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Abstract
This article investigates the mapping of Colored
Trails onto existing games. Two metastrategies
are introduced to analyze the game. Based on
those metastrategies, a two-player normal form
game is derived. Depending on parameter settings,
this game can be mapped onto two well-studied
games from the field of game theory, i.e. Prisoner’s
Dilemma and Stag Hunt. By introducing a third
metastrategy, a three-strategy version evolves. It
turns out that for an arbitrary number of metas-
trategies, Colored Trails falls apart into a predeter-
mined number of different games which are similar
to Prisoner’s Dilemma and Stag Hunt. Experiments
to train learning automata to play the two- and the
three-strategy games are performed. Moreover, the
impact of inequity aversion on those games is ex-
amined. Learning automata without inequity aver-
sion converge to Nash equilibria in those games,
while automata with inequity aversion rapidly con-
verge to the strategy with the highest joint payoff,
i.e. the Pareto-optimal outcome.

1 Introduction
Research in the field of multi-agent systems is recently fol-
lowing a trend which departs from purely rational and self-
interested agents [6]. Traditionally, agents were designed
based on the principles of classical game theory. However,
those principles do not correspond perfectly to the behavior
of humans, as research in the field of Behavioral and Wel-
fare Economics has shown (see e.g. Fehr and Schmidt [4] or
Chevaleyre et al. [2]).

The games under study become more and more complex.
One game that is currently receiving a lot of attention from
researchers is Colored Trails (CT), a testbed for multi-agent
systems in which agents exchange chips with each other to
achieve predefined goals. Previous studies of CT mainly in-
volved the design of agent architectures and the investiga-
tion of human behaviour (see e.g. Glaim [7] or Hennes [8]).

Therefore, in this study, we follow a more general approach
to analyze the game by means of classical game theory.

For many games, the behavior of humans has been stud-
ied and captured into descriptive models (see e.g. Fehr and
Schmidt [4]). One such model that represents the preference
of humans to be fair and to minimize inequitable outcomes,
is inequity aversion. We also apply this concept to Colored
Trails.

1.1 Research questions
Due to the complexity of the Colored Trails game, concrete
strategies that allow optimal play are hard to find directly. To
better analyze the game, metastrategies could become a sig-
nificant tool. In this study, we therefore focus on the follow-
ing problem statement:

How can meaningful metastrategies for Colored Trails be
established?

This statement leads to the following research questions:

1. Which abstractions or generalizations need to be made?

2. Onto which games can Colored Trails be mapped?

For many existing games, inequity aversion is an interest-
ing concept [3]. We also investigate this concept in Colored
Trails, leading to the following research question:

3. What is the role of inequity aversion in Colored Trails?

1.2 Structure
This article is structured as follows. Section 2 gives the re-
quired background in game theory and introduces the Colored
Trails game. Section 3 discusses learning automata which al-
low us to study learning dynamics in the investigated games.
Inequity aversion is presented in Section 4. Then, we give
our main contributions. In Section 5, we derive metastrate-
gies for Colored Trails. Section 6 reports the experiments
and discusses their results. Conclusions are given in Section
7.
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2 Background
Game Theory studies the interaction of agents in strategic sit-
uations where the success of the action of one agent depends
on the actions of all other agents. While game theory has
been extensively applied in economics, biology and the po-
litical and social sciences, it also contributes to multi-agent
systems.

In game theory, strategic situations are modeled in the
form of games. The following three components compose
a game: players, actions and payoffs. By choosing actions,
players make decisions, and for each combination of their ac-
tions, there is a payoff for each of them.

In the following subsections, the concept of games in nor-
mal form, the solution concepts used in game theory and two
examples of games in normal form, which are relevant for this
study, are presented, i.e. Prisoner’s Dilemma and Stag Hunt.
For more details on Game Theory, we refer to Leyton-Brown
and Shoham [10].

2.1 Games in Normal Form
The most familiar representation of strategic interactions in
game theory is the normal form game, also known as the
strategic form game. The following definition is from Leyton-
Brown and Shoham [10].

Definition 1. A finite, n-person normal form game is a tuple
(N,A,U ) where:

1. N = 1, . . . , n is a finite set of players, indexed by i,

2. A = A1 × · · · × An, where Ai is the set of actions
available to player i, and

3. U = u1, . . . , un, where ui : A → < is a real-valued
payoff function for player i.

In normal form games, players interact simultaneously.
Each player i selects an action ai from its action setAi. Then,
the payoff for each player is given by the joint action a =
a1, . . . , an ∈ A.

