
Chapter 3

Diffusion under adversarial

dynamics

In Chapter 2, we study diffusion under organic dynamics, where the network is altered

by the diffusion process itself. In this chapter, we study similar problems, but under

adversarial dynamics.

We study the fundamental problem of diffusion (also known as information spread-

ing or gossip) in dynamic networks. In gossip, or more generally, k-gossip, there are k

pieces of information (or tokens) that are initially present in some nodes and the prob-

lem is to disseminate the k tokens to all nodes. The goal is to accomplish the task in as

few rounds of distributed computation as possible. It’s not hard to show an O(n + k)

upper bound if the network is static (e.g. using delay sequence argument). However,

the problem is especially challenging in dynamic networks where the network topology

can change from round to round and can be controlled by an on-line adversary.

The focus of this chapter is on the power of token-forwarding algorithms, which do

not manipulate tokens in any way other than storing and forwarding them. We first

consider a worst-case adversarial model first studied by Kuhn, Lynch, and Oshman [89]

in which the communication links for each round are chosen by an adversary, and

nodes do not know who their neighbors for the current round are before they broadcast

their messages. Our main result is an Ω(nk/ log n) lower bound on the number of

rounds needed for any deterministic token-forwarding algorithm to solve k-gossip. This

resolves an open problem raised in [89], improving their lower bound of Ω(n log k), and

matching their upper bound of O(nk) to within a logarithmic factor. Our lower bound

37

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

also extends to randomized algorithms against an adversary that knows in each round

the outcomes of the random coin tosses in that round. Our result shows that one cannot

obtain significantly efficient (i.e., subquadratic) token-forwarding algorithms for gossip

in the adversarial model of [89]. We next show that token-forwarding algorithms can

achieve subquadratic time in the offline version of the problem, where the adversary

has to commit all the topology changes in advance at the beginning of the computation.

We present two polynomial-time offline token-forwarding algorithms to solve k-gossip:

(1) an O(min{nk, n
√

k log n}) round algorithm, and (2) an (O(n�), log n) bicriteria

approximation algorithm, for any � > 0, which means that if L is the number of rounds

needed by an optimal algorithm, then our approximation algorithm will complete in

O(n�L) rounds and the number of tokens transmitted on any edge is O(log n) in each

round. Our results are a step towards understanding the power and limitation of token-

forwarding algorithms in dynamic networks.

In Section 3.1 we formally define the k-gossip problem and the online/offline models

we considered. Related work is in Section 3.2. We show the Ω(nk/ log n) lower bound

in Section 3.3, and present our algorithms in Section 3.4. Finally, we conclude and give

open problems in Section 3.5.

3.1 Model and problem statement

In this section, we formally define the k-gossip problem, the online and offline models,

and token-forwarding algorithms.

The k-gossip problem. In this problem, k different tokens are assigned to a set V of

n ≥ k nodes, where each node may have any subset of the tokens, and the goal is to

disseminate all the k tokens to all the nodes.

The online model. Our online model is the worst-case adversarial model of [89]. Nodes

communicate with each other using anonymous broadcast. We assume a synchronized

communication. At the beginning of round r, each node in V decides what message to

broadcast based on its internal state and coin tosses (for a randomized algorithm); the

adversary chooses the set of edges that forms the communication network Gr over V for

round r. We adopt a strong adversary model in which adversary knows the outcomes of

the random coin tosses used by the algorithm in round r at the time of constructing Gr

but is unaware at this time of the outcomes of any randomness used by the algorithm

38

3.2 Related work

in future rounds. The only constraint on Gr is that it be connected; this is the same

as the 1-interval connectivity model of [89].

As observed in [89], the above model is equivalent to the adversary knowing the

messages to be sent in round r before choosing the edges for round r. We do not

place any bound on the size of the messages, but require for our lower bound that each

message contains at most one token. Finally, we note that under the strong adversary

model, there is a distinction between randomized algorithms and deterministic algo-

rithms since a randomized algorithm may be able to exploit the fact that in any round

r, while the adversary is aware of the randomness used in that round, it does not know

the outcomes of any randomness used in subsequent rounds.

The offline model. In the offline model, we are given a sequence of networks �Gr�
where Gr is a connected communication network for round r. As in the online model,

we assume that in each round at most one token is broadcast by any node. It can be

easily seen that the k-gossip problem can be solved in nk rounds in the offline model;

so we may assume that the given sequence of networks is of length at most nk.

Token-forwarding algorithms. Informally, a token-forwarding algorithm is one that

does not combine or alter tokens, only stores and forwards them. Formally, we call an

algorithm for k-gossip a token-forwarding algorithm if for every node v, token t, and

round r, v contains t at the start of round r of the algorithm if and only if either v has

t at the start of the algorithm or v received a message containing t prior to round r.

Finally, several of our arguments are probabilistic. We use the term “with high

probability” to mean with probability at least 1 − 1/nc, for a constant c that can be

made sufficiently high by adjusting related constant parameters.

