
Master Thesis

Simulation Based Planning for

Partially Observable

Markov Decision Processes

with Continuous Observation Spaces

Andreas ten Pas

Master Thesis DKE 09-16

Thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

of Artificial Intelligence at the Department of Knowledge
Engineering of the Maastricht University

Thesis Committee:

Dr. ir. Kurt Driessens
Michael Kaisers M.Sc.

Dr. Frans Oliehoek

Maastricht University
Faculty of Humanities and Sciences

Department of Knowledge Engineering
Master Artificial Intelligence

August 22, 2012



Abstract

Many problems in Artificial Intelligence and Reinforcement Learning assume
that the environment of an agent is fully observable. Imagine, for instance, a
robot that moves autonomously through a hallway by employing a number of
actuators and that perceives its environment through a number of sensors. As
long as the sensors provide reliable information about the state of the environ-
ment, the agent can base its decisions directly on the state of the environment.
In many domains, however, sensors can only provide partial information about
the state of the environment.

A mathematical model to deal with such domains is the partially observable
Markov decision process (POMDP). Offline planning algorithms for POMDPs
are known to arrive at optimal policies for POMDPs where the state space, the
action space, the observation space and the planning horizon are all finite. How-
ever, these exact algorithms turn out to be computationally very expensive. As
an alternative to offline planning, online planning algorithms try to overcome
those computational costs. Monte Carlo Tree Search (MCTS), an online plan-
ning algorithm, has recently been successfully extended to POMDPs.

The observations recorded by sensors such as laser range finders and radars
are typically continuous. Such systems can be modeled by POMDPs. This
thesis deals with the problem of extending MCTS to POMDPs with continuous
observations.

To tackle this problem, a novel online planning algorithm, called Continuous
Observations Monte Carlo Tree Search (COMCTS), is proposed. The algorithm
combines Monte Carlo Tree Search with an incremental regression tree learning
technique that builds discretizations of the observation space and allows to
incorporate the observations into the search tree.

Belief based Function Approximation using Incremental Regression tree tech-
niques and Monte Carlo (BFAIRMC) is another novel online planning algorithm
presented in this thesis. The algorithm combines Monte Carlo rollouts with an
incremental regression tree learning technique that creates a discretization of the
belief space and allows to base the agent’s action selection directly on specific
regions of the belief space.

For both novel algorithms, several strategies to avoid information loss in the
case of a refinement of a discretization are discussed. These strategies evolve
from loosing all information over loosing partial information to loosing no in-
formation.

An evaluation of the algorithms on a set of benchmark problems shows
that COMCTS performs significantly better than a random algorithm but only
slightly better than uniform Monte Carlo rollouts. BFAIRMC shows a clear
improvement of over uniform Monte Carlo rollouts per sample but the algo-
rithm turns out to be relatively slow in practice. The evaluation also indicates
that the strategies to avoid information loss directly improve the performance
of BFAIRMC per sample, but - surprisingly - do not improve the performance
of COMCTS.



Preface

When I started thinking about the topic for my master’s thesis, I was still
focused on a topic related to game theory. During my considerations, I - kind of
accidentally - ran into the topic of reusing knowledge in Tree Learning Search, a
recent extension of Monte Carlo Tree Search to continuous actions. I had some
experience with Monte Carlo Tree Search through a project during my master’s
study and got to like the ideas behind the algorithm is a lot. This planning was
still during my semester abroad. So, when I came back, I contacted the inventors
of this topic, but unfortunately, the topic and a similar topic had already been
taken by two other students. That put some frustration into me and I had doubts
that it was still possible to find some interesting and related topic. However,
when I met with the inventors who later on became the supervisors for this
thesis, they offered so many related ideas that my frustration was put aside.

For me, this experience clearly underlines that a master’s thesis is not some-
thing that comes out of nowhere. Without the help of a group of people sup-
porting me during the research, this thesis would not be where it is now.

First of all, I would like to express my gratitude to my three supervisors.
Frans, thank you for your enthusiasm, support and constructive discussion dur-
ing our many meetings. There have been times that my research did not proceed
as well as I hoped or did not show the results that I expected, or I lacked moti-
vation or inspiration. Every time one meeting with you was enough to get me
back on track. I am looking forward to continuing this cooperation with you
in the future. Kurt, thank you for all your good comments and suggestions.
It is always a real pleasure to work with you. Michael, thank you for all your
ideas and inspirations which established the basic idea for this thesis and lead
to very fascinating algorithms in the end. I also want to thank you for all the
informative - and often also entertaining - joint meetings that you initiated.

A special acknowledgment goes to my fellow students Lukas and Colin who
worked on related topics for their master theses and with whom I had a lot
of long and fruitful discussions. The exchange of knowledge and cooperation
within our group has been on a much higher level than in any project group I
had been part of during my studies.

I would also like to thank the readers of earlier versions of this thesis,
Veronika and Henning.

Furthermore, I thank everyone who supported me and with whom I had very
enjoyable times during my studies, especially my friends and family. Without
you, I would not have been where I am now.

I hope that you will enjoy reading this thesis as much as I - nearly all of the
time - enjoyed the process of creating it.

1



Contents

1 Introduction 4
1.1 Problem Statement and Research Questions . . . . . . . . . . . . 5
1.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Online Planning in Partially Observable Environments 8
2.1 Partially Observable Environments . . . . . . . . . . . . . . . . . 8
2.2 Partially Observable Markov Decision Processes . . . . . . . . . . 9
2.3 Solving POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Offline Planning . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Online Planning . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Monte Carlo Methods for POMDPs . . . . . . . . . . . . . . . . 13
2.4.1 Monte Carlo Rollouts . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . 14
2.4.3 Upper Confidence Bounds for Trees . . . . . . . . . . . . 16
2.4.4 Partially Observable Monte Carlo Planning . . . . . . . . 17
2.4.5 Tree Learning Search . . . . . . . . . . . . . . . . . . . . . 18

2.5 Bounding the Horizon Time . . . . . . . . . . . . . . . . . . . . . 20
2.6 Continuous Observations . . . . . . . . . . . . . . . . . . . . . . . 20

3 Continuous Observations Monte Carlo Tree Search 22
3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Learning the Observation Trees . . . . . . . . . . . . . . . . . . . 24
3.3 Splitting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Perfect Recall . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Local Recall . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Belief-Based Reuse of Knowledge . . . . . . . . . . . . . . 28

3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Running Time . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Space Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Belief Based Function Approximation 32
4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Learning the Belief Tree . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Splitting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2



4.3.2 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3 Perfect Recall . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Running Time . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Space Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Empirical Evaluation 39
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 The Tiger Problem . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 The Light Dark Domain . . . . . . . . . . . . . . . . . . . 40
5.1.3 Additional Algorithms . . . . . . . . . . . . . . . . . . . . 42

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Sample-Based Performance . . . . . . . . . . . . . . . . . 43
5.2.2 Time-Based Performance . . . . . . . . . . . . . . . . . . 49
5.2.3 Practical Running Time . . . . . . . . . . . . . . . . . . . 50
5.2.4 One-Step Value Function in the Tiger Problem . . . . . . 52

6 Conclusion 55
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Answers to the Research Questions . . . . . . . . . . . . . . . . . 56
6.3 Recommendations for Future Work . . . . . . . . . . . . . . . . . 57
6.4 Other Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Belief State Approximation 63
A.1 Kalman Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3



Chapter 1

Introduction

In many problems in Artificial Intelligence and Reinforcement Learning, the as-
sumption is made that the environment of an agent is fully observable. Imagine,
for instance, a robot that interacts with the outer world through a number of
actuators and sensors. As long as the sensors provide reliable information about
the state of the environment, the agent can base its decisions directly on the
state of the environment. In many domains, however, sensors can only provide
partial information about the state of the environment.

Partially observable Markov decision processes (POMDPs) are used to model
such sequential decision-making problems in which the state of the world is not
fully observable. They provide a mathematical framework which is capable of
capturing uncertainty in both action effects and perceptual stimuli. In environ-
ments where the state is only partially observable, the agent can only estimate
the world state by maintaining a probability distribution over the set of possible
states.

The traditional approach to find the optimal policy in POMDPs is offline
planning which includes value iteration and policy iteration algorithms. Offline
planning algorithms are known to be able to determine the optimal policy in
worlds where the state space, the action space, the observation space and the
planning horizon are all finite. However, these exact approaches turn out to be
computationally expensive.

Monte Carlo Tree Search (MCTS) is a search technique that combines stochas-
tic simulations with tree search. Although MCTS has been mainly applied to
the domain of game tree search in classical board games, it can in principle
be applied to any domain that can be expressed in terms of state-action pairs.
MCTS is unable to handle continuous action and state spaces. Recently devel-
oped approaches for quasi continuous games such as Poker perform an a priori
discretization of the action or state space [11].

As an alternative to a priori discretization, Tree Learning Search (TLS) [46]
is a recently developed algorithm that performs an online discretization of the
action space. Based on ideas from data stream mining, TLS is a combination
of MCTS and incremental regression tree induction which extends MCTS to
continuous action spaces. It builds discretizations of the search space which are
dependent on the game state and discovers high promising regions of the search
space. TLS has been successfully applied to one-step [46] and multi-step [22, 39]
optimization problems.

4



Recently, Monte Carlo Tree Search has been successfully extended to POMDPs
with discrete observation spaces [40] by incorporating the observations into the
search tree. However, POMDPs with continuous observations add another level
of difficulty to the problem. A continuous space cannot directly be mapped into
a tree because there are infinitely many possible observations in such a space.
The incremental regression tree component of TLS has been successfully applied
to discretize continuous action spaces and could, in theory, be used for any kind
of continuous space including the (possibly) continuous observation space of a
POMDP.

1.1 Problem Statement and Research Questions

The considerations above lead to the following problem statement.

Problem statement. Is it possible to extend Monte Carlo Tree Search to Par-
tially Observable Markov Decision Processes with continuous observations?

This problem statement is refined in five research questions. First of all, there
needs to be some algorithmic component that allows to discretize a continu-
ous space while planning online. Tree Learning Search offers such a compo-
nent for the action space. Theoretically, this component could be used for any
kind of continuous space. In the ideal case, the discretizations help to improve
the agent’s performance. Considering POMDPs, it cannot be directly derived
whether this component would provide such discretizations. This leads to the
first research question.

Research question 1. Can the incremental regression tree component of Tree
Learning Search be used to discretize the observation space instead of the action
space?

Secondly, the belief space also forms a continuous space. This space represents
any possible belief the agent can have about the world. As addressed in Section
2.2, the agent’s action selection strategy can be based on its belief. Therefore,
instead of discretizing the observation space, the regression tree component
could directly discretize the belief space. This results in the second research
question.

Research question 2. Can the incremental regression tree component of Tree
Learning Search be built on the belief space instead of the action space?

Incremental regression tree learners constructs a tree that is built by collecting
statistics and splitting nodes if there is sufficient evidence that a split would
result in a different reward accumulated by the agent. This splitting causes the
problem of information loss, and raises the third research question.

Research question 3. How can information loss be avoided in the techniques
mentioned above?

In order to analyze the memory and time consumption, the techniques men-
tioned above can be investigated from the perspective of theoretical computa-
tional complexity. The fourth research question is therefore as follows.

5



Research question 4. What is the computational complexity of the techniques
mentioned above?

Finally, the techniques mentioned above need to be evaluated and compared to
existing methods. This leads to the final research question.

Research question 5. Which of the techniques mentioned above performs best
on a set of benchmark problems?

1.2 Contributions of the Thesis

This thesis develops two approximate algorithms that are based on stochastic
simulations and incremental regression tree learning, and allows to derive near-
optimal policies for an agent in POMDPs with continuous observation spaces.
The first algorithm, called Continuous Observations Monte Carlo Tree Search,
is an extension of Monte Carlo Tree Search to such POMDPs. The second
algorithm, called Belief based Function Approximation using Incremental Re-
gression tree techniques and Monte Carlo, combines an incremental regression
tree learner with Monte Carlo rollouts. While the first algorithm builds mul-
tiple discretizations of the observation space, the second algorithm builds one
discretization of the belief space.

For each algorithm, this thesis contributes by addressing a number of strate-
gies that avoid information loss in case of a refinement of a discretization.

This thesis further contributes by investigating the theoretical running times
and the space bounds of each novel algorithm, and by giving insights to their
practical performance through an empirical evaluation on a set of benchmark
problems.

1.3 Thesis Outline

The remainder of this thesis is structured as follows.
Chapter 2 introduces the topic of partial observable environments, and the

mathematical model used to represent these environments, POMDPs. In addi-
tion, exact and approximate belief representations for POMDPs are discussed.
From an elaboration on offline planning methods for POMDPs, the chapter
then proceeds to online planning algorithms. A specific kind of online planning
algorithms are Monte Carlo methods, including Monte Carlo Tree Search which
builds the algorithmic foundation for the techniques proposed in this thesis.
Theoretical bounds for the required depth of the search tree constructed by
Monte Carlo Tree Search are given next. The chapter ends with a discussion of
continuous observations and their importance in real world applications.

Chapter 3 presents a novel online planning algorithm that combines Monte
Carlo Tree Search and incremental regression tree induction. This algorithm
builds tree-based discretizations of the observation space by keeping statistical
measures about the outcome of the simulations. The chapter continues by in-
troducing strategies to avoid information loss in the case of a refinement of one
of these discretizations. An analysis of the computational complexity of the
algorithm completes the chapter.

6



Chapter 4 proposes another novel online planning algorithm that combines
Monte Carlo rollouts and incremental regression induction. This algorithm cre-
ates exactly one tree-based discretization of the belief space by keeping statis-
tical measures about the outcome of the simulations. The chapter proceeds by
discussing strategies to avoid information loss in the case of a refinement of this
discretization. The computational complexity of the algorithm is analyzed at
the end of the chapter.

Chapter 5 provides an experimental evaluation of the algorithms proposed
in the previous two chapters. A set of benchmark problems that is used to test
the algorithms is introduced, and a number of additional methods is introduced
to provide a broader analysis. Experiments are conducted that give insights
into the behavior and the performance of the algorithms with respect to the set
of benchmark problems.

Finally, Chapter 6 concludes this thesis by summarizing the results, and by
answering the research questions posed in the previous section. Furthermore, it
points to directions for future research.

7



Chapter 2

Online Planning in Partially

Observable Environments

This chapter leads the reader from the presentation of partially observable en-
vironments over approximate methods that derive near optimal behavior for an
agent through online planning to Monte Carlo methods. Section 2.1 introduces
environments without complete observability. Partially observable Markov de-
cision processes (POMDPs) constitute a mathematical model for such environ-
ments, and are discussed in Section 2.2.

There are two classes of algorithms that construct policies for POMDPs:
offline and online planning algorithms. Both classes are addressed in Section
2.3. Monte Carlo methods, a family of online planning algorithms, range from
simple rollout methods to tree search methods such as Monte Carlo Tree Search
(MCTS), and are elaborated on in Section 2.4. The extensions of MCTS to
POMDPs and to continuous action spaces are also discussed in that section.

Kearns et al. [21] derive theoretical bounds for the depth of the search tree
build by a tree-based algorithm such as MCTS. These bounds ensure that the
policies for the agent’s behavior generated by the algorithm approach the opti-
mal policy. The work of Kearns et al. is recapitulated in Section 2.5.

Section 2.6 discusses continuous observations and their relation to real world
applications. In addition, it gives a brief overview of methods that have been
applied to POMDPs with continuous observation spaces.

2.1 Partially Observable Environments

Consider an agent that perceives its environment through a number of sensors
and tries to reach an objective which may need several sequential actions to ac-
complish. As long as the sensors provide the complete state of the environment,
such sequential decision problems can theoretically be solved by a number of re-
inforcement learning and planning algorithms [43]. In many domains, however,
sensors do not receive complete information about the state of the environment.
The reasons for non-reliable sensors are numerous, and include range limits,
noise or electronic failure.

Domains where the environment cannot be completely observed by the agent
range from industrial over scientific applications to such diverse areas as military,

8



business and social applications [6]. Some of the most well-known applications
are autonomous robots and games such as Poker. In addition, machine main-
tenance, structural inspection, medical diagnosis, marketing and questionnaire
design [6] form a collection of example areas that emphasize the diversity of
partially observable domains.

How can agents make optimal decisions when the environment is not fully
observable and the outcome of actions is not completely certain? For fully
observable environments, the optimal behavior is a mapping from states to
actions. If the state cannot be completely determined, the agent needs to use
the observation signal that it receives from the environment to influence its
behavior. This setting is illustrated in Figure 2.1. Formally, the agent interacts

Figure 2.1: The relation between the agent and the environment.

with the environment in a sequence of discrete time steps, t = 0, 1, . . . . At each
time step t, the agent selects an action at and receives an observation ot. Each
action might change the state of the environment. Over multiple time steps, the
agent accumulates rewards given by the environment. This agent-environment
interaction can be modeled in terms of a partially observable Markov decision
process which is introduced in the next section.