To specify which action a player takes in each situation,
a strategy πi is used. The strategy πi is called a pure strat-
egy if each situation is mapped to a single action, while it is
called a mixed strategy if the actions are chosen according to
a probability distribution. To specify a strategy πi, a single
probability distribution can be used. Then, πij is the proba-
bility of player i to take action aj from its action set Aj , and∑n

j πij = 1. The assignment of a strategy to each player is
the strategy profile π = {π1, . . . , πn}.

A normal form game with two players can be represented
as a matrix in which each row corresponds to a possible action
for player 1 and each column corresponds to a possible action
for player 2. The cells of the matrix give the payoffs for the
two players. First listed is player 1’s payoff, followed by the
payoff for player 2.

2.2 Solution Concepts
The main question in strategic interactions is: “What should
I do?”. To answer this question, game theory provides us
with a number of solution concepts which evaluate the strat-
egy profile π. Relevant for this study are the concepts of best
response, dominant strategies, Nash equilibrium and Pareto
optimality. The following definitions are from Wooldridge
[13].

Definition 2. A strategy πi is player i’s best response to a
strategy πj by player j if it gives the highest payoff when
played against πj .

Definition 3. A strategy πi is dominant for player i if it is the
best response to all of player j’s strategies.

This definition means that, no matter what strategy πj

player j chooses, player i will profit at least as much from
playing πi than it would do from anything else.

Definition 4. Players are in Nash Equilibrium if, given that
the other players remain at their strategies, no player can do
better by changing its strategy.

In other words, player i and player j which play strategies
πi and πj , respectively, are in Nash equilibrium if, under the
assumption that player j plays πj , player i can make no better
choice than play πi, and, under the assumption that player i
plays πi, player j can make no better choice than play πj .

Definition 5. A strategy πi is Pareto optimal if no player can
improve his payoff by changing its strategy without making
another player worse off.

2.3 Prisoner’s Dilemma
The Prisoner’s Dilemma (PD) has been popularized by Ax-
elrod in 1984 [1]. Its story is as follows: Two suspects are
arrested for a crime. They are taken to separate interrogation
rooms, and each suspect can either confess to the crime (co-
operate) or deny it (defect). If they both confess, they go to
prison for a year. If one suspect denies, i.e. he supplies some
evidence that incriminates himself, then that suspect is freed,
and the other one is imprisoned for nine years. If both deny,
then they are imprisoned for six years. The payoff matrix for
the original PD is given in Table 1.

confess deny
confess -1,-1 -9,0

deny 0,-9 -6,-6

Table 1: Payoff matrix for the Prisoner’s Dilemma.

In this game, the dominant strategy for both players is to
deny. The reason for this is that each player always gets a
higher expected payoff if it plays deny, no matter what the
opponent does. Therefore, the only Nash equilibrium here
is (deny, deny), while (cooperate, cooperate) remains as the
Pareto optimal solution.

(v. August 23, 2010, p.2)
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The generalized form of the PD, in which positive payoffs
are used, is given in Table 2.

cooperate defect
cooperate R,R S,T

defect T,S P,P

Table 2: Canoncial form of the payoff matrix for the Pris-
oner’s Dilemma (T > R > P > S).

The constants used in the table have the following mean-
ings: T for Temptation to defect, S for Sucker’s payoff, P
for Punishment for mutual defection and R for Reward for
mutual cooperation.

To define a game as PD, the following inequalities must
hold [9]:

T > R > P > S. (1)

This condition ensures that the only Nash equilibrium in
the PD is for both players to defect and that it is Pareto opti-
mal to cooperate for both players.

2.4 Stag Hunt
The Stag Hunt (SH) is a game that is based on a story by
the French philosopher, Jean Jacques Rousseau, that tells the
following situation [12]: at the same time, two hunters go out
to acquire food; they can hunt either for a stag (cooperate)
or for rabbits (defect). Hunting stags is difficult and requires
that both hunters cooperate, but a stag provides a lot of meat.
A rabbit will provide less meat, but each hunter can catch
one easily. If one of them hunts a stag alone, the chance of
capturing one is minimal.

The game that accompanies this story is given in Table 3.1

stag rabbit
stag 10,10 0,8

rabbit 8,0 4,4

Table 3: The payoff matrix for the Stag Hunt.