3.2 Related work

Information spreading (or dissemination) in networks is one of the most basic problems

in computing and has a rich literature. The problem is generally well-understood on

static networks, both for interconnection networks [93] as well as general networks [96,

17]. In particular, the k-gossip problem can be solved in O(n+k) rounds on any n-static

network [122]. There also have been several papers on broadcasting, multicasting, and

related problems in static heterogeneous and wireless networks (e.g., see [12, 26, 25, 50]).

39

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

Dynamic networks have been studied extensively over the past three decades. Some

of the early studies focused on dynamics that arise out of faults, i.e., when edges or

nodes fail. A number of fault models, varying according to extent and nature (e.g.,

probabilistic vs. worst-case) and the resulting dynamic networks have been analyzed

(e.g., see [17, 96]). There have been several studies on models that constrain the

rate at which changes occur, or assume that the network eventually stabilizes (e.g.,

see [7, 57, 66]).

There also has been considerable work on general dynamic networks. Some of the

earliest studies in this area include [8, 23] which introduce general building blocks for

communication protocols on dynamic networks. Another notable work is the local

balancing approach of [22] for solving routing and multicommodity flow problems on

dynamic networks. Algorithms based on the local balancing approach continually bal-

ance the packet queues across each edge of the network and drain packets that have

reached their destination. The local balancing approach has been applied to achieve

near-optimal throughput for multicast, anycast, and broadcast problems on dynamic

networks as well as for mobile ad hoc networks [21, 24, 77].

Modeling general dynamic networks has gained renewed attention with the recent

advent of heterogeneous networks composed out of ad hoc, and mobile devices. To ad-

dress the unpredictable and often unknown nature of network dynamics, [89] introduce

a model in which the communication graph can change completely from one round to

another, with the only constraint being that the network is connected at each round.

The model of [89] allows for a much stronger adversary than the ones considered in past

work on general dynamic networks [22, 21, 24]. In addition to results on the k-gossip

problem that we have discussed earlier, [89] consider the related problem of counting,

and generalize their results to the T -interval connectivity model, which includes an

additional constraint that any interval of T rounds has a stable connected spanning

subgraph. The survey of [90] summarizes recent work on dynamic networks.

We note that the model of [89], as well as ours, allow only edge changes from

round to round while the nodes remain fixed. Recently, the work of [18] introduced a

dynamic network model (motivated by P2P networks) where both nodes and edges can

change by a large amount (up to a linear fraction of the network size). They show that

stable amost-everywhere agreement can be efficiently solved in such networks even in

adversarial dynamic settings.

40

3.3 Lower bound for online token-forwarding algorithms

Recent work of [72, 73] presents information spreading algorithms based on network

coding [10]. As mentioned earlier, one of their important results is that the k-gossip

problem on the adversarial model of [89] can be solved using network coding in O(n+k)

rounds assuming the token sizes are sufficiently large (Ω(n log n) bits). For further

references to using network coding for gossip and related problems, we refer to the

recent works of [72, 73, 19, 42, 53, 106] and the references therein.

Our offline approximation algorithm makes use of results on the Steiner tree packing

problem for directed graphs [48]. This problem is closely related to the directed Steiner

tree problem (a major open problem in approximation algorithms) [46, 130] and the

gap between network coding and flow-based solutions for multicast in arbitrary directed

networks [9, 118].

Finally, we note that there are also a number of studies that solve k-gossip and

related problems using gossip-based processes. In a local gossip-based algorithm, each

node exchanges information with a small number of randomly chosen neighbors in each

round. Gossip-based processes have recently received significant attention because of

their simplicity of implementation, scalability to large network size, and their use in

aggregate computations, e.g., [34, 54, 82, 47, 80, 106, 43] and the references therein. All

these studies assume an underlying static communication network, and do not apply

directly to the models considered in this paper. A related recent work on dynamic

networks is [20] which analyzes the cover time of random walks on dynamic networks.

3.3 Lower bound for online token-forwarding algorithms

In this section, we give an Ω(kn/ log n) lower bound on the number of rounds needed

by any online token-forwarding algorithm for the k-gossip problem against a strong

adversary. As discussed earlier, this immediately implies the same lower bound for

any deterministic online token-forwarding algorithm. Our lower bound applies to even

centralized algorithms and a large class of initial token distributions. We first describe

the adversary strategy.

Adversary: The strategy of the adversary is simple. We use the notion of free edge

introduced in [89]. In a given round r, we call an edge (u, v) to be a free edge if at the

start of round r, u has the token that v broadcasts in the round and v has the token that

41

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

u broadcasts in the round1; an edge that is not free is called non-free. Thus, if (u, v) is

a free edge in a particular round, neither u nor v can gain any new token through this

edge in the round. Since we are considering a strong adversary model, at the start of

each round, the adversary knows for each node v, the token (if any) that v will broadcast

in that round. In round r, the adversary constructs the communication graph Gr as

follows. First, the adversary adds all the free edges to Gr. Let C1, C2, . . . , Cl denote the

connected components thus formed. The adversary then guarantees the connectivity of

the graph by selecting an arbitrary node in each connected component and connecting

them in a line. Figure 3.1 illustrates the construction.

The network Gr thus constructed has exactly l − 1 non-free edges, where l is the

number of connected components formed by the free edges of Gr. If (u, v) is a non-free

edge in Gr, then u, v, or both will gain at most new token through this edge. We refer

to such a token exchange on a non-free edge as a useful token exchange.