2.2 Partially Observable Markov Decision Pro-

cesses

Markov Decision Processes (MDPs) provide a model for sequential decision-
making problems in which the state of the world is completely observable. An
MDP can be defined as a 4-tuple (S,A, r, T ) where

• S = {s1, s2, . . . } is a set of possible world states,

• A = {a1, a2, . . . } is a set of possible actions,

• r(s, a) is a reward function, and

• T (s, a, s′) = Pr(s′|s, a) is a transition model.

An MDP has the Markov property, named after the Russian statistician Andrei
Markov [26]: the conditional probability distribution of any future state depends
only on the present state and not on the past states of the system. This property

9



is expressed by the following equation.

P (st+1 = j|st = i) = P{st+1 = j|st = i, st−1 = it−1, . . . , s1 = i1, s0 = i0}
(2.1)

where i, j ∈ S.
When the state of the world is not fully observable, the problem can be mod-

eled by a Partially Observable Markov Decision Process (POMDP). This math-
ematical framework is capable of capturing uncertainty in both action effects
and perceptual stimuli. A POMDP can be defined as a 6-tuple (S,A, r, T,O,Ω)
where

• S,A, r, T are the same as for MDPs,

• O = {o1, o2, . . . } is a set of possible observations, and

• Ω(a, s, o) = Pr(o|a, s′) is an observation model that specifies the probabil-
ity of perceiving observation o in state s′ after performing action a.

In environments where the state is not directly observable, the agent needs to
derive its behavior from the complete history of actions and observations up to
the current time step t, defined as follows.

ht = {a0, o1, a1, o2, . . . , at−1, ot} (2.2)

Instead of explicitly storing the complete history which is typically very memory
intensive, it is possible that the agent maintains a probability distribution over
the state space S, representing the likelihood the agent beliefs to be in each
state. This probability distribution is called belief state and is given in the
following equation.

b(s) = Pr(st = s|ht = h) (2.3)

Since b(s) is a probability, the following axioms of probability are required to
hold.

b(s) ∈ [0, 1] ∀s ∈ S, and (2.4)
∑

s∈S
b(s) = 1. (2.5)

The belief state has the Markov property, making it a sufficient statistic for
the initial belief state and the past history of the agent [41]. Additional data
about the past actions and observations of the agent cannot provide any further
information about the current state of the world, given the current belief state.

The belief state can be represented in two different ways. The traditional
approach is an exact representation that is based on Bayesian abduction. Given
the current belief state b(s), an action a executed and an observation o perceived
by the agent, the next belief state b(s′) can then be computed according to Bayes
theorem [12] as

b′(s′) = αΩ(a, s′, o)
∑

∀s∈S

T (s, a, s′)b(s) (2.6)

where α is a normalization factor that assures that the sum over all belief states
is 1 and Ω(a, s′, o) is the probability of perceiving observation o in state s′ after
performing action a.

The size of the belief space is illustrated best by an example. Consider
a 2 × 2 grid world with its 4 discrete states. The belief is a 4-dimensional

10



probability mass function and to update it the agent needs to consider the
transition probabilities of all possible states, the belief over these states and
the probability of the current observation in each of these states. While the
computations necessary to update the belief state can still be performed in a
relatively small amount of time for problems with a small state space, computing
the update is not feasible for problems with thousands or millions of states. In
addition, it might not be possible to represent the transition or observation
probabilities in a compact form.

As an alternative to the exact representation, the belief state can be approx-
imated by model estimation techniques such as Kalman or particle filters which
break these two computational barriers. Kalman filters represent the belief state
by a multivariate normal distribution, while particle filters represent the belief
state as a set of particles that correspond to possible states of the POMDP. The
details of these two estimation techniques are given in Appendix A.

The belief state is initialized according to a specific probability distribution,
bt=0 = b0, which represents the agent’s initial degree of uncertainty about the
environment’s actual state. The choice of the distribution b0 depends on the do-
main. If the agent does not know at all what the true state is, the initial belief
is usually uniform over the state space S. In many robot localization prob-
lems [44], the belief can be centered around the robot’s actual location, and a
Gaussian provides a more suitable choice for the initial probability distribution.

The agent’s behavior at any time is defined by a policy π(b) which maps
from belief states to a probability distribution over actions, and is given by the
following equation.

π(b) = Pr(at+1 = a|bt = b) (2.7)

The agent’s goal is to maximize expected return, also called discounted future
reward, and calculated as

Rt =

∞
∑

k=t

γk−tr(sk, ak) (2.8)

where 0 ≤ γ < 1 is a discount factor that specifies the importance of future
rewards and gives a finite bound to the infinite sum.

2.3 Solving POMDPs

The expected value achieved by following a policy π(b, a) from a specific belief
state b is defined in terms of the value function, which is given as

Qπ(b, a) =
∑

s∈S

b(s)r(s, a) + γ
∑

o∈O

Pr(o|b, a)Qπ(boa, a) (2.9)

where the first term of the equation specifies the expected immediate reward of
action a in belief state b and the second term specifies the summed value of all
successor belief states. Here, boa is the belief state reached by performing action
a and perceiving observation o. The second term of Equation 2.9 is weighted
by the probability of observing o in the successor belief states.

The maximum value function that can be reached by any policy is the op-
timal value function. For each POMDP, there is at least one optimal policy π∗

11



that achieves the optimal value function and fulfills the agent’s goal of maxi-
mizing the return R.

The optimal policy can be derived from the optimal value function Q∗. This
function can be computed by the following Bellman equation [2]:

π∗(b) = argmax
a∈A

[Q∗(b, a)] (2.10)

Equation 2.10 expresses that the optimal policy for a belief state b is the action
a for which the value function Q∗(b, a) is the maximum over all optimal value
functions for that belief state. A class of algorithms that is based on the Bellman
equation and that exactly solves POMDPs is presented in the next subsection.

2.3.1 Offline Planning

From the Bellman equation, it can be seen that it is very hard to directly
solve POMDPs. In fully observable environments, algorithms based on dynamic
programming [2] can be used to solve the Bellman equation as long as the
state and action spaces are not too large. For POMDPs, this is not feasible
because the belief space is a continuous and usually high dimensional space.
Nevertheless, the value function has some special mathematical properties that
simplify the computation of the optimal value function and allow to apply offline
policy planning algorithms such as value or policy iteration [41].

The main idea behind value iteration for POMDPs is that a policy π(b) can
be represented as a set of regions of the belief space. For each of these regions,
there is one particular optimal action. The value function assigns a distinct
linear function to each of these regions. Each step of value iteration evolves the
set of regions by adjusting their boundaries or by introducing new regions.

Policy and value iteration algorithms are known to be able to determine the
optimal policy in worlds where the state space, the action space, the observation
space and the planning horizon are all finite. However, these exact algorithms
turn out to be computationally very expensive. POMDPs with a larger number
of states are often already infeasible to solve. In fact, achieving the exact solution
is PSPACE-hard for finite-horizon POMDPs [29] and undecidable for infinite-
horizon POMDPs [25].

An approach to resolve this computational barrier is Point-Based Value It-
eration (PBVI) [31] which selects a small set of points from the belief space
and repeatedly applies value iteration to these points. PBVI has been shown
to successfully solve problems with much more states (more than 800) than the
problems that can be effectively solved with the original value iteration algo-
rithm. In addition, the time required to perform PBVI is significantly lower
than the time required to perform standard value iteration. An approach that
reduces the time requirements even more are online planning algorithms, pre-
sented in the next subsection.

2.3.2 Online Planning

Online planning algorithms approach POMDPs from a completely different an-
gle than the algorithms presented in the previous section. Given the current
belief state, an online planner applies forward search to approximate the opti-
mal value function. An online planning algorithm can be divided into a planning

12



and an execution phase. In the planning phase, the agent’s current belief state
is passed to the algorithm and the best action to execute in that belief state is
determined. In the execution phase, this action is executed in the environment
and the agent’s current belief state is updated.

Ross et al. [36] provide an extensive survey of the existing online planning
methods and a general framework for online planning algorithms that uses an
AND/OR-tree in the planning phase. This tree alternates two layers of nodes.
The first layer consists of OR-nodes that represent belief states reachable from
the agent’s current belief state. At these nodes, actions can be selected. The
second layer consists of AND-nodes which represent all possible observations
given some action selected at the preceding level of the tree. The authors relate
this framework to the existing online planning algorithms which apply branch-
and-bound pruning [30] and search heuristics [38, 35] to improve the search.
While branch-and-bound pruning helps to reduce the number of actions that
the algorithm needs to consider, search heuristics help to concentrate the search
on possible future belief states that quickly improve the performance of the
agent.

Another approach to online planning is provided by Monte Carlo methods
which apply repeated random sampling during the planning phase. These meth-
ods are introduced in the next section.

2.4 Monte Carlo Methods for POMDPs

Monte Carlo methods are based on repeated random sampling. They originate
from the field of statistical physics where they have been used to estimate in-
tractable integrals, and are now used in a wide range of areas such as games [9],
engineering and computational biology. In contrast to classical search methods
which require heuristics to apply search and pruning effectively, Monte Carlo
methods evaluate states by sampling from (quasi) random simulations. The
idea behind this approach is that there is not much to be learned from a single
random simulation but that from lots of simulations, a successful strategy can
be derived. All Monte Carlo methods keep track of the value of an action a in a
state s, denoted by Q(s, a), and the number of times action a has been selected
in state s, denoted by N(s, a).

Monte-Carlo planning algorithms use a generative model G of the POMDP.
This so-called black-box simulator employs the same dynamics as the POMDP.
It takes a state st ∈ S and action at ∈ A as input, and returns a sample of a
successor state st+1, observation ot+1 and reward rt+1 as output. This process
is defined in the following equation.

G(st, at) (st+1, ot+1, rt+1) (2.11)

Here, the operator  denotes sampling, e.g., a  b means b is sampled from
a. The models contained in the underlying POMDP provide the successor vari-
ables: the state st+1 ∈ S is given by the transition model, T (s, a)  st+1, the
observation ot+1 ∈ O is given by the observation model, Ω(s, a)  ot+1, and
the reward rt+1 is given by the reward function, r(s, a) rt+1.

It is also possible to reset the simulator to a start state s. Instead of directly
considering the model’s dynamics, the value function is updated using the se-
quences of states, observations and rewards that are generated by the simulator.

13



Kearns et al. [20] have shown that the amount of samples required to create good
policies depends only on the complexity of the underlying POMDP, and not on
the size of the POMDP’s state space. Their proof is based on the idea of reusable
sequences of states, observations and rewards sampled by the generative model.
Such sequences provide an accurate estimate for the value of many policies, and
it is sufficient to create a small number of these sequences to cover a lot of
different policies [20].

The development of Monte Carlo planners for POMDPs has evolved from
simple roll-out methods that do not construct a search tree [3] over methods
that perform depth-first search with a fixed horizon [20] to a Monte Carlo tree
search method [40] that is not limited by a fixed horizon and can compete with
offline full-width planners in problems with large state spaces. These algorithms
are addressed in detail in the next subsections.

2.4.1 Monte Carlo Rollouts

Monte Carlo rollouts is the most basic Monte Carlo method. Each iteration
consists of two steps. The first step, called simulation, selects actions according
to some probability distribution, usually a uniform distribution, until some ter-
minal condition is reached. Each action is given to the black-box simulator to
obtain a sequence of rewards (rd=0, rd=1, . . . , rdn). Here, dn denotes the depth
of the simulation phase, i.e., the number of steps until the terminal condition is
reached. From this sequence, the simulated return R̂ is computed as follows.

R̂ =

dn
∑

d=0

γdrd (2.12)

The second step, called update, adjusts the values of the action that was selected
first during the simulation step according to the following equations.

N(s, a) = N(s, a) + 1 (2.13)

Q(s, a) = Q(s, a) +
R̂−Q(s, a)

N(s, a)
(2.14)

The algorithm repeats the simulation and update steps until some terminal
condition is reached. At this point, the action with the highest average value
Q(s, a) is chosen.

2.4.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) combines Monte Carlo rollouts with tree
search, and was introduced in different versions by Chaslot [9] and Coulom in
2006 [10]. Although MCTS has been mainly applied to the domain of game tree
search in classical board games such as Go (see, e.g., Chaslot [9] or Coulom [10]),
it can theoretically be applied to any domain that can be expressed in terms of
state-action pairs, including POMDPs.

The nodes of the MCTS tree can be called state nodes because they represent
states in the problem. Given an action a and a state s, each node is associated
with the two values introduced above: the visitation count, N(s, a), and the

14



a1 a2

a1 a2

a1

a1 a2

a2

a1

a1 a2

a1 a2

a1

a1

a1 a2

a2

a2

a2

ŝ
0

= s
t

ŝ
1

ŝ
2

ŝ
3

ŝ
4

ŝ
1

ŝ
2

ŝ
3

ŝ
4

state node

Figure 2.2: The tree build by Monte Carlo Tree Search.

average return of all simulations that passed through this node, Q(s, a). The
tree constructed by MCTS is illustrated in Figure 2.2.

An overview of MCTS is given in Figure 2.3. The algorithm iteratively
builds a search tree, one node after the other, based on the results of random
simulations, until it is interrupted or a computational budget is reached. Each
iteration in MCTS can be divided into four different steps: selection, expansion,
simulation and backpropagation.

Figure 2.3: An overview of Monte Carlo Tree Search [9].

Selection This step starts at the root of the tree. From there, actions are
repeatedly selected according to the statistics stored in the nodes of the
search tree until a leaf node L is reached. The selection of optimal ac-
tions needs to find a balance between actions that have achieved the best
outcomes with respect to the current time step (exploitation), and actions
that have not been explored (exploration).

Expansion One or multiple children of L are added to the tree.

Simulation If L does not correspond to a terminal state in the problem, a
random simulation is performed. This simulation starts with the action
selected at L and ends when a terminal state in the problem is reached.

15



Backpropagation The outcome of the simulation step is backpropagated through
the internal nodes up to the root of the tree.

When the algorithm reaches a computational budget or is interrupted, the search
terminates and an action a is selected at the root node by one of the following
criteria, introduced by Chaslot et al. [8].

1. Max child: Select the action with the highest reward.

2. Robust child: Select the most visited action.

3. Max-Robust child: Select the action with both the highest visitation count
and the highest reward.

4. Secure child: Select the action which maximizes a lower confidence bound.

MCTS provides three important advantages. The first advantage is the asym-
metric growth of the tree developed during the MCTS search. State nodes
which appear to be more valuable in the problem are visited more often and
more search is spent in the relevant parts of the tree. The second advantage is
that the execution of the algorithm can be stopped at any time to return the
action that is currently estimated to be optimal. The third advantage is that
the algorithm focuses on determining the action that is optimal in the current
state because each iteration updates the value of one of the actions available at
the current state.

2.4.3 Upper Confidence Bounds for Trees

Several effective strategies have been proposed for the selection step [9]. A well-
established strategy for node selection is Upper Confidence Bounds Applied
to Trees (UCT), developed by Kocsis and Szepesvári in 2006 [23]. UCT is a
generalization of Upper Confidence Bounds, proposed by Auer et al. [1]. Kocsis
and Szepesvári studied the multi-armed bandit problem which is analogous to
the node selection problem encountered in MCTS. In the multi-armed bandit
problem, an agent needs to select a one-armed bandit (slot machine) which
gives the maximum estimated outcome in each turn, while in the node selection
problem, an agent needs to select an action that maximizes a specific quantity.

At a state node v that represents a state s(v), UCT applies the following
equation to select an action â:

â = argmax
a

{

Q(s(v), a) + C ×
√

lnN(v)

N(v, a)

}

, (2.15)

where the Q function is the same action-value function as in MCTS and the
second term of the sum is the so-called UCT bonus. N(v) is the number of
visits payed to node v and N(v, a) is the number of visits payed to the child of
v that corresponds to action a. Actions that have not been explored at node v
receive a value of ∞ in the selection step.

The UCT bonus bounds the regret growth rate by a constant times the
best possible regret rate which tackles the exploitation-exploration trade off
for bandits. If an action a is selected, the UCT bonus for a decreases because
N(s, a) is incremented. At the same time, the UCT bonus for all other actions in

16



As increases because N(s) is also incremented. The parameter C determines the
strength of the UCT bonus and is therefore also called exploration factor. For
rewards in the range [0, 1], Kocsis and Szepesvári found a choice of C = 1/

√
2 to

be optimal [23]. For rewards outside of this range, the exploration factor needs
to be set through extensive experimentation because the need for exploration
varies from domain to domain.