In this game, there are two Nash equilibria, one at (stag,
stag) and the other one at (rabbit, rabbit). The former is
Pareto optimal, but the latter is less risky.

The general form of the SH is given in Table 4.2 Here, the
following inequalities must hold:

1One could argue that hunting rabbits together should give the same pay-
off to a player as hunting rabbits on its own. However, in this case, it is
assumed that, e.g., there are two rabbits and thus one hunter can easily cap-
ture both of them, if the other hunter is not trying to get any; thus resulting in
a higher payoff. Otherwise, the two hunters need to divide the rabbits among
each other.

2We restrict ourselves to a symmetrical version of the game, similar to
the PD.

R > T ≥ P > S. (2)

This conditions ensures that there are two Nash equilibria
in the game and that one of them is Pareto optimal, while for
the other, there is less risk involved for both players.

stag rabbit
stag R,R S,T

rabbit T,S P,P

Table 4: Canonical form of the payoff matrix for the Stag
Hunt (R > T ≥ P > S).

2.5 Colored Trails
Colored Trails (CT) is a framework to study cooperation in
multi-agent systems, developed at Harvard University, School
of Engineering and Applied Sciences [5]. CT is a board game
played on a board of m× n squares each colored in one of k
colors. One or more squares on the board can be assigned to
be goal states. Each player has a set of colored chips and a
piece located on the game board. A player can use a colored
chip to move his piece to an adjacent square (left, right, up
and down) of the same color as the chip. A goal state is given
to each player and multiple players may share the same goal.
The game is played in cycles of two consecutive phases: com-
munication and movement. During the first phase, the players
are allowed to interchange chips with each other, while dur-
ing the second phase, they can move their pieces on the board.
Players can do multiple moves in the second phase.

Figure 1: A possible board configuration in Colored Trails.

Game Configuration In this study, a three-player negoti-
ation variant of CT is used [8]. The set of players contains
two proposers and one responder. Proposers can propose a
chip exchange to the responder. The responder can accept ei-
ther one proposal or none at all. All players know the board
state. The responder can see all chip sets, while proposers
only have knowledge about their own chip set and the one
of the responder. This variation of CT is played as a one-
shot game. Proposers can only offer a single proposal and
the responder can only accept or reject. Once the responder
reacted, the chips are interchanged according to the winning

(v. August 23, 2010, p.3)
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proposal or stay fixed if the responder rejected both offers.
Then, the best possible sequence of moves is automatically
computed and each player receives a personal score. Here,
the following scoring function is used:

s = 100g + 10c− 25d (3)

where g ∈ {0, 1} represents whether the player reached the
goal (g = 1) or did not reach it (g = 0), c is the number of
chips the player has left and d is the distance to the goal.

3 Learning automata
Stochastic learning automata (SLA) are a class of automata.
An automaton is a computational model of a complex sys-
tem, e.g. an agent playing a game. The term stochastic refers
to the ability of the automaton to adapt to changes in its en-
vironment. This ability is the result of the learning process
performed by the automaton where learning is defined as any
particular change in the behavior of the automaton based on
experience.

SLA learn what to do without any available information
on the optimal action. The automaton randomly selects one
action and updates its action probabilities depending on the
response it obtained from the environment, e.g. according to
the payoff matrix of a game. This process is repeated until
a certain goal is achieved or a certain number of iterations is
reached.

A particular class of SLA are finite-action set learning au-
tomata (FALA). FALA are assumed to be in a stateless envi-
ronment in which the utility of the current action is indepen-
dent of previous actions performed by the automaton or other
agents.

Definition 6. A finite-action set learning automaton is a tuple
(α, β, π) where:

• α = {1, . . . , N} is a finite set of actions the automaton
can choose from,

• β ∈ (0, 1) is a set of environment responses and

• π = π1, . . . , πn is a set of probabilities over α, i.e. πi is
the probability to choose action ai.

To update the action probabilities π, several learning
schemes can be used. Linear schemes update probability πi

at iteration (t + 1) based on the response βi(t) obtained by
performing action ai at the current iteration t. The follow-
ing linear scheme, called reward-inaction scheme, has been
shown to converge to equilibria in games [11]:

πi(t+ 1) =

{
πi(t) + λβi(t)(1− πi(t)) if i = j,
πi(t)− λβi(t)πi(t) otherwise.