We bound the running-time of any token-forwarding algorithm by identifying a

critical structure that quantifies the progress made in each round. We say that a

sequence of nodes v1, v2, . . . , vk is half-empty in round r with respect to a sequence

of tokens t1, t2, . . . , tk if the following condition holds at the start of round r: for all

1 ≤ i, j ≤ k, i �= j, either vi is missing tj or vj is missing ti. We then say that

�vi� is half-empty with respect to �ti� and refer to the pair (�vi�, �ti�) as a half-empty

configuration of size k.

Lemma 16. If m useful token exchanges occur in round r, then there exists a half-
empty configuration of size at least m/2 + 1 at the start of round r.

Proof. Consider the network Gr in round r. Each non-free edge can contribute at
most 2 useful token exchanges. Thus, there are at least m/2 non-free edges in the
communication graph. Based on the adversary we consider, no useful token exchange
takes place within the connected components induced by the free edges. Useful token
exchanges can only happen over the non-free edges between connected components.
This implies there are at least m/2 + 1 connected components in the subgraph of
Gr induced by the free edges. Let vi denote an arbitrary node in the ith connected
component in this subgraph, and let ti be the token broadcast by vi in round r. For

1For convenience, when a node does not broadcast any token we will view it as broadcasting a

special empty token that every node has. This allows us to avoid treating the empty broadcast as a

special case.

42

3.3 Lower bound for online token-forwarding algorithms

Figure 3.1: The network constructed by the adversary in a particular round. Note that
if node vi broadcasts token ti, then the �vi� forms a half-empty configuration with respect
to �ti� at the start of this round.

i �= j, since vi and vj are in different connected components, (vi, vj) is a non-free edge
in round r; hence, at the start of round r, either vi is missing tj or vj is missing ti.
Thus, the sequence �vi� of nodes of size at least m/2 + 1 is half-empty with respect to
the sequence �ti� at the start of round r.

An important point to note about the definition of a half-empty configuration is

that it only depends on the token distribution; it is independent of the broadcast in

any round. This allows us to prove the following easy lemma.

Lemma 17. If a sequence �vi� of nodes is half-empty with respect to �ti� at the start
of round r, then �vi� is half-empty with respect to �ti� at the start of round r� for any
r� ≤ r.

Proof. The lemma follows immediately from the fact that if a node vi is missing a
token tj at the start of round r, then vi is missing token tj at the start of every round
r� < r.

Lemmas 16 and 17 suggest that if we can identify a token distribution in which all

half-empty configuration are small, we can guarantee small progress in each round. We

now show that there are many token distributions with this property, thus yielding the

desired lower bound.

Theorem 18. From an initial token distribution in which each node has each token
independently with probability 3/4, any online token-forwarding algorithm will need
Ω(kn/ log n) rounds to complete with high probability against a strong adversary.

43

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

Proof. We first note that if the number of tokens k is less than 100 log n, then the
Ω(kn/ log n) lower bound is trivially true because even to disseminate one token it will
take Ω(n) rounds in the worst-case. Thus, in the following proof, we focus on the case
where k ≥ 100 log n.

Let El denote the event that there exists a half-empty configuration of size l at
the start of the first round. For El to hold, we need l nodes v1, v2, . . . , vl and l tokens
t1, t2, . . . , tl such that for all i �= j either vi is missing tj or vj is missing ti. For a pair
of nodes u and v, by union bound, the probability that u is missing tv or v is missing
tu is at most 1/4 + 1/4 = 1/2. Thus, the probability of El can be bounded as follows.

Pr [El] ≤
�

n

l

�
· k!
(k − l)!

·
�

1
2

�(l
2)
≤ nl · kl 1

2l(l−1)/2
≤ 22l log n

2l(l−1)/2
.

In the above inequality,
�
n

l

�
is the number of ways of choosing the l nodes that form

the half-empty configuration, k!/(k − l)! is the number of ways of assigning l distinct
tokens, and (1/2)(

l
2) is the upper bound on the probability for each pair i �= j that

either vi is missing tj or vj is missing ti. For l = 5 log n, Pr [El] ≤ 1/n2. Thus, the
largest half-empty configuration at the start of the first round, and hence at the start of
any round, is of size at most 5 log n with probability at least 1− 1/n2. By Lemma 16,
we thus obtain that the number of useful token exchanges in each round is at most
10 log n, with probability at least 1− 1/n2.

Let Mi be the number of tokens that node i is missing in the initial distribution.
Then Mi is a binomial random variable with E [Mi] = k/4. By a straightforward
Chernoff bound, we have the probability that node i misses less than k/8 tokens is

Pr
�
Mi ≤

k

8

�
= Pr

�
Mi ≤

�
1− 1

2

�
· E [Mi]

�
≤ e−

E[Mi](1
2)

2

2 = e−
k
32 .

Therefore, the total number of tokens missing in the initial distribution is at least
n · k/8 = Ω(kn) with probability at least 1 − n/e

k
32 ≥ 1 − 1/n2 (k ≥ 100 log n). Since

the number of useful tokens exchanged in each round is at most 10 log n, the number
of rounds needed to complete k-gossip is Ω(kn/ log n) with high probability.