2.4.4 Partially Observable Monte Carlo Planning

Partially Observable Monte Carlo Planning (POMCP), developed by Silver and
Veness [40] extends MCTS to POMDPs with discrete observation spaces. By
incorporating the observations, the search tree changes from a tree of states to
a tree of histories. Given the current history ht, the algorithm approximates
the value function Q(ht, a).

o1 o2

a1 a2

o1

a1 a2

o2

a1

o1 o2

a1 a2

o1

a1

o1 o2

a2

o2

a2

ĥ0
= ht

ĥ1
= {ĥ0, a1}

ĥ2
= {ĥ1, o1}

ĥ3
= {ĥ2, a1}

ĥ4
= {ĥ3, o1}

ĥ1
= {ĥ0, a2}

ĥ2
= {ĥ1, o2}

ĥ3
= {ĥ2, a2}

ĥ4
= {ĥ3, o2}

history node

sequence node

Figure 2.4: The search tree constructed by Partially Observable Monte Carlo
Planning for a problem with 2 actions and 2 observations.

POMCP is illustrated in Figure 2.4. In contrast to the MCTS tree in which
all nodes represent states, there are two variations of nodes in the POMCP tree.
Each history node represents a possible history ĥk = {a0, o0, a1, o1, . . . , ak, ok}.
The edges emerging from a history node correspond to actions. Based on Koller
et al. [24], each sequence node represents a sequence ĥk = {ĥk−1, ak} that in-

cludes the previous history ĥk−1 and the action ak selected at the preceding
history node. The edges emerging from a sequence node correspond to obser-
vations.

The algorithm starts from the current history, ĥ0 = ht, by drawing a sample
state s from the belief state b(ht). The black-box simulator G is then set to
state s. While there are no changes to the simulation and backpropagation step
of the original MCTS algorithm, the other two steps are changed as follows.

Selection This strategy alternates between the selection of actions at history
nodes and observations at sequence nodes. At a history node, an action a
is selected according to UCT. This action a is then given to the black-box

17



simulator to produce an observation o. At the succeeding sequence node,
o decides which edge the algorithm needs to follow.

Expansion One new node is added to the tree that corresponds to the first
new history encountered during the simulation step.

When the algorithm reaches a computational budget or is interrupted, the search
terminates and the agent uses the search tree to selects a real action a for which
it perceives a real observation o.

To approximate the belief state, POMCP uses a particle filter for which each
particle corresponds to a sample state. At the beginning of each simulation, K
particles are drawn from the set of states S according to the current belief
state bt. To update the set of particles, a Monte Carlo procedure is employed
that samples observations and compares them to the real observation o. This
procedure samples a state s according to the current belief state bt and passes
it to the black-box simulator to receive a successor state s′ and an observation
o′. If the sampled observation o′ is equal to the real observation o, then s′ is
added to the set of particles. This procedure is repeated until the set of particles
consists of K particles.

POMCP is not limited by a fixed horizon search and can compete with best-
first, full-width planning methods for POMDPs with a large state space that
consist of up to approximately 1056 states. In addition, the algorithm requires
only a small amount of online computation time to achieve a high performance
in such problems.

2.4.5 Tree Learning Search

MCTS is unable to handle continuous action and state spaces. Recently de-
veloped approaches for quasi continuous games perform offline discretization of
the action or state space [11]. As an alternative to a priori discretization, Van
den Broeck and Driessens [46] introduced Tree Learning Search (TLS) which
performs online discretization of the action space. Based on ideas from data
stream mining, TLS is a combination of MCTS and incremental decision tree
induction which extends MCTS to the continuous domain. It builds discretiza-
tions of the search space which are dependent on the state of the problem and
discovers high promising regions of the search space.

TLS is based on the assumption that the state transitions of the underlying
problem are deterministic. The algorithm searches for an open-loop plan, i.e.,
the generated policy is a sequence of actions, π = {a0, a1, . . . , an}.

The search tree constructed by TLS is illustrated in Figure 2.5. Each state
node of the MCTS tree is replaced by a tree that discretizes the action space.
The root of this so-called action tree represents a state in the problem. Each
internal node of this tree represents a constraint that subdivides the action
space, and each leaf represents a range of action values in the problem.

Through the replacement of the state nodes of the MCTS tree with action
trees, the nodes of the TLS tree do not directly correspond to states anymore.
Each leaf node of an action tree corresponds now to a range of states given
the assumption of determinism in the state transitions. In the case of non-
deterministic transitions, actions might not always lead to the same states, and
therefore the leaf nodes of the action trees would need to be extended with
additional nodes that correspond to particular states (or state ranges).

18



a ≤ 0.4

a ≤ .1

F F

a ≤ .7

F F

. . . . . .

. . .. . .

Action Tree

Action TreeAction Tree

[0.0, 1.0]

[0.0, 0.4] (0.4, 1.0]

[0.0, 0.1] (0.1, 0.4] (0.4, 0.7] (0.7, 1.0]

decision node
leaf node

Figure 2.5: An example of the search tree constructed by Tree Learning Search
for an action with a range of [0.0, 1.0].

Action trees are constructed by an incremental regression tree learning algo-
rithm that is based on ideas from FIMT [17] and TG [14]. In the beginning, the
action tree consists of a single leaf node. For each leaf, the action tree maintains
a set of tests F that decides when the leaf is split. Each test is composed of a
set of statistics which are updated for every example that is passed through the
tree.

Except for the simulation phase which is not changed, the TLS algorithm
modifies the steps of the standard MCTS algorithm in the following way.

Selection The selection of optimal actions in the action trees follows the UCT
strategy until a leaf is reached. Each internal node constraints the range
of actions from which the algorithm can sample. According to these con-
straints, the algorithm samples an action a when a leaf is encountered.

Expansion Each node that is added to the tree is connected to a new and
empty action tree that represents the next action in the game.

Backpropagation In addition to the update of the visitation count and the
total reward, the algorithm also updates the statistics contained in the
leaves of the action trees.

TLS has been successfully applied to one-step optimization problems such as
function optimization [46]. For multi-step problems, it suffers from a number of
problems caused by splitting in the action tree. The reason for these problems
is that a split in the action tree is a split of an internal node in the complete tree
constructed by TLS. There is a trade-off here between the information contained
in the subtree starting from this node and the computational effort required to
reuse this information. Deleting the subtree erases all information but has the
advantage of being computationally cheap, while duplicating the subtree keeps
all information but has the disadvantages of containing moves which become
illegal or states which become impossible to reach after a split and of being
computationally expensive. Restructuring the tree provides another possibility
but also requires additional computation time and space. A study of different
restructuring techniques for multi-step problems is given in a recently published
master thesis [22].

19



2.5 Bounding the Horizon Time

This section recapitulates the work of Kearns et al. [21] on Markov decision
processes (MDP) with large state spaces. Their study derives theoretical bounds
for the depth and the width of a tree required in a tree-based algorithm to
generate policies for the agent’s behavior for which the value function comes
arbitrarily close to the optimal value function (see Section 2.3).

The maximum depth of the tree constructed by MCTS is usually bounded
by the maximum number of steps until a terminal state is reached. In addi-
tion, this bound determines the depth of the simulation phase. Nevertheless, in
some environments, terminal states might not exist or take a very long time to
be reached by executing randomly selected actions. This problem is a typical
characteristic of domains with an infinite or very large planning horizon. Rea-
sonable bounds for the maximum depth of the COMCTS tree are derived in the
following paragraphs.

Because MCTS is based on stochastic simulations, the policies created by the
algorithm only approximate the optimal value function. A criterion which en-
sures that these policies come arbitrarily close to this function is near-optimality,
defined by Kearns et al. [21] as follows.

Definition 1. (Near-Optimality) The value function of the policy generated by
a tree search algorithm A satisfies

|V A(s)− V ∗(s)| ≤ ǫ (2.16)

simultaneously for all states s ∈ S.

In words, near-optimality guarantees that the difference between the value func-
tion of the strategy implemented by a tree search algorithm V A(s) and the op-
timal value function V ∗(s) is not larger than a very small quantity ǫ. To satisfy
near-optimality, the following assumption needs to be made.

Assumption 1. Rewards generated by the reward function R(s, a) are bounded
in absolute value by Rmax.

Given this assumption, the required depth H of the tree is selected according
to ǫ-horizon time which is computed as [21]

H = logγ

[

ǫ(1− γ)
Rmax

]

. (2.17)

In words, ǫ-horizon time guarantees that the discounted sum of rewards that
is accumulated by considering rewards beyond the horizon H is bounded by ǫ.
The proof that leads to Equation 2.17 is given by Kearns et al. [21].

In addition to bounding the required depth of the tree, ǫ-horizon time also
delivers a bound for the simulation step in MCTS.

2.6 Continuous Observations

The majority of algorithms for POMDPs assumes the observation space to be
discrete. In the real world, however, observations recorded by sensors such

20



as video cameras, microphones and laser-range finders often provide continu-
ous observation signals. User modeling, event recognition and spoken-dialog
systems [37] are examples of applications where the sensor readings result in
continuous observations while the states of the underlying system can be repre-
sented as discrete features.

Algorithms for POMDPs with discrete observations can normally not be sim-
ply extended to continuous observations. The reason for this is that a continuous
space consists of uncountably many values and most algorithms require to ex-
plicitly consider all possible observations. The usual approach to this problem
is a priori discretization of the observation space. Another approach developed
by Hoey and Poupart [16] is based on conditional planning. This approach de-
rives a loss-less partitioning of the observation space by considering only those
observations that change the agent’s policy. Porta et al. [33] extend PERSEUS,
a point-based value iteration algorithm originally introduced for discrete state
spaces by Spaan and Vlassis [42], to POMDPs with continuous state spaces.
This extension is done by using Gaussian mixture models [4] for the represen-
tation of the observation, transition and reward models, and by using Gaussian
mixture models or particle sets for the representation of the agent’s belief state.
Given these models, the equations required to perform PERSEUS can be com-
puted in closed form. This extension of PERSEUS can also handle continuous
observations by using a sampling approach that is based on the partitioning
strategy for the observation space derived by Hoey and Poupart [16].

The algorithm presented in the next section is an extension of POMCP
that allows to deal with POMDPs that have a continuous observation space. In
contrast to the exact offline planning algorithms presented above, this algorithm
is approximate and based on planning online.

21



Chapter 3

Continuous Observations

Monte Carlo Tree Search

POMCP is a state-of-the-art algorithm for POMDPs with discrete observa-
tion spaces. Continuous Observations Monte Carlo Tree Search (COMCTS)
is a novel online planning algorithm that combines POMCP with incremental
regression tree induction, and allows to automatically discretize a continuous
observation space. The main idea behind COMCTS is to replace the edges (cor-
responding to observations) emerging from the sequence nodes of the POMCP
tree by so-called observation trees which provide discretizations of the obser-
vation space. Given the current history ht, the algorithm estimates the value
function Q(ht, a). As other Monte Carlo methods for POMDPs, the algorithm
employs a black-box simulator G (see Section 2.4).

The remainder of this chapter is structured as follows. Section 3.1 describes
the algorithm. Observation trees are discussed in Section 3.2. Strategies to
refine the discretizations provided by these trees are given in Section 3.3. Section
3.4 analyzes the algorithm’s computational complexity. Finally, a brief overview
of related work in Section 3.5 completes the chapter.

3.1 Algorithm

The search tree constructed by COMCTS is illustrated in Figure 3.1. This tree
alternates two layers of nodes. The first layer consists of standard MCTS nodes
that correspond to possible histories, so-called history nodes, or to possible
sequences, so-called sequence nodes. The second layer consists of tree-based
discretizations of the observation space, so-called observation trees.

The algorithm is shown in Figure 3.2. Each iteration starts from the current
history, ĥ0 = ht. First, an initial state s is drawn from the belief state bt. The
simulator G is then set to state s. Actions are selected according to UCT until
a leaf of search the tree is reached. The observation trees on the way to the leaf
are traversed by using observations sampled from the black-box simulator given
the selected actions as input. One action available at the leaf is selected, and a
new history node corresponding to that action is added to the tree. From here
on, actions are selected according to a simulation strategy until the discount
horizon H is reached. Each selected action is passed to the black-box simulator

22



to generate a sequence of observations and rewards. After the simulation, the
tree is updated based on this sequence.

a1 a2

o ≤ 2.3

o ≤ 1.5

F F

F

o ≤ 3.8

F F

a1 a2 a1 a2 a1 a2

F F F FF F

. . .

. . .

Observation Tree Observation Tree

ĥ0 = ht

ĥ1 = {ĥ0, a1, ω1} ĥ1 = {ĥ0, a2, ω2}

ω1 = [0.0, 1.5] (1.5, 2.3]

ω2 = (3.8, 5.0]

[0.0, 5.0] [0.0, 5.0]

(2.3, 5.0]

[0.0, 2.3]

[0.0, 3.8]

history node

sequence node

observation tree

observation tree:

≤ decision node

F leaf node

Figure 3.1: An example of the tree constructed by COMCTS.

ĥ
0

ĥ
1

.

.

.

ĥ
D−1

ĥ
D

ĥ
H

r
0

r
1

.

.

.

r
D−1

r
D

r
H

R
D

R
D−1

.

.

.

R
1

R
0

a
0

a
1

.

.

.

a
D−1

a
D

Q(h, a)

end of tree

simulation

DM

DP

history node

sequence node

observation tree

Figure 3.2: A single iteration of COMCTS.

In principle, the algorithm follows the same algorithmic steps as POMCP.
While the simulation step is not changed, the modifications to the other steps
are given as follows.

Selection This step is extended by a policy for the traversal of the observation
trees. Each time the algorithm selects a sequence node, the incoming
action a is given to the black-box simulator G to return a successor state

23



s′, a reward r′ and - most importantly for this step of the algorithm - an
observation o′, G(s, a) (s′, o′, r′). The observation o′ is used to traverse
the observation tree that is linked to the currently selected sequence node.
Each traversal follows the constraints given by the internal nodes of the
observation tree and ends at one of its leaves from which a further sequence
node can be selected again and used to sample another observation o′′ to
traverse the next observation tree. This alternation between the selection
of sequence nodes and the traversal of observation trees repeats until an
unexplored sequence node is found.

Expansion The unexplored sequence node found in the previous step is added
to the COMCTS tree and connected to a new observation tree that consists
of a single leaf node. This leaf node represents the complete range of the
observation space.

Backpropagation All observations sampled in the selection step and all re-
wards (r0, r1, . . . , rH) sampled during both the selection and the simula-
tion step are used to update the tree from the new sequence node to the
root of the search tree. The sequence and history nodes are updated in
the same way as in MCTS, while the sampled observations are used to
update one leaf in each observation tree encountered on the way to the
root. To find the correct leaf node in an observation tree, a sampled ob-
servation follows the constraints given by the internal nodes of this tree.
The basis for the update of some node at depth k of the COMCTS tree is
the following simulated return.

R̂k = γkrk + γk+1rk+1 + . . . + γHrH (3.1)

Here, H is the summed depth of the selection and simulation steps (see
Figure 3.2), and is given by ǫ-horizon time.

3.2 Learning the Observation Trees

An example of an observation tree is presented in Figure 3.3. Except for its
leaves, this tree can be seen as a binary decision tree [28] in which the internal
nodes subdivide the observation space into different regions. Each internal node
v specifies a decision that decides whether a sample observation o passed to the
tree belongs to the region of the observation space represented by the left child
of v, o ≤ θi. Here, θi is a (split) point of dimension i of the observation function.
If the condition o ≤ θi holds, then o is passed to the left child of v. Otherwise,
o is passed to the right child of v. Usually, external nodes in a decision tree
contain the classification for an example that is passed through the tree [28].
In COMCTS, however, each leaf L(ω,F) of an observation tree T is associated
with an interval ω = [omin, omax] of the observation function. The set of all
intervals Ω = {ω1, ω2, . . . } serves as a discretization of the observation function.
In addition, leaves in the observation tree store a set of tests F = {F1,F2, . . . }
that is used to decide when the leaf is split. The idea for these statistics is taken
from Ikonomovska and Gama [17]. A test Fi for some leaf L is represented by
the following set.

