.
2. Initialize L to be the set of hierarchies consisting of one depth-0 hierarchy for

each member of L.
3. Repeat the following step until it can no longer be executed: if T1, T2, and T3

are hierarchies in L with identical weight, then replace T1, T2, and T3 in L by
combine({T1, T2, T3}). (Recall the definition of combine from Section 2.)

4. Repeat the following step until L has one hierarchy: replace the two hierarchies
T1, T2 with least weight by combine({T1, T2}). Let TL denote the hierarchy in
L.

5. Compute an optimal hierarchy T ∗ for H. Determine a node in T ∗ that has
weight at most W (S)ε and height at most 1/ε. We note that such a node exists
since every hierarchy with at least ` leaves has a set N of at least 1/ε nodes
at depth at most 1/ε with the property that no node in N is an ancestor of
another. Set the root of TL as the child of this node. Return T ∗.

We now analyze the above algorithm. At the end of step 3, the cost of any
hierarchy T in L is equal to

∑
v∈T 3wv log3(W (T)/wv). If L is the hierarchy

set at the end of step 3, then the additional cost incurred in step 4 is at most∑
T∈L 2W (T) log2(W (L)/W (T)).
Since there are at most two hierarchies in any weight category in L at the

start of step 4, at least 1−1/ε2 of the weight in the hierarchy set is concentrated
in the heaviest 4/ε3 hierarchies of L. Step 4 is essentially the Huffman coding
algorithm and yields an optimal binary hierachy. We can show that this binary
hierarchy achieves an approximation of 3. This yields the following bound on the
increase in cost due to step 4:

3
(
ε2W (L) log1+ε 3 + (1− ε2)W (L) log2(4/ε2)

)
≤W (L)/ε,

for ε sufficiently small. The final step of the algorithm increases the cost by at
most W (L)/ε+ εW (S). Thus, the total cost of the final hierarchy is at most

OPT(H) + OPT(L) +W (L)/ε+W (L)/ε+ εW (S)
≤ OPT(H) + OPT(L) + 2εOPT(S) + εOPT(S)
≤ (1 + 3ε)OPT(S).

(The second step holds since OPT(S) ≥
∑

v∈L wv log3(W (S)/wv) ≥W (L)/ε2.)

4 Hardness results

In this section, first we show that Key Hierarchy Problem is strongly NP-
complete if group members have nonuniform weights and the underlying routing
network is a tree. Then we show the problem is also NP-complete if group mem-
bers have uniform weights and the underlying routing network is a general graph.

4.1 Weighted key hierarchy problem with routing tree

We refer the reader to [5] for the proof of the following theorem.

Theorem 2. When group members have different weights and the routing net-
work is a tree, the Key Hierarchy Problem is NP-complete.

4.2 Unweighted key hierarchy problem

We refer the reader to [5] for the proof of the following theorem.

Theorem 3. When group members have the same key update weights and the
routing network is a general graph, the Key Hierarchy Problem is NP-complete.

5 Approximation algorithms for nonuniform multicast
costs

We first present, in Section 5.1, an 11-approximation algorithm for the case where
the underlying communication network is a tree. Then we present, in Section 5.2,
a 75-approximation algorithm for the most general case of our problem, where
the communication network is an arbitrary weighted graph.

5.1 Approximation algorithms for routing trees

Given any routing tree, let S be the set of members. We start with defining a
procedure partition() that takes as input the set S and returns a pair (X, v)
where X is a subset of S and v is a node in the routing tree. First, we determine
if there is an internal node v that has a subset C of children such that the total
weight of the members in the subtrees of the routing tree rooted at the nodes
in C is between W (S)/3 and 2W (S)/3. If v exists, then we partition S into
two parts X, which is the set of members in the subtrees rooted at the nodes
in C, and S \ X. It follows that W (S)/3 ≤ W (X) ≤ 2W (S)/3. If v does not
exist, then it is easy to see that there is a single member with weight more than
2W (S)/3. In this case, we set X to be the singleton set that contains this heavy
node which we call v. The procedure partition(S) returns the pair (X, v). In
the remainder, we let Y denote S \X.

ApproxTree(S)

1. If S is a singleton set, then return the trivial hierarchy with a single node.
2. (X, v) = partition(S); let Y denote S \X.
3. Let ∆ be the cost from root to partition node v. If ∆ ≤ M(S)/5, then let
T1 =ApproxTree(X); otherwise T1 = PTAS(X). (PTAS is the algorithm in-
troduced in Section 3.2.)

