1 Multicommodity flow

Demands multicommodity flow: Given graph $G = (V, E)$, edge capacity function $C : E \rightarrow \mathbb{Z}^+$. There are $k \geq 1$ commodities, each with its own source s_i, sink t_i, and demand $\text{dem}(i)$. The objective is to maximize f such that we can send $f \cdot \text{dem}(i)$ units of commodity i from s_i to t_i for each i simultaneously, without violating the capacity constraint of any edge.

Sum-flow multicommodity flow: Given graph $G = (V, E)$, edge capacity function $C : E \rightarrow \mathbb{Z}^+$. There are $k \geq 1$ commodities, each with its own source s_i, sink t_i. The objective is to maximize the sum of the flow sent from s_i to t_i, over all i, without violating the capacity constraint for any edge.

2 Two examples where Max-Flow is not equal to Min-Cut

It is well known that Max-Flow is equal to Min-Cut in Single Commodity Flow problem. But this is not true for Multicommodity Flow when the number of commodities is greater than 2.

First we give the definition of Min-Cut in multicommodity flow problem.

Definition 1. For any cut (S, \bar{S}) of the graph, let $C(S, \bar{S}) = \sum_{e \in (S, \bar{S})} C(e)$ which is the total capacities across this cut, and $D(S, \bar{S}) = \sum_{\{i | s_i \in S \land t_i \in \bar{S} \text{ or } s_i \in \bar{S} \land t_i \in S\}} \text{dem}(i)$ which is the total demand across this cut. Define the Min-Cut as $\eta = \min_{S \subseteq V} \frac{C(S, \bar{S})}{D(S, \bar{S})}$. We refer to $\frac{C(S, \bar{S})}{D(S, \bar{S})}$ as the ratio of cut (S, \bar{S}).

Let f^* be the optimal value for demands multicommodity flow. It is clear that $f^* \leq \eta$. The first example (Figure 1, taken from Jon Kleinberg’s lecture notes) shows f^* could be strictly smaller than η in multicommodity flow problem.

In the graph, there are 4 flow pairs, each with a demand of 1, and the shortest path between each pair is 2 hops. So the total capacity consumed when we send f^* flow for each commodity is $8f^*$. And there are only 6 edges in the graph. So we have $f^* \leq 3/4$.

The second example gives an even worse ratio between Max-Flow and Min-Cut, where $f^* \leq O\left(\frac{\eta}{\log n}\right)$. This example makes use of Uniform Multicommodity Flow and 3-regular expander graph.

3-regular expanders: 3-regular expander graph has the following properties:
Figure 1: Example of Max-Flow and Min-Cut in multicommodity flow

- degree of every vertex is equal to 3
- \(\exists c > 0 \) (\(c \) is a constant), \(\forall S \subseteq V \) if \(|S| \leq \frac{|V|}{2} \) then \(\delta(S) \geq c|S| \). Here \(\delta(S) \) is the number of edges that cross cut \((S, \bar{S}) \).

Now construct the multicommodity flow problem in the following way. Given a 3-regular expander graph, set the cost of each edge to one, \(C(e) = 1 \). For each pair of vertices \((u, v) \) set a source and sink pair \((s_i, t_i) \). The demand of each \((s_i, t_i) \) is equal to one, \(d_i = 1 \).

Theorem 1. \(f^* \leq O \left(\frac{\eta}{\log n} \right) \)

Proof. We first show that \(\eta = \Omega(1/n) \). Consider any cut \((S, \bar{S})\). Without loss of generality, we assume \(|S| \leq n/2 \). Owing to the expansion property, the number of edges crossing the cut is at least \(c|S| \). Therefore, the ratio for \((S, \bar{S})\) is at least \(c|S|/(|S| \cdot |\bar{S}|) \), which is at least \(c/n = \Omega(1/n) \).

For each vertex \(u \in V \), the number of vertices that are 1-hop away from \(u \) is 3 (this is a 3-regular expander graph), the number of vertices that are 2-hop away from \(u \) is at most 9, the number of vertices that are 3-hop away from \(u \) is at most 27 So there are at least \(2n^2 / 3 \) vertices that are more than \(\lfloor \log_3 n \rfloor - 1 \) hops away from \(u \). And the number of pairs that are separated by more than \(\lfloor \log_3 n \rfloor - 1 \) hops is at least \(n \times \frac{2n^2}{3} = \frac{2n^3}{3} \). So the total capacity consumed by flows is at least \(2n^2 \times \log_3 n \times f^* \). The total number of edges in this graph is \(\frac{3n^2}{2} \). From

\[
\frac{3n}{2} \geq \frac{2n^2}{3} \times \log_3 n \times f^*
\]

we have

\[
f^* \leq \frac{9}{4n \log_3 n} = O \left(\frac{\eta}{\log n} \right)
\]

\(\square \)
In other words, the Max-Flow for the Uniform Multicommodity Flow problem is at least a $O\left(\frac{\eta}{\log n}\right)$-factor smaller than the min-cut.

3 LP of Demands Multicommodity Flow

Let P_i be the set of paths between pair (s_i, t_i), p^i_j be the j^{th} path in P_i, $dem(i)$ be the demands of pair (s_i, t_i), and f^i_j be the amount of commodity i sent on path p^i_j. Then we get the following LP for Demands Multicommodity Flow problem.

$$\max f$$
$$\text{s.t. } \sum_{p^i_j} f^i_j \geq f \cdot dem(i) \quad \forall i$$
$$\sum_{p^i_j: e \in p^i_j} f^i_j \leq c_e \quad \forall e$$
$$f^i_j \geq 0 \quad \forall i, j$$

And its dual is

$$\min \sum_e c_e d_e$$
$$\text{s.t. } \sum_{e \in p^i_j} d_e \geq l_i \quad \forall i, j$$
$$\sum_i l_i \cdot dem(i) \geq 1$$
$$d_e \geq 0 \quad \forall e$$

In the dual, d_e can be viewed as the distance assigned to the edge. And l_i is the length of the shortest path between s_i and t_i, according to the distances given by d_e. A feasible solution to the dual yields a lower bound on f^* (by weak duality). In fact, the proof of Theorem ?? can be seen as one based on weak duality. Take the 3-regular expander graph. We saw that $\eta \geq \frac{c}{n}$ where c is a constant. We now show that $f^* \leq O\left(\frac{1}{n \log n}\right)$, using the dual LP defined above. Set $d_e = \frac{2}{n^2 \log n}$.

Then

$$\sum_i l_i \geq \frac{2}{3} n^2 \log n \cdot \frac{2}{n^2 \log n} \geq 1$$

because for each vertex, there are at least $\frac{2n}{3}$ vertices that are more than $\lfloor \log_3 n \rfloor - 1$ hops away from it, and the demand for each pair is 1, $dem(i) = 1$.

By weak duality, we thus have

$$f^* \leq \sum_e d_e = \frac{2}{n^2 \log n} \cdot \frac{3n}{2} = \frac{3}{n \log n} = O\left(\frac{1}{n \log n}\right)$$