Fi =
(

θ, {np, nf , vp, vf , v
2
p, v

2
f}

)

(3.2)

24



o ≤ 1.8

o ≤ −3

o ≤ −4

F F

F

o ≤ 3.5

F o ≤ 4.1

F F

[−5.0, 5.0]

[−5.0, 1.8]

[−5.0,−3.0]

[−5.0,−4.0] (−4.0,−3.0]

(−3.0, 1.8]

(1.8, 5.0]

(3.5, 5.0]
(1.8, 3.5]

(3.5, 4.1] (4.1, 5.0]

Figure 3.3: An observation tree of COMCTS.

where θ ∈ ω is a possible split point and the remainder of the set is itself a set
that is composed of six statistics. Each time a sample observation o reaches L,
the sample is classified as either passing or failing the test Fi. The test condition
is o ≤ θ. The statistics np and nf count the number of examples that reach leaf
L, vp and vf sum the mean return and v2

p and v2
f sum the squared mean return

of these examples (p denotes passing and f denotes failing the test). These six
statistics are sufficient to determine whether the split of a leaf would provide
a significant reduction of the variance of the mean return that is accumulated
by the examples assigned to leaf L. To make this decision, a standard F-test is
used [12]. The F-statistic is defined as follows.

F =

(

RSS1−RSS2

p2−p1

)

RSS2

n−p2

(3.3)

where pi is the number of parameters used in the regression model, n is the
number of data points, and RSSi is the residual sum of squares, given as

RSSi =

n
∑

j=1

[

Vj(o, L)− V̄j(o, L)
]2

(3.4)

where Vj(o, L) denotes the value of the variable to be predicted (the value of
observation o at leaf node L), and V̄j(o, L) denotes the predicted value of Vj(o, L)
(the average of o’s value at L). The F-statistic can be simply computed from
the set of the six statistics contained in Fi.

3.3 Splitting Strategies

COMCTS suffers from the same issues when splitting a leaf in the observation
tree as TLS (see Section 2.4.5). A leaf in the observation tree is an internal
node in the complete search tree constructed by the algorithm. When such a
leaf is split, the question comes up what to do with the subtree below that leaf.
Requesting new samples consumes additional computation time because each
new sample requires additional black-box simulations. In particular domains,
the number of samples available to the algorithm might also be limited. Van
den Broeck and Driessens [46] and Kirchhart [22] study several strategies that
can be followed to reduce the amount of information loss in case of a split in

25



o ≤ 1.8

o ≤ −3

o ≤ −4

F F

F

o ≤ 3.5

F o ≤ 4.1

F F

[−5.0, 5.0]

[−5.0, 1.8]

[−5.0,−3.0]

[−5.0,−4.0] (−4.0,−3.0]

(−3.0, 1.8]

(1.8, 5.0]

(3.5, 5.0]
(1.8, 3.5]

(3.5, 4.1] (4.1, 5.0]

θ
∗

= −4.6θ
∗

= −4.6

F

a1

F

a2

(a)

o ≤ 1.8

o ≤ −3

o ≤ −4

F F

F

o ≤ 3.5

F o ≤ 4.1

F F

[−5.0, 5.0]

[−5.0, 1.8]

[−5.0,−3.0]

[−5.0,−4.0] (−4.0,−3.0]

(−3.0, 1.8]

(1.8, 5.0]

(3.5, 5.0]
(1.8, 3.5]

(3.5, 4.1] (4.1, 5.0]

θ
∗

= −4.6θ
∗

= −4.6

F

a1

F

a2

(b)

o ≤ 1.8

o ≤ −3

o ≤ −4

o ≤ −4.6

∅

∅

∅

∅

F

F

o ≤ 3.5

F o ≤ 4.1

F F

[−5.0, 5.0]

[−5.0, 1.8]

[−5.0,−3.0]

[−5.0,−4.0]

[−5.0,−4.6] (−4.6,−4.0]

(−4.0,−3.0]

(−3.0, 1.8]

(1.8, 5.0]

(3.5, 5.0]
(1.8, 3.5]

(3.5, 4.1] (4.1, 5.0]

(c)

Figure 3.4: An illustration of the deletion strategy. The split point θ∗ = −4.6
is found to be significant (a). In a first step, the subtree below the split node
is removed (b). In a second step, this leaf node is replaced by a new internal
node which represents the constraint o ≤ −4.6, and two new leaves are created
below the new internal node (c).

TLS. A subset of these strategies, consisting of deletion, perfect recall, local
recall, and belief-based reuse of knowledge, is used in COMCTS and presented
in the following four subsections.

3.3.1 Deletion

Deletion is illustrated in Figure 3.4, and consists of two steps. The first step
is to delete the subtree below the split node. The second step is to replace the
split node with an internal node for which the constraint is based on the split
point, and to create two new leaf nodes below that new internal node.
Deletion is the most inexpensive of the four strategies with respect to time and
memory consumption because it does not require to store any samples. The
major drawback of this strategy is the loss of possibly valuable information
about the expected value of actions at future time steps that is contained in the
deleted subtree. The following strategies try to counteract this drawback.

26



o ≤ 1.8

o ≤ −3

o ≤ −4

o ≤ −4.6

F F

F

F

o ≤ 3.5

F o ≤ 4.1

F F

[−5.0, 5.0]

[−5.0, 1.8]

[−5.0,−3.0]

[−5.0,−4.0]

ω1 = [−5.0,−4.6] ω2 = (−4.6,−4.0]

(−4.0,−3.0]

(−3.0, 1.8]

(1.8, 5.0]

(3.5, 5.0]
(1.8, 3.5]

(3.5, 4.1]

h′

N(h′, ω1)
Q(h′, ω1)

.

.

.

a1

.

.

.

a2

N(h′, ω2)
Q(h′, ω2)

.

.

.

a1

.

.

.

a2

set of samples

Figure 3.5: Perfect recall maintains a set of samples. In case of a split, this
strategy follows the same steps as deletion. After those steps, the subtrees below
the split node are recreated based on the set of stored samples.

3.3.2 Perfect Recall

Perfect recall reconstructs the tree by maintaining all samples that passed
through the tree in a set Ψ = {ψ1, ψ2, . . . , ψn}. In each iteration of the algo-
rithm, a sample ψi is stored as a sequence of action-observation-return tuples,
given as

ψi = {(a0, o0, R0), (a1, o1, R1), . . . , (aH , oH , RH)} (3.5)

In the case of a split, perfect recall performs the same two steps as deletion. A
third step, illustrated in Figure 3.5, reconstructs the subtrees below the new leaf
nodes from the set of samples Ψ. In each step of the reconstruction process, a
sample ψ ∈ Ψ is taken and the new internal node w decides whether this sample
ψ belongs to the left or the right child of w. The observation o0 and the return
R0 contained in the first tuple of ψ are used to create and update a new set of
tests for that child node. The subtree of that child node is reconstructed based
on the subsequent tuples of ψ.
Perfect recall is computationally very demanding in both time and memory
because all samples that passed through the tree need to be stored and because
these samples need to be processed through the tree in case of a split. The
advantage of this strategy is that no information is discarded from the subtree
that existed before the split.

3.3.3 Local Recall

Local recall reconstructs the tree locally, i.e., on the level of the observation tree
but not on deeper levels. All samples that passed through the split node are
remembered as a set of observation-return pairs Φ. In the case of a split, local
recall follows the same two steps as deletion. A third step, depicted in Figure
3.6, uses the set of samples Φ to create and update a new set of tests F for each
new leaf node of the observation tree, and also adds a history node below each of

27



o ≤ 1.8

o ≤ −3

o ≤ −4

o ≤ −4.6

F F

F

F

o ≤ 3.5

F o ≤ 4.1

F F

[−5.0, 5.0]

[−5.0, 1.8]

[−5.0,−3.0]

[−5.0,−4.0]

ω1 = [−5.0,−4.6] ω2 = (−4.6,−4.0]

(−4.0,−3.0]

(−3.0, 1.8]

(1.8, 5.0]

(3.5, 5.0]
(1.8, 3.5]

(3.5, 4.1] (4.1, 5.0]

h′

N(h′, ω1)
Q(h′, ω1)

N(h′, ω2)
Q(h′, ω2)

set of samples

Figure 3.6: Local recall maintains a set of samples. In case of a split, this
strategy follows the same steps as deletion. After those steps, the first level of
the subtrees below the split node is recreated based on the set of stored samples.

these leaves. Each step of the reconstruction process takes a sample φ = (o,R)
from the set Φ and passes it to the new internal node w to decide whether the
sample is passed to the left or the right child node of w. The sample is then
used to create and update tests for that child node and to update the history
node below that child node.

Before the split, the history nodes below the split node v keep the count
N(h′, ω) and the value Q(h′, ω) for some simulated history h′ that lead to the
observation tree containing v. After the split and applying local recall, the
history nodes below the new leaf nodes keep the count and the value for the
intervals of the new leaf nodes, i.e., N(h′, ω1) and Q(h′, ω1) for the left leaf
node’s interval ω1 and N(h′, ω2) and Q(h′, ω2) for the right leaf node’s interval
ω2.

The advantage of this strategy is that the new nodes do not need to start
learning with empty statistics. The main disadvantage is that only the first
level of the subtree below the split node is rebuild and that all deeper levels still
need to be build again. This strategy has a higher memory and time demand
than deletion but is still cheaper than perfect recall.

3.3.4 Belief-Based Reuse of Knowledge

Reuse takes advantage of the Markov property of the agent’s belief state. The
choice of a good action does only depend on the current belief state and not on
any additional information from the past. Particular choices of actions together
with particular observations perceived for these actions can result in the same
belief. An important example for this are uninformative observations which
cause the Bayesian update (see Section 2.2) to uniformly distribute the belief
over the state space - no matter which action was executed by the agent. As
long as a good policy is known for a specific region in the belief space, the agent
can reuse this policy whenever its belief enters this region.

In this study, reuse is restricted to a two-dimensional belief space to allow
the following computations. In case of a split, the range in the belief space for
each of the new leaf nodes is determined. If these ranges are (nearly) similar,

28



then splitting is not necessary. To measure the similarity between two ranges,
the Euclidean or Manhattan distance over the end points of the ranges can be
taken. This distance is then compared to a specific threshold to decide whether
splitting is performed.

3.4 Computational Complexity

This section analyzes the time and space bounds of COMCTS. The terms time
and running time refer to worst-case running time.

3.4.1 Running Time

In order to analyze the running time of COMCTS, a number of definitions need
to be made. These definitions are supported by Figure 3.2. The maximum
depth of the search tree M constructed by the algorithm is denoted by DM ,
and is defined to be the maximum number of history nodes between the root
and any leaf node of the tree. The depth of the simulation step is computed by
DP = H − DM , and is defined to be the number of actions selected from the
beginning of the simulation until the end of the simulation, represented by the
discount horizon H .

The following definition is supported by Figure 3.3. The depth of some
observation treeW is denoted byDW , and is defined to be the maximum number
of nodes between the root and any leaf of W .

Given the definitions above, the running times for each step of the algorithm
are summarized in Table 3.1. While the time spend for the simulation step is
simply O(DP ), the times spend for the other steps of the algorithm are derived
in detail in the following paragraphs.

In the selection step, the algorithm needs to repeat two traversals until a
leaf node is reached. The reason for these traversals is that the COMCTS tree
alternates layers of history and sequence nodes with layers of observation trees.
The running time for the traversal of history nodes is O(|A|), where A is the
action set of the underlying POMDP, because the algorithm needs to iterate
over all children of a history node to select one of them according to UCT. The
time required for the traversal of a single observation tree W is O(DW ). The
total running time of the selection step is given as

O(DM ∗ |A|+DM ∗DW ) (3.6)

The expansion step spends O(1) time to add a new sequence node to the search
tree and O(1) time to associate an observation tree containing a single leaf node

Phase Running Time
Selection O(DM ∗ |A|+DM ∗DW )
Expansion O(1)
Simulation O(DP )

Backpropagation O(DM ∗DW +
DM
∑

i=1

ui)

Table 3.1: The running times of the four phases of COMCTS.

29



to this new sequence node. Thus, the total time required for this step is O(1).
The backpropagation step consists of the traversal from the sequence node

that is added in the expansion step to the root of the tree. This traversal
includes all history and sequence nodes and all observation trees that lie on
the path between the new sequence node and the root of the search tree, and
runs in O(DM ) time. While updating history and sequence nodes only requires
O(1) time per node, updating some leaf node of an observation tree W requires
to traverse W according to the constraints given by the internal nodes of W .
This traversal consumes O(DW ) time. Creating the first test for a split point
at a leaf L in the observation tree also runs in O(1) but creating further tests
requires significantly more time. The reason for this is that the statistics of a
new test need to be consistent with the statistics of all other tests maintained
at L. The algorithm therefore needs to find the closest test for which it spends
O(|F|) where F is the set of tests at L. The time required for updating the
tests is also proportional to the number of tests |F|, and is given as O(|F|). To
check whether one of the tests corresponds to a significant split point, all tests
available at L are considered which again results in a time of O(|F|). Without
taking the time spend for the splitting strategy into account, the total running
time of the backpropagation step is

O(DM ∗DW +

DM
∑

i=1

ui) (3.7)

where ui = DW + 3 ∗ |F| is the time spend for updating a leaf in observation
tree i.

In the case of a split, the time spend to update the new leaf nodes depends on
the splitting strategy. Deletion runs in O(1) time because it does not perform
any further operations than replacing the leaf node by an internal node and
inserting two new leaf nodes. Based on a set of stored samples Φ, local recall
creates and updates split tests for the new leaf nodes, and also updates the
values maintained at the history nodes below the new leaf nodes. Updating and
creating tests requires the same time that is given in the previous paragraph,
and iterating through all stored samples requires O(|Φ|). Perfect recall also
uses a set of stored samples Ψ. Iterating over all samples runs in O(|Ψ|) time.
Recalling one sample ψ ∈ Ψ has a running time of O(|ψ|) because the algorithm
considers all action-observation-reward tuples in ψ for the reconstruction of the

subtrees. Thus, the total running time of the perfect recall strategy is O(
|Ψ|
∑

i=1

|ψ|).

3.4.2 Space Bounds

The number of nodes of a single observation tree W depends on the number of
splits n performed in that observation tree, |W | = 2n + 1. The total number of
nodes in all observation trees is given as

m
∑

i=1

|Wi| (3.8)

where m is the number of observation trees and |Wi| is the number of nodes in
observation tree i.

30



The number of history nodes connected to some leaf of an observation tree
is at most equal to the number of actions in the action set A of the underlying
POMDP. Thus, the total number of nodes in the search tree M constructed by
COMCTS is at most

|M | =
m

∑

i=1

|Wi|+
m

∑

i=1

((|Wi| − 1) ∗ |A|). (3.9)

The space bounds for the splitting strategies vary from no bounds for deletion
to O(|Φ|) and O(|Ψ|) for local and perfect recall. The reasons for these bounds
are that deletion does not store anything while the two other strategies store a
set of samples.

3.5 Related Work

Rather than looking at COMCTS as an extension of POMCP to POMDPs with
continuous observation spaces, it can also be seen as a direct extension of MCTS.
From this point of view, COMCTS associates each state node of the MCTS tree
with a tree-based discretization of the observation space. The selection and
backpropagation steps of MCTS are extended by a policy for the traversal of
those trees. In addition to the usual update of the state nodes in MCTS, the
backpropagation step needs to update the tests maintained at the leaf nodes of
those trees.

For an overview of offline planning algorithms that are able to handle POMDPs
with continuous observation spaces, the reader is referred back to Section 2.6.

31



Chapter 4

Belief Based Function

Approximation

Belief based Function Approximation using Incremental Regression tree tech-
niques and Monte Carlo (BFAIRMC) is a novel online planning algorithm that
is based on a combination of incremental regression tree learning in the belief
space and Monte Carlo rollouts. As in other Monte Carlo methods, a simulator
G is used as a black-box model of the underlying POMDP.

Given the current belief state bt, BFAIRMC approximates the value function
Q(bt, a). The algorithm consists of a two layer architecture. The first layer is
called belief tree and builds a discretization of the belief space by finding decision
rules that subdivide this space into different regions. Each leaf in the belief tree
corresponds to a specific region B in the belief space. The second layer is
composed of a set of action nodes for each leaf of the belief tree. Each of these
action nodes stores the visitation count N(B, a) and the average return Q(B, a)
for some action a in region B.

4.1 Algorithm

BFAIRMC is illustrated in Figure 4.1. The algorithm maintains a simulated
belief state b̂(s). Each simulation starts from the current belief state, b̂0(s) =
bt(s). An initial state s is drawn from this belief state, and the simulator G
is set to state s. Each iteration can be divided into two steps: simulation and
update. The first step follows the constraints contained in the internal nodes
of the belief tree to find the leaf L that corresponds to the range of the belief
space to which b̂(s) belongs. An action a at leaf L is selected according to UCT,
and passed to the black-box simulator to sample an observation o and a reward
r. From the simulated belief b̂(s), the action a selected at L, and the sampled

reward r, a sample χ = (b̂(s), a, r) is build. Based on action a and observation

o, the third step updates the simulated belief b̂(s), e.g., according to Bayes rule
(see Section 2.2). Then, the algorithm goes back to the first step.