4. T2 =ApproxTree(Y).
5. Return combine(T1, T2).

Theorem 4. Algorithm ApproxTree is an (11+ε)-approximation, where ε > 0
can be made arbitrarily small.

Proof. Let ALG(S) be the key hierarchy constructed by our algorithm, OPT(S)
be the optimal key hierarchy. In the following proof, we abuse our notation and
use ALG(·) and OPT(·) to refer to both the key hierarchies and their cost. We
notice that OPT(S) ≥ OPT(X) + OPT(Y).

We prove by induction on the number of members in S that ALG(S) ≤
α ·OPT(S)+β ·W (S)M(S), for constants α and β specified later. The induction
base case, when |S| ≤ 2, is trivial. For the induction step, we consider three
cases depending on the distance to the partition node v and whether we obtain
a balanced partition; we say that a partition (X,Y) is balanced if 1

3W (S) ≤
W (X),W (Y) ≤ 2

3W (S). The first case is where ∆ ≤M(S)/5 and the partition
is balanced. In this case, we have

ALG(S) = ALG(X) + ALG(Y) +W (S) [M(X) +M(Y)]
≤ α ·OPT(X) + β ·W (X)M(X) + α ·OPT(Y) + β ·W (Y)M(Y)

+W (S) [M(X) +M(Y)]

≤ α [OPT(X) + OPT(Y)] +
(

2
3
β + 1

)
W (S) [M(X) +M(Y)]

≤ α ·OPT(S) +
(

2
3
β + 1

)
W (S) [M(S) +∆]

≤ α ·OPT (S) + β · w(S)M(S)

as long as
(
1 + 1

5

) (
2
3β + 1

)
≤ β, which is true if β ≥ 6. The second case is

where ∆ > M(S)/5 and the partition is balanced. In this case, we only call the
algorithm recursively on Y and use PTAS on X.

ALG(S) = PTAS(X) + ALG(Y) +W (S) [M(X) +M(Y)]
≤ 5(1 + ε) ·OPT(X) + α ·OPT(Y) + β ·W (Y)M(Y)

+W (S) [M(X) +M(Y)]

≤ α ·OPT(S) +
(

2
3
β + 2

)
W (S)M(S)

≤ α ·OPT(S) + β ·W (S)M(S)

as long as α ≥ 5(1 + ε) and 2
3β + 2 ≤ β which is true if β ≥ 6. The third case

is when the partition is not balanced (i.e. W (X) > 2
3W (S)). In this case, our

algorithm connects the heavy node directly to the root of the hierarchy.

ALG(S) = ALG(Y) +W (S) [M(X) +M(Y)]
≤ α ·OPT(Y) + β ·W (Y)M(Y) +W (S) [M(X) +M(Y)]

≤ α ·OPT(S) +
1
3
βW (S)M(S) + 2W (S)M(S)

≤ α ·OPT(S) + β ·W (S)M(S)

as long as 1
3β + 2 ≤ β which is true if β ≥ 3. So, by induction, we have shown

ALG(S) ≤ α · OPT(S) + β · W (S)M(S) for α ≥ 5(1 + ε) and β ≥ 6. Since
OPT(S) ≥W (S)M(S), we obtain an (11 + ε)-approximation. ut

If the member weights are uniform, then we can improve the approximation ratio
to 4.2 using a more careful analysis of the same algorithm. We refer the reader
to [5] for details.

5.2 Approximation algorithms for routing graphs

In this section, we give a constant-factor approximation algorithm for the case
where weights are nonuniform and the routing network is an arbitrary graph. In
our algorithm, we compute light approximate shortest-path trees (LAST) [14] of
subgraphs of the routing graph. An (α, β)-LAST of a given weighted graph G is
a spanning tree T of G such that the the shortest path in T from a specified root
to any vertex is at most α times the shortest path from the root to the vertex in
G, and the total weight of T is at most β times the minimum spanning tree of G.

ApproxGraph(S)

1. If S is a singleton set, return the trivial hierarchy with one node.
2. Compute the complete graph on S ∪ {root}. The weight of an edge (u, v) is

the length of shortest path between u and v in the original routing graph.
3. Compute the minimum spanning tree on this complete graph. Call it MST(S).
4. Compute an (α, β)-LAST L of MST(S).
5. (X, v) = partition(L).
6. Let ∆ be the cost from root to partition node L. If ∆ ≤ M(S)/5, then let
T1 =ApproxGraph(X). Otherwise, T1 = PTAS(X).