Theorem 18 does not apply to certain natural initial distributions, such as one in

which each token resides at exactly one node. While this class of token distributions

has far fewer tokens distributed initially, the argument of Theorem 18 does not rule out

the possibility that an algorithm, when starting from a distribution in this class, avoids

the problematic configurations that arise in the proof. In the following, Theorem 20

extends the lower bound to this class of distributions.

44

3.3 Lower bound for online token-forwarding algorithms

Lemma 19. From any distribution in which each token starts at exactly one node and
no node has more than one token, any online token-forwarding algorithm for k-gossip
needs Ω(kn/ log n) rounds against a strong adversary.

Proof. We consider an initial distribution C where each token is at exactly one node,
and no node has more than one token. Let C∗ be an initial token distribution from
which any online algorithm needs Ω(kn/ log n) rounds. The existence of C∗ follows
from Theorem 18. We construct a bipartite graph on two copies of V , V1 and V2. A
node v ∈ V1 is connected to a node u ∈ V2 if in C∗ u has all the tokens that v has in
C. We will show below that this bipartite graph has a perfect matching with positive
probability.

Given a perfect matching M , we can complete the proof as follows. For v ∈ V2, let
M(v) denote the node in V1 that got matched to v. If there is an algorithm A that
runs in T rounds from starting state C, then we can construct an algorithm A∗ that
runs in the same number of rounds from starting state C∗ as follows. First every node
v deletes all its tokens except for those which M(v) has in C. Then algorithm A∗ runs
exactly as A. Thus, the lower bound of Theorem 18, which applies to A∗, also applies
to A.

It remains to prove that the above bipartite graph has a perfect matching. This
follows from an application of Hall’s Theorem. Consider a set of m nodes in V2. We
want to show their neighborhood in the bipartite graph is of size at least m. We
show this condition holds by the following 2 cases. If m < 3n/5, let Xi denote the
neighborhood size of node i. We know E [Xi] ≥ 3n/4. Then by Chernoff bound

Pr [Xi < m] ≤ Pr [Xi < 3n/5] ≤ e−
(1/5)2E[Xi]

2 = e−
3n
200

By union bound with probability at least 1−n ·e−3n/200 the neighborhood size of every
node is at least m. Therefore, the condition holds in the first case. If m ≥ 3n/5,
we argue the neighborhood size of any set of m nodes is V1 with high probability.
Consider a set of m nodes, the probability that a given token t is missing in all these
m nodes is (1/4)m. Thus the probability that any token is missing in all these nodes is
at most n(1/4)m ≤ n(1/4)3n/5. There are at most 2n such sets. By union bound, with
probability at least 1− 2n · n(1/4)3n/5 = 1− n/2n/5, the condition holds in the second
case.

Theorem 20. From any distribution in which each token starts at exactly one node,
any online token-forwarding algorithm for k-gossip needs Ω(kn/ log n) rounds against
a strong adversary.

45

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

Proof. In this theorem, we extend our proof in Lemma 19 to the inital distibution C

where each token starts at exactly one node, but nodes may have multiple tokens. We
prove this theorem by the following two cases.

First case, when at least n/2 nodes start with some token. This implies that k ≥
n/2. Focus on the n/2 nodes with tokens. Each of them has at least one unique token.
By the same argument used in Lemma 19, disseminating these n/2 distinct tokens to
n nodes takes Ω(n2/ log n) rounds. Thus, in this case the number of rounds needed is
Ω(kn/ log n).

Second case, when less than n/2 nodes start with some token. In this case, the
adversary can group these nodes together, and treat them as one super node. There is
only one edge connecting this super node to the rest of the nodes. Thus, the number
of useful token exchange provided by this super node is at most one in each round. If
there exsits an algorithm that can disseminate k tokens in o(kn/ log n) rounds, then
the contribution by the super node is o(kn/ log n). And by the same argument used in
Lemma 19 we know dissemination k tokens to n/2 nodes (those start with no tokens)
takes Ω(kn/ log n) rounds. Thus, the theorem also holds in this case.

3.4 Subquadratic time offline token-forwarding algorithms

In this section, we give two centralized algorithms for the k-gossip problem in the offline

model. We present an O(min{n
√

k log n, nk}) round algorithm in Section 3.4.1. Then

we present a bicriteria (O(n�), log n)-approximation algorithm in Section 3.4.2, which

means if L is the number of rounds needed by an optimal algorithm where one token is

broadcast by every node per round, then our approximation algorithm will complete in

O(n�L) rounds and the number of tokens broadcast by any node is O(log n) in any given

round. Both of these algorithms uses a directed capacitated leveled graph constructed

from the sequence of communication graphs which we call the evolution graph.

Evolution graph: Let V be the set of nodes. Consider a dynamic network of l rounds

numbered 1 through l and let Gi be the communication graph for round i. The evolution

graph for this network is a directed capacitated graph G with 2l + 1 levels constructed

as follows. We create 2l + 1 copies of V and call them V0, V2, . . . , V2l. Vi is the set of

nodes at level i and for each node v in V , we call its copy in Vi as vi. For i = 1, . . . , l,

level 2i − 1 corresponds to the beginning of round i and level 2i corresponds to the

end of round i. Level 0 corresponds to the network at the start. Note that the end of

46

3.4 Subquadratic time offline token-forwarding algorithms

a particular round and the start of the next round are represented by different levels.