After the discount horizon H is reached, the algorithm continues with the
second step that updates the tree with all samples encountered during the simu-
lation. This update starts with the last and ends with the first of those samples.
The basis for this update is the following simulated return, computed from the

32



b̂
0

b̂
1

.

.

.

b̂
H

a
0

a
1

.

.

.

a
H

r
0

r
1

.

.

.

r
H

R̃
0

R̃
1

.

.

.

R̃
H

Q(b, a)

History Nodes (Second Layer)

Belief Tree (First Layer)

Figure 4.1: A single iteration of BFAIRMC.

rewards sampled during the simulation.

Rk = rk + γrk+1 + γ2rk+2 + · · ·+ γHrH (4.1)

where k denotes the depth of the simulation step at which rk is acquired.
For each sample χ = (b̂(s), a, r), the algorithm determines the leaf node of

the belief tree that represents the region in the belief space to which b̂(s) belongs.
This leaf node is found by following the constraints given by the internal nodes
of the belief tree. The statistics of the tests maintained at this leaf node and the
value of action amaintained at the action nodes below this leaf are then updated
according to a specific update rule. This update rule applies bootstrapping [43],
i.e., updating the estimate of a value on the basis of other estimates of that
value, and is defined in the following equation.

R̃k = Rk + γH+1−kV (bk+1) (4.2)

Here, V (bk+1) denotes the bootstrapping term and is given by the maximum
average return stored at the action nodes below the leaf node that represents
the region of the belief space to which bk+1 belongs. Formally, V (bk+1) is given
by

V (bk+1) = max
a

Q(bk+1, a) (4.3)

BFAIRMC is similar to Q-Learning [48] for POMDPs which also approximates
the value function Q(bt, a) because it follows similar steps as BFAIRMC. Before
diving into the details of how Q-Learning can be used for POMDPs, ”standard”
Q-Learning for fully observable environments is explained.

Q-Learning for fully observable environments estimates the value function
Q(st, a). Each iteration of Q-Learning can be divided into a policy evaluation
and a policy iteration step. In the first step, the agent observes the current state
st, selects an action at according to some policy that is based on the current
estimate of Q(st, at), executes the action in the environment to receive a reward
rt+1, and observes the next state s′. In the second step, the value function is
updated according to the following update rule.

Q(st, at) = Q(st, at) + α×
[

rt+1 + γ ×max
a

Q(st+1, a)−Q(st, at)
]

(4.4)

33



where α is a learning rate and γ is a discount factor for the expected value
of the next state. Q-Learning only updates the value of the selected action.
The values for all other actions stay the same. Compared to the update rule of
BFAIRMC that considers multiple future rewards, this update rule only takes
the immediate reward and the expected value of the next state, expressed by
the term maxaQ(st+1, a), into account.

Q-Learning can be transformed into an online planning algorithm for POMDPs
by employing a black-box simulator G. At the beginning of the policy evaluation
step, G is set to a sample state s drawn from the current belief state bt. An
action a is selected in the same way as before, and thrown into G to receive a
sample of a reward, observation and next state, (r′, s′, o′). In the policy iteration
step, this sample is then used to update the value function.

BFAIRQ replaces the original update rule of BFAIRMC with the update
rule of Q-Learning. The algorithm also follows the same steps as Q-Learning
but applies UCT to select the actions during the policy evaluation step. To
achieve comparability between the two algorithms, BFAIRQ performs as many
steps as BFAIRMC in each iteration, given by horizon H .

4.2 Learning the Belief Tree

Similar to the observation trees in COMCTS, the belief tree can be seen as a
binary decision tree [28] in which the internal nodes subdivide the belief space
into different regions. Each internal node v specifies a decision of the form
b̂ ≤ θi where b̂ is the simulated belief given to the belief tree, and θi is a (split)

point of the i-th dimension of the belief space. If the condition b̂ ≤ θi holds,
then b̂ is passed to the left child of v. Otherwise, b̂ is passed to the right child
of v. Each leaf of the belief tree keeps a set of tests F = {F1,F2, . . . } that
determines when the leaf is split, and that is similar to the set of tests used in
COMCTS. In contrast to COMCTS where tests consist of statistics based on
all actions, the tests tried out for BFAIRMC in this thesis consist of statistics
based on each action. Such a test Fi is defined as

Fi = (θ, {Fa1

i ,Fa2

i , . . . ,Fam

i }) (4.5)

where m is the number of actions and Fai

i is the set of statistics for action ai,
containing the same six measures that are used for the tests in the observation
tree in COMCTS. A leaf is split when there is a significant difference in the
return accumulated by any of the actions. As in COMCTS, a standard F-
test [12] is used to perform this check (see Section 3.2).

The belief space of a POMDP typically consists of many more dimensions
than the observation space. Finding beneficial split points in a high dimensional
belief space is not a simple task. Therefore, this thesis restricts to settings where
the belief can be summarized in a compact form. In particular, two variants
of BFAIRMC are used. The first variant is restricted to beliefs that can be
summarized in one probability. The second variant is able to handle higher
dimensional belief spaces that can be approximated by a bivariate Gaussian
distribution with three parameters, bt(st) ∼ N (µ,Σ). Here, the mean vector is
µ = (µX , µY ) and the covariance matrix is

Σ =

(

σ2 0
0 σ2

)

34



F

β = [0.0, 1.0]

N(β)
Q(β)

N(β, a1)
Q(β, a1)

a1

N(β, a2)
Q(β, a2)

a2

(a)

b̂ ≤ 0.1

F F

[0.0, 1.0]

β1 = [0.0, 0.1] β2 = (0.1, 1.0]

Q(β1)
N(β1)

Q(β1, a1)
N(β1, a1)

a1

Q(β1, a2)
N(β1, a2)

a2

Q(β2)
N(β2)

Q(β2, a1)
N(β2, a1)

a1

Q(β2, a2)
N(β2, a2)

a2

(b)

Figure 4.2: Splitting in the belief tree. The split point found to be significant
is b(s) = 0.1.

where the random variables X and Y have the same standard deviation σ.

4.3 Splitting Strategies

The splitting process in BFAIRMC is shown in Figure 4.2. The leaf node that
is selected for splitting is replaced by an internal decision node whose key value
is the splitting point that is found to be significant. Two new leaf nodes are
created and connected to the new internal node. Splitting causes the same issues
as in COMCTS and TLS. Three different strategies to tackle these issues are
discussed in this study: deletion, insertion and perfect recall.

4.3.1 Deletion

Deletion is equivalent to the deletion strategy for COMCTS. The algorithm
assigns empty statistics to the new leaves, and empty values to the new action
nodes of the second layer. Therefore, the disadvantage of this strategy is that
all knowledge gathered previously is lost. Because no samples need to be main-
tained, the advantage of this strategy is that it is computationally cheap in both
time and memory.

4.3.2 Insertion

Insertion takes advantage of the information contained in the winning test F∗

that determines the split point. Before a leaf node in the belief tree is split, it
represents a region in the belief space that is given by some interval ω. After a
split, each new leaf node represents a subregion of this region, ω̃ ⊂ ω, defined by
the split point θ. An action-based test Fi = (θ, {Fa1

i ,Fa2

i , . . . ,Fam

i }) contains
the count and the summed return for each action a in ω̃. In case of a split,
insertion follows the same steps as deletion. An additional step incurs the count
and the average return of each action from the winning test F∗ to the new
action nodes. Figure 4.3 illustrates this step.

Insertion has two main advantages. The first advantage is that the new
nodes do not need to start from empty values as is the case in deletion. The
second advantage is that no additional memory is demanded because the values

35



b̂ ≤ 0.1

F F

[0.0, 1.0]

β1 = [0.0, 0.1] β2 = (0.1, 1.0]

F∗F∗

Q(β1)
N(β1)

Q(β1, a1)
N(β1, a1)

a1

Q(β1, a2)
N(β1, a2)

a2

Q(β2)
N(β2)

Q(β2, a1)
N(β2, a1)

a1

Q(β2, a2)
N(β2, a2)

a2

n
a1

p v
a1

p
n

a2

p v
a2

p

n
a1

f v
a1

f

n
a2

f v
a2

f

Figure 4.3: The insertion strategy infers the values of the new nodes directly
from the winning test.

for the new history nodes are already available in form of the statistics of the
winning test. Furthermore, the computation time required by this strategy is
nearly equivalent to the time required by deletion because the additional step
does not require any complex operations.

4.3.3 Perfect Recall

Perfect recall, depicted in Figure 4.4, is similar to perfect recall for COMCTS
but differs in the composition of the samples. The algorithm remembers each
sample χ that has been used to update the tree as a tuple of a simulated belief
b̂(s), the action a selected for that belief, and the return R used to update

the tree, χ = (b̂(s), a, R). All of those samples are maintained in a set X =
{χ1, χ2, . . . , χn}. In the case of a split, the algorithm recalls each sample χ
that belongs to one of the new leaf nodes to recreate the values for the new
nodes below these leaf nodes. To determine whether a sample χ = (b̂(s), a, R)

belongs to one of the new leaf nodes, it is checked whether the belief b̂(s) fulfills
the constraints provided by the internal nodes on the path from the root of
the belief tree to the new internal node. If the sample reaches one of the new
leaf nodes, the new nodes on the second layer (below the new leaf nodes) are
updated in the usual way based on χ.

b̂ ≤ 0.1

F F

[0.0, 1.0]

β1 = [0.0, 0.1] β2 = (0.1, 1.0]

set of samples

Q(β1)
N(β1)

Q(β1, a1)
N(β1, a1)

a1

Q(β1, a2)
N(β1, a2)

a2

Q(β2)
N(β2)

Q(β2, a1)
N(β2, a1)

a1

Q(β2, a2)
N(β2, a2)

a2

Figure 4.4: The perfect recall strategy maintains a set of samples. In case of
a split, this set is used to avoid information loss.

36



Compared to the previous two strategies, this strategy requires significantly
more memory because it needs to store each sample that passed through the
tree, and it requires more computation time because each of these samples needs
to be processed through the tree in case of a split. The advantage of this strategy
is that no information is lost from the subtree that existed before the split.

4.4 Computational Complexity

This section analyzes the time and space bounds of BFAIRMC. The terms time
and running time refer to worst-case running time.

4.4.1 Running Time

A single iteration of BFAIRMC consists of three steps relevant for its running
time: traversing the tree until a leaf is found, recomputing the simulated belief
state b̂t, and updating a specific leaf node of the tree. The time spend to traverse
the belief tree U until a leaf is found is proportional to the tree’s depth DU ,
and is expressed as O(DU ). Recomputing the belief state b̂t requires the time
that is needed for an exact belief state update (see Section 2.2), O(|S|2), where
|S| denotes the number of states of the underlying POMDP. Updating a specific
leaf node of the tree runs in the same time that is spend for updating a leaf in
some observation tree in COMCTS (see Section 3.4.1). The running times for
each step of BFAIRMC are summarized in Table 4.1.

As in COMCTS, the time consumed for each splitting strategy differs. The
time spend for the deletion strategy is equivalent to the time spent for the same
strategy in COMCTS, i.e., O(1). The insertion strategy incurs the statistics
of the test that determines the split point to the new nodes. This strategy
thus runs in O(|A|) time where A is the action set of the POMDP for which
the algorithm is applied. The perfect recall strategy consists of two operations.
Iterating through the set of stored samplesX depends on the number of samples,
and requires O(|X |) time. Updating the action value for an action node of the
second layer in one of these iterations costs O(1) time. Updating a leaf’s test
statistics requires the same time as updating a leaf in some observation tree in
COMCTS (see Section 3.4.1)

Phase Running Time
Selection of a leaf node O(DU )
Recomputation of belief state O(|S|2)
Update of a leaf node O(DU + 3 ∗ |F|)

Table 4.1: The running times of the three phases of BFAIRMC.

4.4.2 Space Bounds

The number of leaf nodes in the belief tree depends on the number of splits
n, and is calculated in the same way as the number of leaf nodes in a single
observation tree is calculated for COMCTS, 2j. The number of nodes in the
belief tree is 2j +1. For each leaf of the belief tree, there are |A| nodes connected

37



to it on the second layer, where A is the action set of the underlying POMDP.
Thus, the total number of nodes in the tree U constructed by BFAIRMC is

|U | = 2j + 1 + 2j ∗ |A| (4.6)

The space bounds for the splitting strategies vary from no bounds for deletion
and insertion to O(|X |) for perfect recall. The reason for the bound of deletion is
the same as in COMCTS: it does not remember any samples. Insertion directly
takes the action values for the new nodes from the test that determines the
split point, and therefore no additional space is demanded. The space bound
for perfect recall depends on the number of stored samples |X |.

In Table 4.2, the space bounds of BFAIRMC and COMCTS are compared
against each other.

Component COMCTS BFAIRMC

Single tree-based discretization 2n + 1 2j + 1

All tree-based discretizations
m
P

i=1

2ni + 1 2j + 1

Complete tree
m
P

i=1

2ni + 1 +
m
P

i=1

(2ni ∗ |A|) 2j + 1 + 2j ∗ |A|

Table 4.2: Space bounds of COMCTS and BFAIRMC.

4.5 Related Work

A method that builds a similar tree-based discretization of a continuous space
as BFAIRMC is Continuous U Tree [45]. This method applies incremental
regression tree techniques from Chapman and Kaelbling [7] and is an extension
of the U Tree algorithm [27]. While BFAIRMC discretizes the belief space for
a POMDP, Continuous U Tree discretizes the (continuous) state space of an
MDP through a so-called state tree that is structurally similar to the belief tree.
Instead of an F-test, a Kolmogorov-Smirnov test or a test based on squared
sum error [12] are used. Instead of Monte Carlo rollouts, the estimates for the
actions are computed by creating an MDP over the discretization given by a
split. This MDP is constructed from a number of samples maintained by the
algorithm. Each sample consists of a state information, the action performed for
that state information, the resulting state information, and the reward obtained
for the corresponding states and the performed action.

In a broader context, BFAIRMC is related to function approximation tech-
niques in reinforcement learning, especially those techniques that are based on
decision or regression trees (see, e.g., [34, 47]). Q-Learning [48] with a piece-
wise constant function approximator also estimates Q(b, a) but differs in the
way how it updates this value. Rather than updating Q(b, a) according to the
”bottom-to-top” approach in BFAIRMC, Q-Learning updates the value in a
”top-to-bottom” approach. BFAIRMC updates the value after a fixed amount
of steps in the simulator and starts from the last sample that it found before the
discount horizon was reached. Q-Learning updates the value after each step in
the simulator and updates the value based on the outcome of the current step
and the expected optimal value of the next step. In addition, the update rule of
Q-Learning differs from the update rule for BFAIRMC in including a learning
rate.

38



Chapter 5

Empirical Evaluation

The main goal of the experiments is to gain insight into the behavior and per-
formance of the algorithms presented in the previous two chapters. To acquire
this insight, Section 5.1 introduces a set of benchmark problems and a set of
additional methods against which the algorithms are compared.

Four different experiments were conducted for this thesis. The first two
experiments investigate the performance of the algorithms given a specific num-
ber of samples or a specific amount of time. The third experiment examines
the practical running time of the algorithms. The fourth experiment looks at
the approximation of the one-step value function generated by COMCTS. The
results of these experiments are presented in Section 5.2.

5.1 Experimental Setup

This section presents two environments that are used to analyze the algorithms
proposed in this thesis. Each environment is first presented in its discrete form
by defining the states, actions, observations and rewards. Then an explanation
is given how the observation model is changed from a discrete to a continuous
function. An overview over all environments with respect to their complexity
is given in Table 5.1. After the presentation of the environments, a set of algo-
rithms is introduced that are used to set the experimental analysis of COMCTS
and BFAIRMC into a more general context.

5.1.1 The Tiger Problem

The discrete version of this environment was originally introduced by Kael-
bling et al. [18] and has been extended to continuous observations by Hoey and
Poupart [16]. Figure 5.1 illustrates this environment. The story describing this

Environment |S| |A| |O| O Function O Noisy?

Tiger 2 3 1 1D-Gaussian yes

Discrete Light Dark #rows ∗ #columns 4 2 2D-Gaussian yes

Continuous Light Dark ∞ 4 2 2D-Gaussian yes

Table 5.1: The characteristics of the environments.

39



(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

agent’s location

st = tiger is left st = tiger is right

(b)

Figure 5.1: The Tiger problem with a 1D continuous observation space. (a)
The characteristics of the environment. (b) An example of the observation
function where the standard deviation is σ = 0.965.

famous POMDP goes as follows. A man is situated in a hallway with two doors.
One of the doors leads to a small treasure of money, while the other leads to a
dangerous tiger.

States: At the beginning, the tiger is randomly placed behind one of the doors.
Behind the other door, a small treasure can be found. Thus, the state is
determined by the location of the tiger.