7. T2 =ApproxGraph(Y).
8. Return combine(T1, T2).

The optimum multicast to a member set is obtained by a minimum Steiner
tree, computing which is NP-hard. It is well known that the minimum Steiner
tree is 2-approximated by a minimum spanning tree (MST) in the metric space
connecting the root to the desired members (the metric being the shortest path
cost in the routing graph). So at the cost of a factor 2 in the approximation, we
define M(S) to be the cost of the MST connecting the root to S in the complete
graph G(S) whose vertex set is S ∪ {root} and the weight of edge (u, v) is the
shortest path distance between u and v in the routing graph.

Theorem 5. The algorithm ApproxGraph is a constant-factor approximation.

The proof of Theorem 5 is similar to that of Theorem 4. We refer the reader
to [5] for the proof details.

References

1. Awerbuch, B., Baratz, A.E., Peleg, D.: Cost-Sensitive Analysis of Communication
Protocols. In: PODC (1990)

2. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
Security: A Taxonomy and Some Efficient Constructions. In: INFOCOMM (1999)

3. Canetti, R., Malkin, T., Nissim, K.: Efficient Communication-Storage Tradeoffs for
Multicast Encryption. In: EUROCRYPT (1999)

4. Caronni, G., Waldvogel, M., Sun, D., Plattner, B.: Efficient Security for Large and
Dynamic Multicast Groups. In: WETICE (1998)

5. Chan, A., Rajaraman, R., Sun, Z., Zhu, F.: Approximation Algorithms for Key
Management in Secure Multicast. arXiv:0904.4061v1 [cs.DS] (2009)

6. Golin, M.J., Kenyon, C., Young, N.E.: Huffman coding with unequal letter costs.
In: STOC (2002)

7. Harney, H., Muckenhirn, C.: Group Key Management Protocol (GKMP) Architec-
ture. Internet RFC 2094 (1997)

8. Harney, H., Muckenhirn, C.: Group Key Management Protocol (GKMP) Specifica-
tion. Internet RFC 2093 (1997)

9. Heeringa, B.: Improving Access to Organized Information. Thesis, University of
Massachussetts, Amherst (2008)

10. Heeringa, B., Adler, M.: Optimal Website Design with the Constrained Subtree
Selection Problem. In: ICALP (2004)

11. Huffman, D.: A Method for the Construction of Minimum-Redundancy Codes. In:
IRE (1952)

12. Karp, R.: Minimum-redundancy coding for the discrete noiseless channel. In: IRE
Transactions on Information Theory (1961)

13. Khuller, S., Kim, Y.A.: Broadcasting in Heterogeneous Networks. Algorithmica.
14(1), 1–21 (2007)

14. Khuller, S., Raghavachari, B., Young, N.E.: Balancing Minimum Spanning Trees
and Shortest-Path Trees. Algorithmica. 14(4), 305–321 (1995)

15. Kortsarz, G., Peleg, D.: Approximating Shallow-Light Trees (Extended Abstract).
In: SODA (1997)

16. Lazos, L., Poovendran, R.: Cross-layer design for energy-efficient secure multicast
communications in ad hoc networks. In: IEEE Int. Conf. Communications (2004)

17. Liu, P.: Broadcast Scheduling Optimization for Heterogeneous Cluster Systems. J.
Algorithms. 42(1), 135–152 (2002)

18. Mittra, S.: Iolus: A Framework for Scalable Secure Multicasting. In: SIGCOMM
(1997)

19. Poovendran, R., Baras, J.S.: An information-theoretic approach for design and
analysis of rooted-tree-based multicast key management schemes. In: IEEE Trans-
actions on Information Theory (2001)

20. Salido, J., Lazos, L., Poovendran, R.: Energy and bandwidth-efficient key distri-
bution in wireless ad hoc networks: a cross-layer approach. In: IEEE/ACM Trans.
Netw. (2007)

21. Shields, C., Garcia-Luna-Aceves, J.J.: KHIP—a scalable protocol for secure mul-
ticast routing. In: SIGCOMM (1999)

22. Snoeyink, J., Suri, S., Varghese, G.: A Lower Bound for Multicast Key Distribution.
In: IEEE Infocomm (2001)

23. Wallner, D., Harder, E., Agee, R.: Key Management for Multicast: Issues and
Architectures. Internet RFC 2627 (1999)

24. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure Group Communications Using Key
Graphs. In: SIGCOMM (1998)