There are three kinds of edges in the graph. First, for every round i and every edge

(u, v) ∈ Gi, we place two directed edges with unit capacity each, one from u2i−1 to

v2i and another from v2i−1 to u2i. We call these edges broadcast edges as they will

correspond to broadcasting of tokens; the unit capacity on each such edge will ensure

that only one token can be sent from a node to a neighbor in one round. Second, for

every node v in V and every round i, we place an edge with infinite capacity from

v2(i−1) to v2i. We call these edges buffer edges as they ensure tokens can be stored at a

node from the end of one round to the end of the next. Finally, for every node v ∈ V

and every round i, we also place an edge with unit capacity from v2(i−1) to v2i−1. We

call these edges as selection edges as they correspond to every node selecting a token

out of those it has to broadcast in round i; the unit capacity ensures that in a given

round a node must send the same token to all its neighbors. Figure 3.2 illustrates our

construction, and Lemma 21 explains its usefulness.

Figure 3.2: An example of how to construct the evolution graph from a sequence of
communication graphs.

Lemma 21. Let there be k tokens, each with a source node where it is present in the
beginning and a set of destination nodes to whom we want to send it. It is feasible
to send all the tokens to all of their destination nodes in a dynamic network using l

rounds, where in each round a node can broadcast only one token to all its neighbors, if

47

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

and only if k directed Steiner trees can be packed in the corresponding evolution graph
with 2l+1 levels respecting the edge capacities, one for each token with its root being the
copy of the source node at level 0 and its terminals being the copies of the destination
nodes at level 2l.

Proof. Assume that k tokens can be sent to all of their destinations in l rounds and fix
one broadcast schedule that achieves this. We will construct k directed Steiner trees
as required by the lemma based on how the tokens reach their destinations and then
argue that they all can be packed in the evolution graph respecting the edge capacities.
For a token i, we construct a Steiner tree T i as follows. For each level j ∈ {0, . . . , 2l},
we define a set Si

j
of nodes at level j inductively starting from level 2l backwards. Si

2l

is simply the copies of the destination nodes for token i at level 2l. Once Si

2(j+1) is
defined, we define Si

2j
(respectively Si

2j+1) as: for each v2(j+1) ∈ Si

2(j+1), include v2j

(respectively nothing) if token i has reached node v after round j, or include a node u2j

(respectively u2j+1) such that u has token i at the end of round j which it broadcasts
in round j + 1 and (u, v) is an edge of Gj+1. Such a node u can always be found
because whenever v2j is included in Si

2j
, node v has token i by the end of round j

which can be proved by backward induction staring from j = l. It is easy to see that
Si

0 simply consists of the copy of the source node of token i at level 0. T i is constructed
on the nodes in ∪j=2l

j=0 Si
j
. If for a vertex v, v2(j+1) ∈ Si

2(j+1) and v2j ∈ Si
2j

, we add
the buffer edge (v2j , v2(j+1)) in T i. Otherwise, if v2(j+1) ∈ Si

2(j+1) but v2j /∈ Si
2j

, we
add the selection edge (u2j , u2j+1) and broadcast edge (u2j+1, v2(j+1)) in T i, where u

was the node chosen as described above. It is straightforward to see that these edges
form a directed Steiner tree for token i as required by the lemma which can be packed
in the evolution graph. The argument is completed by noting that any unit capacity
edge cannot be included in two different Steiner trees as we started with a broadcast
schedule where each node broadcasts a single token to all its neighbors in one round,
and thus all the k Steiner trees can be simultaneously packed in the evolution graph
respecting the edge capacities.

Next assume that k Steiner trees as in the lemma can be packed in the evolution
graph respecting the edge capacities. We construct a broadcast schedule for each token
from its Steiner tree in the natural way: whenever the Steiner tree Ti corresponding
to token i uses a broadcast edge (u2j−1, v2j) for some j, we let the node u broadcast
token i in round j. We need to show that this is a feasible broadcast schedule. First we
observe that two different Steiner trees cannot use two broadcast edges starting from
the same node because every selection edge has unit capacity, thus there are no conflicts
in the schedule and each node is asked to broadcast at most one token in each round.

48

3.4 Subquadratic time offline token-forwarding algorithms

Next we claim by induction that if node v2j is in T i, then node v has token i by the
end of round j. For j = 0, it is trivial since only the copy of the source node for token
i can be included in T i from level 0. For j > 0, if v2j is in T i, we must reach there by
following the buffer edge (v2(j−1), v2j) or a broadcast edge (u2j−1, v2j). In the former
case, by induction node v has token i after round j− 1 itself. In the latter case, node u

which had token i after round j− 1 by induction was the neighbor of node v in Gj and
u broadcast token i in round j, thus implying node v has token i after round j. From
the above claim, we conclude that whenever a node is asked to broadcast a token in
round j, it has the token by the end of round j − 1. Thus the schedule we constructed
is a feasible broadcast schedule. Since the copies of all the destination nodes of a token
at level 2l are the terminals of its Steiner tree, we conclude all the tokens reach all of
their destination nodes after round l.