Actions: The agent can select one of three actions: open left, open right and
listen. When the agent opens one of the doors, the tiger changes its
position with probability 0.5. If the agent listens, the tiger stays where it
is.

Rewards: The agent receives a reward of +10 when it opens the door with the
treasure behind it, and suffers a penalty of −100 when it opens the door
with the tiger behind it. Listening costs −1.

Observations: There are two observations that describe the position of the
tiger: left and right. When the agent listens, it receives the correct position
of the tiger. When the agent opens one of the doors, it receives either
observation with equal probability (independent of which state the agent
is in).

The discrete observation signal is extended to the continuous domain in the
following way. The doors are located at z = −1 (left) and z = +1 (right). The
agent is at z = 0 and has one sensor in form of a binary microphone. This
microphone reports the exact location of the tiger but suffers from a lack of
accuracy which corrupts the observation signal by some zero-mean, normally
distributed noise N (0, σ2) for which the standard deviation σ is predefined.

The Tiger Problem is not meant to be a model of some real-world domain
but rather to be a toy problem that can be used to gain basic insight into the
behavior and the performance of the algorithms.

5.1.2 The Light Dark Domain

A variant of this environment with a continuous state space was introduced by
Platt et al. [32]. Figure 5.2a presents this environment. The agent is required

40



(a)

−10
−8

−6
−4

−2
0

2
4

6
8

10

−5

0

5

10

15

20
0

1

2

3

4

5

6

7

8

9

x 10
−3

X
Y

Z

(b)

Figure 5.2: The discrete state space light-dark domain. (a) An example of
the environment with a size of 10 × 10. The agent’s location is indicated by
the symbol A and the goal’s location is indicated by the symbol G. The light
is located in the previous to last column. (b) An example of the observation
function when the agent is located at (x = 2, y = 8).

to localize itself before it can approach the goal. There is a light source some-
where in the environment. The intensity of the light depends on the horizontal
coordinate of the agent’s location. The closer the agent is to this source, the
better is the agent’s ability to localize itself. The idea here is that the agent
might need to move away from the original goal to be able to perform a sufficient
localization.

The environment’s continuous state space is transformed to a discrete state
space by placing the agent in a grid world with finite distances between each
cell. The following lines describe this variant of the light dark environment.

States: The state space consists of all cells of the grid. Special states are the
goal state and the agent’s starting state.

Actions: The agent can select one of four actions: move up, move down, move
left or move right. Actions are deterministic. If an action would end
outside of the grid, the agent ends up on the cell on the side which is
”opposite” to the cell where it began the movement. For example, when
the agent would leave the grid on the right side, it enters again on the left
side.

Rewards: The agent suffers a penalty of −1 for each move it makes.

Observations: The observation is the location (x, y) of the agent, corrupted by
some zero-mean normally distributed noise N (0, σ2), with a standard de-
viation σ that depends on the intensity of the light at the current location
of the agent, and is calculated as

σ =
√

0.5× (xL − x)2 +K (5.1)

41



where xL is the horizontal coordinate of the light source’s location, x is
the horizontal coordinate of the agent’s location and K is a constant that
denotes the minimum amount of noise.

A variant of the light-dark domain with a continuous state space is also used in
this thesis. This variant is similar to the variant introduced above, but differs
in the state space and the actions as follows.

States: The state space is a subspace of the plane R2 with boundaries [−1, 7]
on the horizontal axis and [−2, 4] on the vertical axis. The goal state is
the area given by the boundaries [−1.0, 1.0] on the horizontal axis and
[−1.0, 1.0] on the vertical axis.

Actions: Actions move the agent by one unit on the grid. This movement is
corrupted by some zero-mean normally distributed noise N (0, σ2), with a
fixed standard deviation σ.

5.1.3 Additional Algorithms

To provide a more general analysis, the algorithms proposed in this study need
to be compared to existing methods from the literature and to heuristics that
are conceptually much simpler than the algorithms. These additional algorithms
are introduced in the following paragraphs.

There are two existing methods that the algorithms are compared to. The
first method is called Random, and selects actions randomly based on a uniform
distribution over the set of possible actions. The second method is called Monte
Carlo (MC), and selects actions based on the simulation of random rollouts
during which the actions are chosen according to a uniform distribution. The
action with the highest average return is then selected for execution in the real
environment.

The heuristics used in this study are developed for a specific environment
and cannot directly be applied to other environments. For the Tiger problem,
there are two heuristics. The first heuristic, called H.1, relates to the optimal
one-step value function for the tiger problem (see Figure 5.13 and [18]). Under
H.1, the agent plays according to the following strategy.

at =











open left door if bt(st = tiger is right) ≥ 0.9

open right door if bt(st = tiger is left) ≥ 0.9

listen otherwise.

(5.2)

The second heuristic, called H.2, is similar to the previous strategy but can
request the environment for its actual state st. This heuristic assumes that the
agent can directly observe the state of the environment. Under H.2, the agent
plays according to the following strategy.

at =











open left door if bt(st = tiger is right) ≥ 0.9 ∧ st = tiger is right

open right door if bt(st = tiger is left) ≥ 0.9 ∧ st = tiger is left

listen otherwise.

(5.3)
It is possible that the two heuristics relate to bounds on the optimum for the
infinite horizon Tiger problem, with H.1 giving a lower bound and H.2 giving

42



an upper bound. Intuitive reasons for this relation are that H.1 is based on
the optimal one-step value function, and that H.2 augments H.1 with full ob-
servability. Given partial observability, the agent can obviously never reach the
same performance as given full observability. H.1 might thus be a lower bound
because sometimes the agent still opens the incorrect door (with the tiger be-
hind it) although the agent is quite certain in which state it is. Playing H.2,
the agent will always open the correct door, given that the agent’s belief is high
enough. The proof for the relation between these heuristics and the bounds
on the optimal value function is not the focus of this thesis and is therefore
omitted.

For the light-dark domain, the heuristic is called H.3. It takes the state
st with the highest belief bt(st), and considers all successor states that can be
reached from st by performing one action. For each successor state s′, the
Euclidean distance between the locations of the goal state and the state s′ is
calculated. The action that leads the agent to the successor state with the
shortest distance is then selected for execution in the real environment. The
drawback of this heuristic is that the agent might believe that it is in a certain
state with a high probability although in the real world, it is in a completely
different state.

5.2 Experimental Results

This section reports the results of four experiments. The first experiment inves-
tigates the performance of the algorithms in sample-based settings, the second
experiment examines the performance of the algorithms under time-based set-
tings, the third experiment gives an insight into the time consumed by each
algorithm, and the fourth experiment looks at the approximation of the one-
step value function generated by COMCTS.

5.2.1 Sample-Based Performance

This experiment investigates the performance of COMCTS and BFAIRMC by
looking at the cumulative reward achieved by the agent over a finite number
of steps in the environment given a fixed amount of rollouts. First of all, the
algorithms are compared against each other, against the heuristics and against
MC. This results in proposing the following hypothesis for both COMCTS and
BFAIRMC.

Hypothesis 1. The algorithm outperforms Monte Carlo rollouts.

Secondly, the variations of each individual algorithm are compared against each
other. This leads to posing the following hypotheses for both COMCTS and
BFAIRMC.

Hypothesis 2. The variants are ordered ascending in performance according
to their degree of avoiding information loss as follows: deletion, local recall
(insertion), perfect recall.

The main evaluation metric in this experiment is mean value which is defined to
be the average cumulative reward achieved by the agent over a finite number of
steps in the environment given a fixed number of rollouts. An additional metric

43



for the tiger problem is regret which is defined to be the difference between
the optimum and the mean value. The assumption is made that the optimum
for the tiger problem is the mean value accumulated by an agent that employs
heuristic H.2.

Figure 5.3 shows the online performance of the different algorithms in the
infinite horizon Tiger problem with a one-dimensional continuous observation
space. The standard deviation of the noise that corrupts the observation signal
is σ = 0.965 [16]. The execution of the agent is stopped after 50 steps in
the environment. The numbers are acquired by performing 5,000 runs with
uniformly distributed starting states. The discount factor for the algorithms is
set to γ = 0.5.

10
0

10
1

10
2

10
3

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

number of rollouts

m
ea

n 
va

lu
e

 

 

Random
MC
COMCTS Deletion
BFAIRMC Perfect Recall
H.1
H.2

(a) Average cumulative reward

10
0

10
1

10
2

10
3

10
2

10
3

number of rollouts

re
gr

et

 

 

Random
MC
COMCTS Deletion
BFAIRMC Perfect Recall
H.1

(b) Regret

Figure 5.3: The performance achieved over 5,000 simulations of 50 steps each
for the different algorithms in the infinite horizon Tiger problem with 1D con-
tinuous observations.

The results indicate that COMCTS and BFAIRMC converge faster to the pos-
sible lower bound on the optimum given by heuristic H.1 than MC. For this
problem, the best performing algorithm turns out to be BFAIRMC with per-
fect recall. The reason for this is that whenever a door is opened, the agent’s
belief state is reset uniformly over the state space. Only when listening, the
agent’s belief state shifts away from this uniform distribution. The more roll-
outs the algorithms can perform, the less different is their performance. After
approximately 300 rollouts, all three algorithms approach the same value that
H.1 achieves. From this point on, the difference between the algorithms is negli-

44



gible. A possible reason for this indifference is that H.1 is indeed a lower bound
on the optimum in this problem and therefore hard to compete with.

In Figure 5.4, BFAIRMC is compared against BFAIRQ in the tiger problem
with the same settings as before. For BFAIRQ, the learning rate is set to α = 0.1
and the discount factor is set to γ = 0.9.

10
0

10
1

10
2

10
3

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

number of rollouts

m
ea

n 
va

lu
e

 

 

Random
MC
BFAIRQ Deletion
BFAIRQ Insertion
BFAIRQ Perfect Recall
BFAIRMC Deletion
BFAIRMC Insertion
BFAIRMC Perfect Recall
H.1
H.2

Figure 5.4: The average cumulative reward achieved by BFAIRMC and
BFAIRQ in the infinite horizon Tiger problem with 1D continuous observations.

The results point out a large difference in performance between BFAIRMC
and BFAIRQ given a sufficient number of rollouts. From 20 rollouts on, BFAIRMC
clearly outperforms BFAIRQ. The reason for this is that the update of the value
in BFAIRMC considers all rewards accumulated in a simulation, while BFAIRQ
only considers the immediate reward of the current step. There are significant
differences in the performance of the different variants of both algorithms. Per-
fect recall always achieves the highest value, followed by insertion and after
that followed by deletion. This result comes from the difference in avoiding
information loss.

Figure 5.5 illustrates the online performance of COMCTS in the light-dark
domain with a discrete state space of size 10 × 10 and a two-dimensional con-
tinuous observation space. As discussed in Section 4.1, BFAIRMC cannot be
directly applied to problems with a large state space and is thus omitted for
the discrete state space light dark domain. After 20 steps in the environment,
the execution of the agent is stopped. The numbers are acquired by performing
1,000 runs with uniformly distributed starting states. The discount factor for
the algorithms is set to γ = 0.95.

The results show that there is not much difference between the performance
of COMCTS and MC given a low (less than 10) or a high number of rollouts
(more than 600). In between these points, the mean value achieved by COMCTS
is slightly higher than the mean value achieved by MC. This indifference might
be caused by a high number of rollouts needed to learn the observation trees in
COMCTS: at the point where there are enough rollouts for this algorithm to
generate a good policy, there are also enough rollouts for MC to generate such
a policy. Another possible reason lies in the manual tuning of the algorithm.
Other parameter settings, e.g., a different choice of the exploration factor in

45



10
0

10
1

10
2

10
3

10
4

−19

−18

−17

−16

−15

−14

−13

−12

number of roll−outs

m
ea

n 
va

lu
e

 

 
Random
MC
COMCTS Deletion
COMCTS Local Recall
COMCTS Perfect Recall
H.3

Figure 5.5: The average cumulative reward achieved over 1,000 simulations
of maximal 20 steps each for COMCTS in the discrete state space light-dark
domain with 2D continuous observations.

UCT or the significance level in the regression tree component could possibly
lead to better results. In contrast to the heuristics for the tiger problem, the
heuristic for the light-dark domain can be beaten given a sufficient amount of
rollouts. The reason for this, given in Section 5.1.3, is that the agent might belief
to be in a certain state with a high probability although in the real environment,
the agent is in a completely different state. Following H.3, the agent might then
select actions that move it away from the goal’s location. Furthermore, the
number of rollouts from which each algorithm outperforms the heuristic are
very close. This result might be explained by the same fact that might cause
the indifference between MC and COMCTS. To outperform H.3, COMCTS
requires so many rollouts that MC can also create a good policy.

To compensate that BFAIRMC cannot be directly applied to the discrete
state space light-dark domain, a continuous version of this environment is briefly
investigated. In this environment, BFAIRMC relies on an approximation of the
agent’s belief state through a Gaussian distribution and a Kalman filter (see
Appendix A). Figure 5.6 illustrates the online performance of BFAIRMC in this
domain. The numbers are acquired by performing 1,000 runs with uniformly
distributed starting states. The execution of the agent is stopped after 50 steps
in the environment.

The results indicate a clear improvement of BFAIRMC over the random
agent, but the behavior of the algorithm given more than 10 rollouts is very
unstable and its performance varies a lot. There are three possible reasons for
this. The first reason is that a restricted form of the multivariate Gaussian is
used to approximate the agent’s belief in this problem. The second reason is
that, in contrast to all other experiments, the parameters of the algorithm have
not been tuned for this problem. The third reason is that, given many rollouts,
the algorithm finds so many refinements for the discretization of the belief space
that the values for the actions in some parts of this discretization become less
reliable than they were with a coarser discretization given a lower number of
rollouts.

Figure 5.7 compares the online performance of the different variations of

46



10
0

10
1

10
2

−28

−26

−24

−22

−20

−18

number of rollouts

m
ea

n 
va

lu
e

 

 
Random
BFAIRMC Deletion

Figure 5.6: The average cumulative reward achieved over 1,000 simulations of
maximal 50 steps each for BFAIRMC in the continuous state space light-dark
domain with 2D continuous observations.

BFAIRMC in the infinite horizon tiger problem with the same settings as be-
fore. Their order in performance reflects their ability to avoid information loss:
deletion does not reconstruct anything and achieves the worst performance, in-
sertion incurs some amount of knowledge from the test that determines the split
point and achieves a higher value than deletion, and perfect recall rebuilds as
much knowledge as possible from its stored rollouts and achieves the highest
value of all three variations. The first dip that appears in all three variants is
caused by the first refinements of the discretization of the belief space. With
deletion, a good policy might have been learned before the refinement, and after
the refinement, this policy is lost and needs to be learned again. With insertion,
the information incurred from the test could be unreliable because it might be
based on a insufficient amount of rollouts. For both variants, there might not
be enough rollouts left after a refinement for learning a good policy again. The
second dip that can be seen in deletion and insertion is possibly caused by the
same reason of loosing and being required to find a good policy again. Interest-
ingly, perfect recall does not show this second dip in performance. This result
can be explained by the fact that perfect recall can benefit from a much larger
amount of information, in form of the rollouts that this strategy maintains, than
insertion and deletion. The intensity of the dips makes the difference in their
ability to avoid information loss apparent again. Deletion looses most infor-
mation and shows the most intense dips, insertion looses less information and
shows less intense dips, and perfect recall looses no information and even does
not show the second dip.

In Figure 5.8, the different variants of COMCTS are compared against each
other in both the infinite horizon tiger problem and the discrete state space
light-dark domain. The settings for the environments are the same as before.
From these results, it can be seen that the difference in performance between the
three variations of COMCTS is negligible. A possible explanation for this is that
deletion already achieves a good performance in the two domains investigated
in this experiment. A more general explanation could be that the first layer
of history and sequence nodes of the search tree build by COMCTS is not
changed in case of a refinement of the discretization. The nodes in this first

47



10
0

10
1

10
2

10
3

−1,000

−800

−600

−400

−200

0

number of rollouts

m
ea

n 
va

lu
e

 

 

Deletion
Insertion
Perfect Recall

Figure 5.7: The average cumulative reward achieved over 5,000 simulations
of 50 steps each for the different variations of BFAIRMC in the infinite horizon
Tiger problem with 1D continuous observations.

level maintain the values that decide the final action selection of the agent
which, in consequence, influences the agent’s performance in the real world.

10
0

10
1

10
2

10
3

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

number of rollouts

m
ea

n 
va

lu
e

 

 

Deletion
Local Recall
Perfect Recall

(a) Tiger problem

10
0

10
1

10
2

10
3

10
4

−19

−18

−17

−16

−15

−14

−13

−12

number of roll−outs

m
ea

n 
va

lu
e

 

 

Deletion
Local Recall
Perfect Recall

(b) Light-dark domain

Figure 5.8: The average cumulative reward achieved by the different varia-
tions of COMCTS in the infinite horizon Tiger problem with 1D continuous
observations and the discrete state space light-dark domain with 2D continuous
observations.

