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Graph cut problems are widely studied in the area of approximation algo-
rithms. The most basic cut problem is the s-t minimum cut problem, for which
Ford and Fulkerson gave an exact algorithm and illustrated max-flow min-cut
relationship. This min-max theorem has led researchers to seek its generaliza-
tion to the case of multicommodity flow. In this setting, each commodity has
its own source and sink, and the object is to maximaze the sum of the flows
subject to capacity and flow conservation requirements. The notion of a mul-
ticut generalizes that of a cut, and is defined as a set of edges whose removal
disconnects each source from its corresponding sink.

Clearly, maximum multicommodity flow is bounded by minimum multicut;
however, the equality doesn’t hold often times for k ≥ 3, where k is the number
of source and sink pairs. And minimum multicut is proved to be NP-hard
when k ≥ 3. In this situation, the best one can hope for is an approximation
algorithm for minimum multicut problems. This suvey collects approximation
and complexity results for multicut problems and its variants.

1 Minimum multicut problem

Problem 1. Let G = (V, E) be an undirected graph with nonnegative capacity
ce for each edge e ∈ E. Let {(s1, t1), . . . , (sk, tk)} be a specified set of pairs
of vertices, where each pair is distinct, but vertices in different pairs are not
required to be distinct. A multicut is a set of edges whose removal separates
each of the pairs. The problem is to find a minimum capacity multicut in G.

Minimum multicut problem is NP-hard and MAX-SNP-hard even for k = 3
by [3], which means it’s unlikely to have polynomial time approximation scheme.
Moreover, it is NP-hard even if graphs are restricted to trees of height 1 and
unit capacity edges. In [1], Chawla et al show an arbitrary large constant factor
hardness, assuming the Unique Games Conjecture. A stronger version of this
conjecture leads to a hardness result of Ω(log log n).

Garg et al give a 2-approximation algorithm in [7] when the underlining
graph is restricted to trees, and a O(log k)-approximation for general graphs in
[6], which is the best know approximation ratio so far.
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Minimum multicut can be generalized to vertex multicut and preserve the
approximation ratio O(log n), which was stated in [4] (the journal version of [7])
without proof.

2 k-Multicut problem

Problem 2. Let G = (V, E) be an undirected graph with nonnegative capacity
ce for each edge e ∈ E. Let {(s1, t1), . . . , (sk, tk)} be a specified set of pairs
of vertices, where each pair is distinct, but vertices in different pairs are not
required to be distinct. A k-multicut is a set of edges whose removal separates
at least k pairs. The problem is to find a minimum capacity k-multicut in G.

In [8], Glovin et al show that the k-multicut problem on trees can be approx-
imated within a factor of 8

3 +ε, for any fixed ε > 0, and within O(log2 n log log n)
on general graphs by Racke decomposition, where n is the number of vertices
in the graph. Recently, Räcke imporved the congetion gap to O(log n) in [11],
which in turn imporved the approximation ratio for k-multicut in general graph
to O(log n).

For any fixed ε > 0, they also obtain a polynomial time algorithm for k-
multicut on trees which returns a solution of cost at most (2 + ε)ȮPT , that
separates at least (1− ε)k̇ pairs, where OPT is the cost of the optimal solution
separaating k pairs.

By applying the same techniques in [8], they also give a simple 2-approximation
algorithm for the multicut problem on trees, which matches the best known al-
gorithm [7].

Levin and Segev obtained the same result independently using similar tech-
niques [10].

3 Multiway Cut

Problem 3. Given a set of terminals S = {s1, s2, . . . , sk} ⊆ V , a multiway cut
is a set of edges whose removal disconnects the terminals from each other. The
multiway cut problem asks for the minimum weight such set.

The problem of finding a minimum weight multiway cut is MAX SNP-hard
for any fixed k ≥ 3; even if all edge weights are equal to 1, multiway cut is still
NP-hard for all fixed k ≥ 3; when k is not fixed, multiway cut is NP-hard even
if graph is restricted to planar graphs and all edge weigths are equal to 1, shown
in [3]. Ovserve that the case k = 2 is precisely the minimum s− t cut problem.

In [3], there is a simple algorithm that gives (2−2/k)-approximation. Later,
[2] improved the approximation ratio to 3/2. The current best guarantee known
for the multiway cut problem is 1.3438, due to [9].

Multiway cut can be generalized to node multiway cut, which is stated as
follows.
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Problem 4. Given a connected, undirected graph G = (V, E) with an assign-
ment of costs to vertices, and a set of terminals S = {s1, s2, . . . , sk} ⊆ V that
form an independent set in G, a node multiway cut is a subset of V \ S whose
removal disconnects the terminals from each other. The node multiway cut
problem asks for the minimum cost such subset.

In [5], Garg et al give a (2− 2/k)-approximation.

4 k-Cut

Problem 5. A set of edges whose removal leaves k connected components is
called k-cut. The minimum k-cut problem asks for a minimum weight k-cut.

The minimum k-cut problem is polynomial time solvable for fixed k; however,
it is NP-hard if k is specified as part of the input.

In [12], there is an algorithm that gives (2− 2/k)-approximation.
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