3.4.1 An O(min{n
√

k log n, nk}) round algorithm

Our algorithm is given in Algorithm 1 and analyzed in Lemma 22 and 23.

Lemma 22. Let there be k ≤ n tokens at given source nodes and let v be an arbitrary
node. Then, all the tokens can be sent to v using broadcasts in O(n) rounds.

Proof. By lemma 21, we will be done in n + k rounds if we can show that k paths,
one from every source vertex at level 0 to v2(n+k), can be packed in the corresponding
evolution graph with 2(n + k) + 1 levels respecting the edge capacities. For this, we
consider the evolution graph and add to it a special vertex v−1 at level −1 and connect
it to every source at level 0 by an edge of capacity 1. (Multiple edges get fused with
corresponding increase in capacity if multiple tokens have the same source.) We claim
that the value of the min-cut between v−1 and v2(n+k) is at least k. Before proving this,
we complete the proof of the claim assuming this. By the max flow min cut theorem,
the max flow between v−1 and v2(n+k) is at least k. Since we connected v−1 with each
of the k token sources at level 0 by a unit capacity edge, it follows that unit flow can be
routed from each of these sources at level 0 to v2(n+k) respecting the edge capacities.
It is easy to see that this implies we can pack k paths, one from every source vertex at
level 0 to v2(n+k), respecting the edge capacities.

To prove our claimed bound on the min cut, consider any cut of the evolution graph
separating v−1 from v2(n+k) and let S be the set of the cut containing v−1. If S includes
no vertex from level 0, we are immediately done. Otherwise, observe that if v2j ∈ S for
some 0 ≤ j < (n+ k) and v2(j+1) /∈ S, then the value of the cut is infinite as it cuts the

49

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

Figure 3.3: An example of building directed Steiner tree in the evolution graph G based
on token dissemination process. Token t starts from node B. Thus, the Steiner tree is
rooted at B0 in G. Since B0 has token t, we include the infinite capacity buffer edge
(B0, B2). In the first round, node B broadcasts token t, and hence we include the selection
edge (B0, B1). Nodes A and C receive token t from B in the first round, so we include
edges (B1, A2), (B1, C2). Now A2, B2, and C2 all have token t. Therefore we include the
edges (A2, A4), (B2, B4), and (C2, C4). In the second round, all of A, B, and C broadcast
token t, we include edges (A2, A3), (B2, B3), (C2, C3). Nodes D and E receive token t from
C. So we include edges (C3, D4) and (C3, E4). Notice that nodes A and B also receive
token t from C, but they already have token t. Thus, we don’t include edges (C3, B4) or
(C3, A4).

buffer edge of infinite capacity out of v2j . Thus we may assume that if v2j ∈ S, then
v2(j+1) ∈ S. Also observe that since each of the communication graphs G1, . . . , Gn+k

are connected, if the number of vertices in S from level 2(j + 1) is no more than the
number of vertices from level 2j and not all vertices from level 2(j +1) are in S, we get
at least a contribution of 1 in the value of the cut. But since the total number of nodes
is n and v2(n+k) /∈ S, there must be at least k such levels, which proves the claim.

Theorem 23. Algorithm 1 solves the k-gossip problem using O(min{n
√

k log n, nk})
rounds with high probability in the offline model.

Proof. It is trivial to see that if k ≤
√

log n, then the algorithm will end in nk rounds
and each node receives all the k tokens. Assume k >

√
log n. By Lemma 22, all the

50

3.4 Subquadratic time offline token-forwarding algorithms

Algorithm 1 O(min{n
√

k log n, nk}) round algorithm in the offline model
Require: A sequence of communication graphs Gi, i = 1, 2, . . .

Ensure: Schedule to disseminate k tokens.

1: if k ≤
√

log n then
2: for each token t do
3: For the next n rounds, let every node who has token t broadcast the token.
4: end for
5: else
6: Choose a set S of 2

√
k log n random nodes.

7: for each vertex in v ∈ S do
8: Send each of the k tokens to vertex v in O(n) rounds.
9: end for

10: for each token t do
11: For the next 2n

�
(log n)/k rounds, let every node who has token t broadcast

the token.
12: end for
13: end if

tokens can be sent to all the nodes in S using O(n
√

k log n) rounds. Now fix a node v

and a token t. Since token t is broadcast for 2n
�

(log n)/k rounds, there is a set St
v of

at least 2n
�

(log n)/k nodes from which v is reachable within those rounds. It is clear
that if S intersects St

v, v will receive token t. Since the set S was picked uniformly at
random, the probability that S does not intersect St

v is at most

�n−2n

√
(log n)/k

2
√

k log n

�

�
n

2
√

k log n

� <

�
n− 2n

�
(log n)/k

n

�2
√

k log n

≤ 1
n4

.

Thus every node receives every token with probability 1 − 1/n3. It is also clear that
the algorithm finishes in O(n

√
k log n) rounds.