To summarize the results of this experiment, the hypotheses posed at the
beginning of this section are reconsidered. For the first few rollouts in the tiger

48



problem, the results show a significant improvement of BFAIRMC and COM-
CTS over MC in the tiger problem. However, this improvement is not supported
by the results for COMCTS in the light-dark domain, and given enough rollouts
in the tiger problem, this difference is not apparent anymore. Therefore, Hy-
pothesis 1 is refuted. Hypothesis 2 is supported for BFAIRMC because there is a
significant difference between the performance of the variants of this algorithm,
but renounced for COMCTS because there is nearly no difference between the
performance of the variants of this algorithm.

5.2.2 Time-Based Performance

This experiment examines the time-based performance of COMCTS and BFAIRMC
by looking at the cumulative reward achieved by the agent over a finite number
of steps in the environment given a fixed amount of time.

Figure 5.9 shows the online performance of the different algorithms in the
infinite horizon Tiger problem with a one-dimensional continuous observation
space. The settings are the same as before, only the execution of the agent is
already stopped after two steps in the environment. Because the performance
is very similar for all variations of COMCTS, only the deletion variant is part
of the figure.

10
0

10
1

10
2

−5

−4

−3

−2

−1

0

1

2

3

4

time (ms)

m
ea

n 
va

lu
e

 

 

MC
BFAIRMC Deletion
BFAIRMC Insertion
BFAIRMC Perfect Recall
H.1
H.2
COMCTS Deletion

Figure 5.9: Time-based performance in the infinite horizon tiger problem.

Except for BFAIRMC with perfect recall, the results point out a large dif-
ference between the performance of COMCTS and the other two variants of
BFAIRMC given a low amount of time. With only one millisecond of com-
putation time, COMCTS approaches the near optimal performance of H.1.
BFAIRMC with deletion or insertion needs around ten milliseconds more to
reach a similar performance. However, BFAIRMC with perfect recall and MC
can both compete with COMCTS from the first millisecond on. The perfor-
mances of the different variants of BFAIRMC reflect what is seen in sample-
based settings. Both BFAIRMC with deletion and insertion need some time
until they reach the same performance as perfect recall. This behavior is caused
by the loss of information of these two variants. In particular, a partial loss for
insertion and a total loss for deletion.

49



Figure 5.10 shows the online performance of the different variants of COM-
CTS in the discrete state space light-dark domain with a two-dimensional con-
tinuous observation space. The settings are the same as before.

10
0

10
1

10
2

−19

−18

−17

−16

−15

−14

−13

−12

time (ms)

nu
m

be
r 

of
 r

ol
l−

ou
ts

 

 
Random
MC
COMCTS Deletion
COMCTS Local Recall
COMCTS Perfect Recall
H.3

Figure 5.10: Time-based performance of COMCTS in the discrete state space
light-dark domain.

The results reflect the same similarity in performance between the variants of
COMCTS that is demonstrated by the sample-based experiment in the previous
section (compare Figure 5.8): there is no significant difference between the
variants of this algorithm. There are two possible reasons for this. The first
reason is that deletion already achieves a high average cumulative reward that
cannot be outperformed any more by the other two variants. The second reason
is that the other two variants only effect the deeper levels of the search tree and
not the final decision at the first level of the action to be executed by the agent
in the real world. Furthermore, the performance of MC and any variant is very
similar.

5.2.3 Practical Running Time

This experiment analyzes the performance of COMCTS and BFAIRMC under
time constraints. The theoretical analyses of the running time of the novel
algorithms (see Sections 3.4.1 and 4.4.1), give rise to the following hypothesis.

Hypothesis 3. COMCTS requires significantly less running time than BFAIRMC.

In both COMCTS and BFAIRMC, perfect recall requires to store and to
process all samples that passed through the search tree. This leads to the
following hypothesis.

Hypothesis 4. Deletion requires significantly less running time than perfect
recall.

The metric of performance is the number of roll-outs that is achieved by the
algorithm in the environment given a fixed amount of time. The numbers are
acquired by performing 2,000 runs with uniformly distributed starting states.

50



The results for the infinite horizon Tiger problem are presented in Figure
5.11. MC is the best performing algorithm with respect to the number of roll-
outs, and acquires more than three times as many rollouts as the next best
algorithm, COMCTS. All variants of COMCTS turn out to achieve more roll-
outs than any variant of BFAIRMC. There are three reasons that cause this
difference in computation time. The first reason is that the rollouts in COM-
CTS are partially random, while the rollouts in BFAIRMC are following UCT.
The second reason is that BFAIRMC requires to recompute the belief state for
each step during a rollout which is quite computationally expensive. The third
reason is that each step during a rollout in BFAIRMC provides a sample that
is used to update the belief tree, while only those samples that are gathered
during the selection and expansion phase in COMCTS are used to update the
observation trees (compare Figures 3.2 and 4.1).

0 10 20 30 40 50 60 70 80 90 100
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

time (ms)

nu
m

be
r 

of
 r

ol
l−

ou
ts

 

 
MC
BFAIRMC Deletion
BFAIRMC Insertion
BFAIRMC Perfect Recall
COMCTS Deletion
COMCTS Local Recall
COMCTS Perfect Recall

Figure 5.11: The average number of rollouts achieved by each algorithm in
2,000 simulations over time in the infinite horizon Tiger problem with 1D con-
tinuous observations.

As discussed in Section 4.2, there is not much difference in the number of
rollouts achieved by the splitting strategies deletion and insertion of BFAIRMC.
Slightly less rollouts are achieved by perfect recall. Interestingly, the number
of rollouts reached by COMCTS with perfect recall comes close to the deletion
and insertion variants of BFAIRMC. The difference in demand for computation
time between COMCTS with local recall and perfect recall is emphasized by the
former variant achieving more than four times as many rollouts than the latter
variant. The reason for this difference is that local recall only rebuilds the tree
on the level of one observation tree, while perfect recall also rebuilds the subtrees
below that observation tree. COMCTS with deletion beats the other variations
of the same algorithm and also all variations of BFAIRMC. The number of
rollouts accumulated by this variant differs by a factor of more than five to
BFAIRMC with the same splitting strategy. The results for the discrete state
space light-dark domain are shown in Figure 5.12. Again, MC turns out to
achieve the highest number of rollouts. The difference in performance between
the splitting strategies of COMCTS is similar to what is observed for the tiger
problem, with deletion acquiring five times more rollouts than perfect recall. In
general, the number of rollouts is two times lower than in the tiger problem. This
decrease in performance is caused by the black-box simulations which are much
more complex for the light-dark domain than for the tiger problem. Looking
back at the results for the time-based performance of COMCTS with perfect

51



0 10 20 30 40 50 60 70 80 90 100
0

5000

10000

15000

time (ms)

nu
m

be
r 

of
 r

ol
l−

ou
ts

 

 
MC
COMCTS Deletion
COMCTS Local Recall
COMCTS Perfect Recall

Figure 5.12: The average number of rollouts achieved by the different variants
of COMCTS in 2,000 simulations over time in the discrete state space light-dark
domain with 2D continuous observations.

recall and local recall (see Figures 5.9 and 5.10), there is no indication that
these variants improve the performance of the agent. Taking the additional
high costs with respect to running time into account, there does not remain a
positive argument for these variants in practice. Nevertheless, these variants
might show a difference in performance in more complex domains.

The results of this experiment lead to the support of both hypotheses pro-
posed at the beginning of this section. Hypothesis 3 is largely supported be-
cause there is a large difference in running time between the deletion and local
recall variants of COMCTS and any variant of BFAIRMC. Only COMCTS
with perfect recall comes close to the running time of BFAIRMC. Hypothesis 4
is supported because the results show a large difference between perfect recall
and deletion for both COMCTS and BFAIRMC in the tiger problem, and for
COMCTS in the light-dark domain.

5.2.4 One-Step Value Function in the Tiger Problem

This experiment examines the development of the approximation to the one-
step value function that is generated by the deletion and the belief-based reuse
of knowledge variants of COMCTS in the infinite horizon tiger problem with
one-dimensional continuous observations. Because the latter variant can reuse
a lot of information within the observation trees, the following hypothesis is
proposed.

Hypothesis 5. The development of COMCTS to the optimal one-step value
function is faster with belief-based reuse of knowledge than with deletion.

In this experiment, each data point is acquired by performing 5,000 runs with
starting states distributed according to the agent’s initial belief state b(s =
tiger left). The sequence {0.05, 0.1, 0.15, . . . , 0.95} determines the value for the
agent’s initial belief state b0(s = tiger left). After one step in the environment,
the execution of the agent is stopped. The value of a data point is the average
reward accumulated by the agent. The color of a line segment between two
points (b1, b2) indicates which action is selected most for that region in the
belief space: red corresponds to listen, green corresponds to open the left door,
and blue corresponds to open the right door. To indicate the approximation to

52



(a) 5 rollouts (b) 10 rollouts

(c) 50 rollouts (d) 100 rollouts

(e) 500 rollouts (f) 1000 rollouts

Figure 5.13: The development of the approximation towards the optimal one-
step value function that is achieved by the deletion and the reuse of knowledge
variants of COMCTS in the infinite horizon tiger problem over 5,000 simulations
with 1D continuous observations.

the optimal one-step value function, the three deterministic policies of always
selecting the same action are also part of this experiment. The optimal value
function is the line given by the highest values achieved by these three policies.
The results of this experiment are shown in Figure 5.13. Given 5 or 10 rollouts,
the action selection and the reward accumulated by both variations are similar.
Given more rollouts, the performance of reuse breaks in and deletion achieves
a higher reward and comes also closer to the optimal one-step value function
than reuse. Arriving at 500 rollouts, reuse can be seen to improve over deletion,
and provides an even closer approximation to the one-step value function than
deletion does for the other numbers. This outcome of close approximation is
supported by the results given 1000 rollouts. Despite the correct action selection
in nearly all regions of the belief space by reuse for 500 and more rollouts, the
difference in reward to deletion is relatively small. An exception from this
outcome is the region in the belief space around the point where the optimal
action switches from listen to open the correct door.

From the shape of the approximation in the graphs, it can be clearly pointed
out in which regions of the belief space the value function is more easy and in
which it is more hard to learn. The region where the learning is simpler is

53



approximately represented by the interval [0.3, 0.7], and the regions where the
learning is difficult are approximately represented by the intervals [0.1, 0.3] and
[0.7, 0.9].

The general result of this experiment is that a lot of rollouts are required to
correctly learn a close approximation to the optimal one-step value function in
the infinite horizon tiger problem with continuous observations. Furthermore,
the regions of the belief space can be coarsely divided into two categories with
respect to how fast the development of the approximation towards the optimal
value function is. The regions surrounding the points from which on listening
is not the optimal action anymore are hardest to learn, while all other regions
are simpler to learn. Since the development of deletion clearly approaches the
optimal one-step value function faster than deletion, Hypothesis 5 is refuted.

54



Chapter 6

Conclusion

This chapter summarizes and discusses the main findings of this thesis. After
the discussion, answers to the research questions are given. Finally, recommen-
dations for future work are outlined.

6.1 Contributions

This thesis contributes two novel algorithms to the field of online planning
in POMDPs with continuous observations. Both algorithms are based on a
combination of incremental regression tree induction and a particular Monte
Carlo method. The Monte Carlo method is used to exploit and explore the
agent’s environment, while incremental regression induction is used to discretize
a continuous space. The following paragraphs address those two algorithms in
detail.

Continuous Observations Monte Carlo Tree Search is an extension of Monte
Carlo Tree Search to POMDPs with continuous observations. Each node of
the search tree of MCTS is associated with a tree-based discretization of the
POMDP’s observation space. This discretization is build automatically by an
incremental regression tree learning algorithm that adjusts the discretization
whenever there is significant evidence given by a set of test statistics that a
refinement of the discretization would effect the agent’s performance.

Belief based Function Approximation using Incremental Regression tree tech-
niques and Monte Carlo is a two layer algorithm that combines a tree-based
discretization of the belief space with Monte Carlo rollouts. This discretization
is again build by an incremental regression tree learning algorithm that is simi-
lar to the same component used in Continuous Observations Monte Carlo Tree
Search.

The splitting strategies that are employed by each algorithm to refine the
tree-based discretizations represent another contribution of this thesis. Two
of these strategies, deletion and perfect recall, can be applied to both algo-
rithms. Deletion simply remembers no samples and does no more operations
than are required by the splitting procedure. In contrast to deletion, perfect
recall remembers all samples that passed through the algorithm and uses them
to reconstruct the search tree in the case of a split. The other strategies are
local recall which rebuilds the tree of the first algorithm on the level at which

55



the split occurs, and insertion which directly incurs knowledge about actions
from the test that determines the split point in the second algorithm.

A further contribution of this thesis is an analysis of the algorithms in two
distinct environments. The tiger problem serves as a toy environment to test
the algorithms, while the light-dark domain is a more complex environment
that represents a simplified robot localization problem. The algorithms are
compared to domain-specific heuristics and existing methods such as Monte
Carlo rollouts. The analysis indicates that both novel methods converge faster
to a high performing policy than Monte Carlo rollouts with a uniform action
selection but cannot outperform this algorithm given a lot of samples. Because
the set of problems investigated for the analysis is small, no conclusions about
the performance of the algorithms in other domains can be drawn.

6.2 Answers to the Research Questions

This thesis focused on the development of two novel online planning algorithms
for POMDPs with continuous observations. Before a general conclusion about
the problem statement of this thesis is drawn, the research questions presented
in Section 1.1 are recapitulated and answered.

The first two research questions relate to the use of the incremental re-
gression tree component of Tree Learning Search for the discretization of other
continuous spaces than the action space. The two algorithms presented in this
thesis employ variations of this component to successfully discretize continuous
observation spaces and continuous belief spaces.

With respect to the third research question that asked how information loss
can be avoided in the new algorithms, three different strategies that recreate
knowledge are discussed. Perfect recall is a generally applicable strategy that
remembers each sample to rebuild the information. Local recall is a similar
strategy that also remembers samples but only reconstructs the information on
the first level. Insertion is a strategy that is related to action-based test statistics
from which some amount of information can be directly inferred in the case of
a split.

The fourth question inquired for a theoretical analysis of the time and space
bounds of both techniques. This analysis is given in Sections 3.4 and 4.4. Con-
tinuous Observations Monte Carlo Tree Search requires less computation time
than the belief based function approximation algorithm but demands signifi-
cantly more space. This theoretical analysis is supported by a practical investi-
gation of the running time, provided in Section 5.2.3.

The answer to the last research question that asked for the performance of
the algorithms in a set of benchmark problems is provided by the results of the
experiments given in Section 5.2. In the tiger problem, the belief based function
approximation algorithm performs best. The difference in performance between
the variations of COMCTS turns out to negligible, while there is a significant
difference in performance between the variations of BFAIRMC.

In relation to the initial problem statement, the conclusion can be drawn
that Continuous Observations Monte Carlo Tree Search is a possible extension
of Partially Observable Monte Carlo Planning to POMDPs with continuous
observations. The discretization component of this new algorithm allows to
automatically discretize the observation space. Although the experiments con-

56



ducted for this thesis point out a clear improvement of the algorithm over a
uniform random method and a slight improvement over uniform Monte Carlo
rollouts, there is not enough evidence yet to decide whether this algorithm is
effective in practice.

6.3 Recommendations for Future Work

The most important direction for future work is a more systematic evaluation
of the algorithms. This evaluation should include two components.

The first component is a new set of benchmark problems that is larger than
the current set and that might clarify how the novel algorithms presented in
this thesis perform in comparison to existing methods. On the current set of
problems, uniform Monte Carlo rollouts reach a high performance that is hard
to beat, but for more difficult problems, Monte Carlo rollouts might work worse
than the new algorithms. In addition, the current set contained problems with
a relatively small state space. Therefore, problems with larger state spaces
could be examined. BFAIRMC could also be studied on POMDPs with discrete
observations because the algorithm is not restricted to continuous observation
spaces.

The second component is a larger set of algorithms that is based on exist-
ing methods. For Continuous Observations Monte Carlo Tree Search, this set
includes Partially Observable Monte Carlo Planning [40] with an a priori dis-
cretization of the observation space. This would allow for a comparison between
the automatic discretization by COMCTS and a priori discretization. For the
belief based function approximation algorithm, this set includes other forms of
Q-Learning such as Q-Learning with an update rule that is based on the entire
sequence of rewards sampled during the policy evaluation step and comes there-
fore closer to the update rule used in BFAIRMC. A further extension would be
to weight each update, e.g., as in Q(λ) [43]. Hypothetically, this would improve
and move the performance of BFAIRQ closer to the performance of BFAIRMC.