Algorithm 1 can be derandomized using the standard technique of conditional

expectations, shown in Algorithm 2. Given a sequence of communication graphs,

if node u broadcasts token t for ∆ rounds and every node that receives token t

also broadcasts t during that period, then we say node v is within ∆ broadcast dis-

tance to u if and only if v receives token t by the end of round ∆. Let S be a set

of nodes, and |S| ≤ 2
√

k log n. We use Pr [u;S]T to denote the probability that

51

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

the broadcast distance from node u to set X is greater than 2n
�

(log n)/k, where

X = S ∪
�
pick 2

√
k log n− |S| nodes uniformly at random from V \ T

�
, and P (S, T)

denotes the sum, over all u in V , of Pr [u;S]T .

Algorithm 2 Derandomized algorithm for Step 6 in Algorithm 1

Require: A sequence of communication graphs Gi, i = 1, 2, . . ., and k ≥
√

log n

Ensure: A set of 2
√

k log n nodes S such that the broadcast distance from every node
u to S is within 2n

�
(log n)/k.

1: Set S and T be ∅.
2: for each v ∈ V do
3: T = T ∪ {v}
4: if P (S ∪ {v}, T) ≤ P (S, T) then
5: S = S ∪ {v}
6: end if
7: end for
8: return S

Lemma 24. The set S returned by Algorithm 2 contains at most 2
√

k log n nodes, and
the broadcast distance from every node to S is at most 2n

�
(log n)/k.

Proof. Let us view the process of randomly selecting 2
√

k log n nodes as a computation
tree. This tree is a complete binary tree of height n. There are n + 1 nodes on any
root-leaf path. The level of a node is its distance from the root. The computation
starts from the root. Each node at the ith level is labeled by bi ∈ {0, 1}, where 0 means
not including node i in the final set and 1 means including node i in the set. Thus,
each root-leaf path, b1b2 . . . bn, corresponds to a selection of nodes. For a node a in the
tree, let Sa (resp., Ta) denote the sets of nodes that are included (resp., lie) in the path
from root to a.

By Theorem 23, we know that for the root node r, we have P (∅, Sr) = P (∅, ∅) ≤
1/n3. If c and d are the children of a, then Tc = Td, and there exists a real 0 ≤ p ≤ 1 such
that for each u in V , Pr [u;Sa]Ta equals p Pr [u;Sc]Tc + (1− p) Pr [u;Sd]Td. Therefore,
P (Sa, Ta) equals pP (Sc, Tc)+(1−p)P (Sd, Td). We thus obtain that min{P (Sc, Tc), P (Sd, Td)} ≤
P (Sa, Ta). Since we set S to be X in {Sc, Sd} that minimizes P (X,Tc), we maintain
the invariant that P (S, T) ≤ 1/n3. In particular, when the algorithm reaches a leaf
l, we know P (Sl, V) ≤ 1/n3. But a leaf l corresponds to a complete node selection,
so that Pr [u;Sl]V is 0 or 1 for all u, and hence P (Sl, V) is an integer. We thus have

52

3.4 Subquadratic time offline token-forwarding algorithms

P (Sl, V) = 0, implying that the broadcast distance from node u to set Sl is at most
2n

�
(log n)/k for every l. Furthermore, |Sl| is 2k

√
log n by construction.

Finally, note that Step 4 of Algorithm 2 can be implemented in polynomial time,
since for each u in V , Pr [u;S]T is simply the ratio of two binomial coefficients with
a polynomial number of bits. Thus, Algorithm 2 is a polynomial time algorithm with
the desired property.

3.4.2 An (O(n�), log n)-approximation algorithm

Here we introduce an (O(n�), log n)-approximation algorithm for the k-gossip problem

in the offline model. This means, if the k-gossip problem can be solved on any n-node

dynamic network in L rounds, then our algorithm will solve the k-gossip problem on

any dynamic network in O(n�L) rounds, assuming each node is allowed to broadcast

O(log n) tokens, instead of one, in each round. Our algorithm is an LP based one, which

makes use of the evolution graph defined earlier. The following is a straightforward

corollary of Lemma 21.

Corollary 25. The k-gossip problem can be solved in l rounds if k directed Steiner
trees can be packed in the corresponding evolution graph, where for each token, the root
of its Steiner tree is a source node at level 0, and the terminals are all the nodes at
level 2l.

Packing Steiner trees in general directed graphs is NP-hard to approximate even

within Ω(m1/3−�) for any � > 0 [48], where m is the number of edges in the graph.

Thus, our algorithm focuses on solving Steiner tree packing problem with relaxation on

edge capacities, allowing the capacity to blow up by a factor of O(log n). First, we write

down the LP for the Steiner tree packing problem (maximizing the number of Steiner

trees packed with respect to edge capacities). Let T be the set of all possible Steiner

trees, and ce be the capacity of edge e. For each Steiner tree T ∈ T, we associate a

variable xT with it. If xT = 1, then Steiner tree T is in the optimal solution; if xT = 0,

it’s not. After relaxing the integral constraints on xT ’s, we have the following LP,

referred to as P henceforth. Let F (P) denote the optimal fractional solution for P.

max
�

T∈T xT

s.t.
�

T :e∈T
xT ≤ ce ∀e ∈ E
xT ≥ 0 ∀T ∈ T

53

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

Lemma 26 ([48]). There is an O(n�)-approximation algorithm for the fractional max-
imum Steiner tree packing problem in directed graphs.

Let L be the number of rounds that an optimal algorithm uses with every node

broadcasting at most one token per round. We give an algorithm that takes O(n�L)

rounds with every node broadcasting O(log n) tokens per round. Thus ours is an

(O(n�), O(log n)) bicriteria approximation algorithm, shown in Algorithm 3.

Algorithm 3 (O(n�), O(log n))-approximation algorithm
Require: A sequence of communication graphs G1, G2, . . .

Ensure: Schedule to disseminate k tokens.

1: Initialize the set of Steiner trees S = ∅.
2: for i = 1 → 2n� do
3: Find L∗ such that with the evolution graph G constructed from level 0 to level

2L∗, the approximate value for F (P) is k/n�. In this step, we use the algorithm
of [48] to approximate F (P).

4: Let x∗
T

be the value of the variable xT in the solution from step 3. The number
of non-zero x∗

T
’s is polynomial with respect to k. Using randomized rounding,

with probability x∗
T

include T in the solution, S = S ∪ {T}. Otherwise, don’t
include T .

5: Remove communication graphs G1, G2, . . . , GL∗ from the sequence, and reduce
the remaining graphs’ indices by L∗.

6: end for
7: Use Corollary 25 to convert the set of Steiner trees S into a token dissemination

schedule.

Theorem 27. Algorithm 3 achieves an O(n�) approximation to the k-gossip problem
while broadcasting O(log n) tokens per round per node, with high probability.

Proof. We show the following three claims: (i) In Step 7, |S| ≥ k with probability at
least 1− 1/ek/4. This is the correctness of Algorithm 3, saying it can find the schedule
to disseminate all k tokens. (ii) The number of rounds in the schedule produced by
Algorithm 3 is at most O(n�) times the optimal one. (iii) In the token dissemination
schedule, the number of tokens sent over an edge is O(log n) in any round with high
probability.

First, we prove claim (i). Let Xi denote the sum of non-zero x∗
T
’s in iteration i.

X =
�2n�

i=1 Xi. We know E [Xi] = k/n�. Thus, E [X] = 2n�k/n� = 2k, which is the

54

3.5 Conclusion and open questions

expected number of Steiner trees in set S. By Chernoff bound, we have

Pr [X ≤ k] = Pr
�
X ≤

�
1− 1

2

�
E [X]

�
≤ e−

(1/2)2E[X]
2 = e−

(1/2)2·2k
2 =

1
ek/4

Thus, |S| ≥ k with probability at least 1− 1/ek/4 in Step 7.
Next we prove claim (ii). Let L denote the number of rounds needed by an optimal

algorithm. Since in Step 3 we used the O(n�)-approximation algorithm in [48] to solve
F (P), we know L∗ ≤ L. There are 2n� iterations. Thus, the number of rounds needed
by Algorithm 3 is at most 2n�L∗ ≤ 2n�L, which is an O(n�)-approximation on the
number of rounds.

Lastly we prove claim (iii). When Algorithm 3 does randomized rounding in Step 4,
some constraint

�
T :e∈T

xT ≤ ce in P may be violated. In the evolution graph, ce = 1.
Let Y denote the sum of x∗

T
’s in this constraint. We have E [Y] ≤ ce = 1. By Chernoff

bound,

Pr [Y ≥ E [Y] + log n] = Pr
�
Y ≥

�
1 +

log n

E [Y]

�
E [Y]

�

≤ e
−E[Y]

h“
1+ log n

E[Y]

”
ln

“
1+ log n

E[Y]

”
− log n

E[Y]

i

≤ 1
nlog log n

Thus, the number of tokens sent over a given edge is O(log n) with probability at least
1 − 1/nlog log n. Since there are only polynomial number of edges, no edge will carry
more than O(log n) tokens in a single round with high probability.

3.5 Conclusion and open questions

In this paper, we studied the power of token-forwarding algorithms for gossip in dy-

namic networks. We showed a lower bound of Ω(nk/ log n) rounds for any online token

forwarding algorithm against a strong adversary; our bound matches the known upper

bound of O(nk) up to a logarithmic factor. We note that our lower bound also ex-

tends to randomized algorithms if the adversary is allowed to be adaptive; that is, the

adversary is allowed to make its decision in each step with knowledge of the random

coin tosses made by the algorithm in that step (but without knowledge of the random-

ness used in future steps). This leaves us with an important open question: what is the

complexity of randomized online token-forwarding algorithms against a weak adversary

that is unaware of the randomness used by the algorithm in each round? Furthermore,

55

3. DIFFUSION UNDER ADVERSARIAL DYNAMICS

for small token sizes (e.g., O(log n) bits) even the best (randomized) online algorithm

we know based on network coding takes O(nk/ log n) rounds [73]. In contrast, we show

that in the offline setting there exist centralized token-forwarding algorithms that run

in O(n1.5
√

log n) time. An interesting open problem is to obtain tight bounds on offline

token-forwarding algorithms.

56