Considering that the two algorithms use different kinds of tests to find sub-
divisions of a continuous space, it should be probed whether these tests can
be exchanged against each other. Furthermore, this experimental investigation
could be supported by a theoretical analysis that clarifies in which kind of set-
tings which kind of test is optimal.

6.4 Other Future Work

Other future work could go in four possible directions. The first direction is
to combine Partially Observable Monte Carlo Planning [40] with Tree Learn-
ing Search [46] to develop an algorithm that handles POMDPs with discrete
observations and continuous actions. POMDPs with continuous action and
continuous observation spaces could be approached by a combination of Tree
Learning Search and Continuous Observations Monte Carlo Tree Search. The
second direction is to replace the discretization component of the two algorithms
developed in this thesis by another component, e.g., any kind of incremental de-
cision or regression tree learning algorithm [7, 13] or Hierarchical Optimistic
Optimization [5] which refines the discretization of a continuous space in each

57



iteration. The third direction is to employ this discretization component in
other algorithms for POMDPs. The fourth direction is to modify the belief
state estimation that is used in the function approximation algorithm proposed
in this study. A first modification could be Gaussians with the full covariance
matrix instead of the current diagonal matrix. Further modifications could in-
volve other approximations such as a particle filters.

58



Bibliography

[1] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine Learning, 47:235–256, May 2002.

[2] Richard Ernest Bellman. Dynamic Programming. Princeton University
Press, 1957.

[3] Dimitri P. Bertsekas and David A. Castanon. Rollout algorithms for
stochastic scheduling problems. Journal of Heuristics, 5(1):89–108, 1999.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., 2006.

[5] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. On-
line optimization in x-armed bandits. In Daphne Koller, Dale Schuurmans,
Yoshua Bengio, and Léon Bottou, editors, NIPS, pages 201–208. Curran
Associates, Inc., 2008.

[6] Anthony R. Cassandra. A survey of POMDPs applications. In AAAI Fall
Symposium: Planning with POMDPs, pages 17–24, 1998.

[7] David Chapman and Leslie Pack Kaelbling. Input generalization in de-
layed reinforcement learning: an algorithm and performance comparisons.
In Proceedings of the 12th international joint conference on Artificial in-
telligence - Volume 2, IJCAI’91, pages 726–731, San Francisco, CA, USA,
1991. Morgan Kaufmann Publishers Inc.

[8] Guillaume M. J-B. Chaslot, Mark H. M. Winands, H. Jaap Van Den Herik,
Jos W. H. M. Uiterwijk, and Bruno Bouzy. Progressive strategies for monte-
carlo tree search. New Mathematics and Natural Computation (NMNC),
4(03):343–357, 2008.

[9] Guillaume Maurice Jean-Bernard Chaslot, Jahn-Takeshi Saito, Bruno
Bouzy, Jos W.H.M. Uiterwijk, and H. Jaap van den Herik. Monte-carlo
strategies for computer go. In P-Y. Schobbens, W. Vanhoof, and G. Schwa-
nen, editors, Proceedings of the 18th BeNeLux Conference on Artificial In-
telligence, pages 83–91. Namur, 2006.

[10] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo
tree search. In H. Jaap van den Herik, Paolo Ciancarini, and H.H.L.M.
Donkers, editors, Computers and Games, volume 4630 of Lecture Notes in
Computer Science, pages 72–83. Springer, 2006.

59



[11] Guy Van den Broeck, Kurt Driessens, and Jan Ramon. Monte-carlo tree
search in poker using expected reward distributions. In Zhi-Hua Zhou and
Takashi Washio, editors, ACML, volume 5828 of Lecture Notes in Computer
Science, pages 367–381. Springer, 2009.

[12] Jay L. Devore. Probability and Statistics for Engineering and the Sciences
(7th Ed.). Thomson Brooks/Cole, 2007.

[13] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In
Proceedings of the sixth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD ’00, pages 71–80, New York, NY,
USA, 2000. ACM.

[14] Kurt Driessens, Jan Ramon, and Hendrik Blockeel. Speeding up relational
reinforcement learning through the use of an incremental first order decision
tree learner. In Luc De Raedt and Peter A. Flach, editors, ECML, volume
2167 of Lecture Notes in Computer Science, pages 97–108. Springer, 2001.

[15] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. IEEE Proceedings F,
Radar and Signal Processing, 140(2):107–113, 1993.

[16] Jesse Hoey and Pascal Poupart. Solving POMDPs with continuous or
large discrete observation spaces. In Leslie Pack Kaelbling and Alessandro
Saffiotti, editors, IJCAI, pages 1332–1338. Professional Book Center, 2005.

[17] Elena Ikonomovska and Joao Gama. Learning model trees from data
streams. In Jean-François Boulicaut, Michael R. Berthold, and Tamás
Horváth, editors, Discovery Science, volume 5255 of Lecture Notes in Com-
puter Science, pages 52–63. Springer, 2008.

[18] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artificial
Intelligence, 101(1-2):99–134, May 1998.

[19] Rudolph Emil Kalman. A new approach to linear filtering and predic-
tion problems. Transactions of the ASME–Journal of Basic Engineering,
82(Series D):35–45, 1960.

[20] Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate
planning in large POMDPs via reusable trajectories. In Sara A. Solla,
Todd K. Leen, and Klaus-Robert Müller, editors, NIPS, pages 1001–1007.
The MIT Press, 1999.

[21] Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling
algorithm for near-optimal planning in large Markov decision processes.
Machine Learning, 49(2-3):193–208, 2002.

[22] Lukas Kirchhart. Reusing knowledge in tree learning search. Master’s
thesis, Department of Knowledge Engineering, Maastricht University, 2012.

[23] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.
In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors,
ECML, volume 4212 of Lecture Notes in Computer Science, pages 282–293.
Springer, 2006.

60



[24] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Fast algo-
rithms for finding randomized strategies in game trees. In Proceedings of
the twenty-sixth annual ACM symposium on Theory of computing, STOC
’94, pages 750–759. ACM, 1994.

[25] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability
of probabilistic planning and infinite-horizon partially observable Markov
decision problems. In Jim Hendler and Devika Subramanian, editors,
AAAI/IAAI, pages 541–548. AAAI Press / The MIT Press, 1999.

[26] Andrei A. Markov. Theory of Algorithms. Academy of Sciences, USSR,
1954.

[27] Andrew Kachites Mccallum. Reinforcement learning with selective percep-
tion and hidden state. PhD thesis, 1996.

[28] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., 1997.

[29] Christos Papadimitriou and John N. Tsitsiklis. The complexity of Markov
decision processes. Math. Oper. Res., 12(3):441–450, 1987.

[30] Sébastien Paquet, Ludovic Tobin, and Brahim Chaib-draa. An online
pomdp algorithm for complex multiagent environments. In Proceedings of
the fourth international joint conference on Autonomous agents and mul-
tiagent systems, AAMAS ’05, pages 970–977, New York, NY, USA, 2005.
ACM.

[31] Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. Point-based value
iteration: An anytime algorithm for pomdps. In International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 1025 – 1032, 2003.

[32] Robert Platt, Russell Tedrake, Leslie Kaelbling, and Tomas Lozano-Perez.
Belief space planning assuming maximum likelihood observations. In
Robotics Science and Systems Conference (RSS), 2010.

[33] Josep M. Porta, Nikos A. Vlassis, Matthijs T. J. Spaan, and Pascal Poupart.
Point-based value iteration for continuous POMDPs. Journal of Machine
Learning Research, 7:2329–2367, 2006.

[34] Larry D. Pyeatt and Adele E. Howe. Decision tree function approximation
in reinforcement learning. Technical report, In Proceedings of the Third In-
ternational Symposium on Adaptive Systems: Evolutionary Computation
and Probabilistic Graphical Models, 1998.

[35] Stéphane Ross and Brahim Chaib-Draa. Aems: an anytime online search
algorithm for approximate policy refinement in large pomdps. In Pro-
ceedings of the 20th international joint conference on Artifical intelligence,
IJCAI’07, pages 2592–2598. Morgan Kaufmann Publishers Inc., 2007.

[36] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-draa.
Online planning algorithms for POMDPs. Journal of Artificial Intelligence
Research, 32:663–704, 2008.

61



[37] N. Roy, J. Pineau, and S. Thrun. Spoken dialogue management using
probabilistic reasoning. In Proceedings of the 38th Annual Meeting of the
Association for Computational Linguistics (ACL-2000), Hong Kong, 2000.

[38] J. K. Satia and R. E. Lave. Markovian decision processes with probabilistic
observation of states. Management Science, 20(1):1–13, 1973.

[39] Colin Schepers. Automatic decomposition of continuous action and state
spaces in simulation-based planning. Master’s thesis, Department of Knowl-
edge Engineering, Maastricht University, 2012.

[40] David Silver and Joel Veness. Monte-carlo planning in large POMDPs.
In John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor,
Richard S. Zemel, and Aron Culotta, editors, NIPS, pages 2164–2172. Cur-
ran Associates, Inc., 2010.

[41] Richard D. Smallwood and Edward J. Sondik. The optimal control of
partially observable Markov processes over a finite horizon. Operations
Research, 21(5):1071–1088, 1973.

[42] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Randomized point-based
value iteration for POMDPs. Journal of Artificial Intelligence Research,
24:195–220, 2005.

[43] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[44] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.

[45] William T. B. Uther and Manuela M. Veloso. Tree based discretization
for continuous state space reinforcement learning. In Proceedings of the fif-
teenth national/tenth conference on Artificial intelligence/Innovative appli-
cations of artificial intelligence, AAAI ’98/IAAI ’98, pages 769–774, Menlo
Park, CA, USA, 1998. American Association for Artificial Intelligence.

[46] Guy Van den Broeck and Kurt Driessens. Automatic discretization of ac-
tions and states in Monte-Carlo tree search. In Tom Croonenborghs, Kurt
Driessens, and Olana Missura, editors, Proceedings of the ECML/PKDD
2011 Workshop on Machine Learning and Data Mining in and around
Games, pages 1–12, 2011.

[47] Xin Wang and Thomas G. Dietterich. Efficient value function approxima-
tion using regression trees. In In Proceedings of the IJCAI Workshop on
Statistical Machine Learning for Large-Scale Optimization, 1999.

[48] Christopher John Cornish Hellaby Watkins. Learning from Delayed Re-
wards. PhD thesis, King’s College, Cambridge, UK, 1989.

62



Appendix A

Belief State Approximation

The belief state can be approximated by model estimation techniques such as
Kalman filters or particle filters that break these two barriers. These techniques
are introduced in the following sections.

A.1 Kalman Filters

The Kalman filter [19] is a recursive state estimator that belongs to the class
of Gaussian filters. It is one of the most used and historically earliest imple-
mented filters for continuous spaces. Gaussian filters represent the belief state
as a multivariate normal distribution with two sets of parameters defined as
follows [44].

Pr(s) = |(2πΣ)|−0.5e−0.5(s−µ)T Σ−1(s−µ) (A.1)

where s is a vector that represents the state, µ is the mean, and Σ is the covari-
ance, represented by a quadratic, symmetric and positive-semidefinite matrix.

The following three conditions are sufficient to ensure that the belief b(st) is
always a Gaussian.

1. The state transitions are linear with additive Gaussian noise.

st+1 = Atst +Btat + ǫt (A.2)

Here, st is a state vector and at is the vector that expresses the action.
The matrices At and Bt ensure that the state transition model becomes
linear. ǫt is a vector that denotes the randomness or noise in the state
transition and is distributed according to a normal distribution with zero
mean and covariance matrix Rt.

2. The observations are also linear with additive Gaussian noise.

ot = Ctst + δt (A.3)

Here, the matrix Ct is again responsible for linearity, and δt denotes the
randomness in the observations. The noise δt is distributed according to
a normal distribution with zero mean and covariance matrix Qt.

63



3. The initial belief b(s0) is normally distributed.

b(s0) = Pr(s0) = |(2πΣ0)|−0.5e−0.5(s0−µ0)T Σ−1

0
(s0−µ0) (A.4)

The algorithm of the Kalman filter is given in Algorithm 1. The next mean
µt+1 and the next covariance matrix Σt+1 are recursively constructed from the
current mean µt and the current covariance matrix Σt. This construction is
similar to the exact belief state update given in Equation 2.6. The algorithm
takes the current mean µt, the current covariance matrix Σt, the current action
at and the current observation ot as input, and outputs the next mean µt+1

and the next covariance matrix Σt+1. It starts by computing a temporary mean
µ̄t+1 based on the state transition model and the action at, and a temporary
covariance matrix Σ̄t+1 based on the state transition model and the covariance
of the noise in the state transitions, Rt. From the temporary covariance matrix
Σ̄t+1 and the observation model, the algorithm computes the matrix Kt+1, also
known as the Kalman gain. The Kalman gain determines the importance of the
observation for the estimation of the state. The algorithm continues by adjusting
the temporary mean µ̄t+1 according to the Kalman gain and according to the
difference between the actual observation ot and the prediction given by the
observation probability. Finally, the covariance matrix is adjusted according to
the information that is gained from the observation.

Algorithm 1 The Kalman filter algorithm.

Require: current mean µt, covariance matrix Σt, action at, observation ot

function kalman filter(µt,Σt, at, ot)
µ̄t+1 ← Atµt +Btat

Σ̄t+1 ← AtΣt(At)T +Rt

Kt+1 ← Σ̄t+1(Ct)T (CtΣ̄t+1(Ct)T +Qt)−1

µt+1 ← µ̄t+1 +Kt+1(ot − Ctµ̄t+1)
Σt+1 ← (I −Kt+1Ct)Σ̄t+1

return µt+1,Σt+1

end function

Whether modeling the belief state as a Gaussian distribution is reasonable
depends on the characteristics of the underlying problem. Because Gaussians
have a single maximum, i.e., they are uni-modal, they are ideal for problems
where the belief state is centered around the true state with a small amount
of uncertainty. However, Gaussians are not a good representation for problems
where the belief state is more complex.

A.2 Particle Filters

As an alternative to Gaussian filters, particle filters [15] belong to the class of
nonparameteric filters. Instead of basing the belief state on a fixed distribution
type, the particle filter provides an approximation of the belief state by a finite
number of values. Each of these values is associated with a region in the state
space. The belief state is represented by a set of random state samples, called
particles, which are drawn from the probability distribution that underlies the
belief state. The distribution can be multi-modal, i.e., have multiple maxima,

64



and it can also be non-Gaussian. Although such a representation is not exact,
it can be used for a large variety of distributions because it is non-parametric.

Algorithm 2 The particle filter algorithm.

Require: current set of particles Xt, action at, observation ot

function particle filter(Xt, at, ot)
X̄t+1 ← Xt+1 ← ∅
for n = 1→ N do

sample xt+1
[m] ∼ Pr(xt+1|at, xt

[m])

wt+1
[m] ← Pr(ot|xt+1

[m] )

X̄t+1 ← X̄t+1 + 〈xt+1
[m] , w

t+1
[m] 〉

end for
for n = 1→ N do

draw i with probability ∝ wt
[i]

add xt
[i] to Xt+1

end for
return Xt+1

end function

The algorithm of the particle filter is given in Algorithm 2 [44]. The next set
of particles Xt+1 is recursively constructed from the current set of particles Xt.
This recursive construction is analogous to the belief state update represented
in Equation 2.6 where the next belief state is also recursively computed from
the current belief state. The algorithm takes the current set of particles Xt,
the current action at and the current observation ot as input, and outputs the
next set of particles Xt+1. It starts by constructing a temporary set of particles
X̄t+1 which is an approximation of the belief b. New particles are sampled from
the next state distribution Pr(xt+1|at, xt) and for each of them the so-called
importance factor or weight wt+1

[m] is calculated. The importance factor is defined

as the probability of the observation ot given the particle xt+1
[m] . The particles

and their importance weights are added to the temporary particle set X̄t+1.
The algorithm continues with a technique called importance resampling that
draws with replacement N particles from the temporary set X̄t+1 according
to their importance factor, and adds them to the output set Xt+1. Before
the resampling step, the particles are distributed according to b(xt) but after
resampling, they are distributed approximately according to the distribution of
the next belief state, comparable to Equation 2.6, b(xt+1) = αPr(ot|xt+1

[m] )b(x
t).

There are two reasons why importance resampling is applied. The first reason
is that only samples from the set X̄t+1 are available while the set of interest is
Xt+1. The second reason is that the distribution of the new samples needs to
be biased according to the weights of the samples to ensure that samples with
a high weight appear more frequently in Xt+1.

65