(4)

Here, λ ∈ (0, 1) is the learning rate or step-size associated
to reward response from the environment. Equation 4 gives

a probability distribution if β(t) is continuous and β(t) ∈
[0, 1].

FALA can be situated in a game to represent players
learning to play optimal strategies. At iteration t, a collec-
tion of n agents select their actions a1, . . . , an according to
the strategy profile π. The environment’s response βi(t) for
agent i, or automaton i, is the same as the reward or the util-
ity ui obtained by performing the joint action a1, . . . , an ∈ A
for player i.

Since Equation 4 requires u(t) ∈ [0, 1], the payoffs of the
game need to be normalized.

4 Inequity Aversion
To explain human behavior in games, the fields of Behavioral
and Welfare Economics provide us with a number of different
models of fairness. One of those models is inequity aversion
(IA), developed by Fehr and Schmidt [4].

IA assumes that there are not only players that are purely
rational and selfish, but also players who are unhappy with in-
equitable rewards. Here, a reward is regarded as inequitable
by a player if there are other players that are better off or other
players that are worse off. The utility function that accompa-
nies IA is denoted by

ui = xi −
αi

n− 1

∑
j 6=i

max[xj − xi, 0]

− βi

n− 1

∑
j 6=i

max[xi − xj , 0], (5)

where xi is the reward for the current player i, xj is the
reward for player j, and α and β are parameters weighting
different forms of inequity. It is assumed that βi ≤ αi and
0 ≤ βi < 1. The second and third term in the above equation
weigh the utility other players loose against the utility they
gain. For the two-player case, Equation 5 simplifies to

ui = xi − αmax[xj − xi, 0]− βmax[xi − xj , 0]. (6)

5 Metastrategies in Colored Trails
The CT game, and its three-player negotiation variant, is re-
ceiving increasing interest. Here, we analyze whether the
game has certain concepts in common with existing and well-
studied games.

A large space of possible initial game situations arises
from the combination of different board configurations and
chip sets assigned to the players. Therefore, in this study, we
introduce metastrategies to provide a better analysis of the CT
game based on the following sensible abstractions.

1. Proposers and responders do not hurt themselves, i.e.
they are not taking actions that could decrease their
scores in the game.

(v. August 23, 2010, p.4)
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2. The responder plays a static strategy. If there is any
best proposal, he always accepts it. If both proposals
are equally good, he randomly accepts one of them. The
responder regards all proposals as acceptable which are
not reducing his own score (see Abstraction 1). Other
proposals are always rejected. This abstraction ensures
that the proposer needs to offer a deal which helps the
responder since other proposals are simply rejected by
the responder.

Given this static strategy, the game reduces to a two-
player competition between the proposers. For proposers, we
identify the following two extreme strategies: focus on its
own gain (H) or focus on the responder’s gain (L). The first
strategy increases the proposer’s chance of getting the highest
score in the game, but the other proposer can prevent this by
offering L, a deal that the responder prefers. The second strat-
egy increases the proposer’s chance of having the deal that is
accepted by the responder, but the expected gain for the pro-
poser is low. These strategies lead us to the next abstraction:

3. In a two-strategy game, we only consider the extreme
strategies H and L.

Intermediate strategies will be studied later in this section.

5.1 Two Metastrategies
We are left with a set of two metastrategies a proposer can
choose from: it can either not help the responder and thereby
get a high increase to its own score (H), or it can help the
responder and thereby only get a low increase to its own score
(L).

In this way, the reduced game fits to the form of a two-
player normal form game with two actions (which are equiv-
alent to the metastrategies) and can be represented by the ma-
trix in Table 5.

H L
H 1

2A,
1
2A 0, B

L B, 0 1
2B,

1
2B

Table 5: Payoff matrix for the reduced two-player Colored
Trails game.

Given no exchange of chips, the proposers achieve a cer-
tain score that is based on the initial board configuration and
the initial chip sets. The game in Table 5 models the gain of
a chip exchange with the responder. Here, A is the gain for
the better deal for the proposer, i.e. not helping the respon-
der, and B is the gain for the worse deal for the proposer, i.e.
helping the responder. The cells of the matrix represent the
following game situations:

1. (H,H): Both players propose deals which would not help
the responder but raise their own reward, thereby trying
to achieve score A. To the responder, it does not matter

which deal to choose, thus it accepts each of them with
equal probability. Therefore, the expected gain for each
proposer is 1

2A.

2. (H,L) and (L,H): One player proposes a deal that makes
the responder better off, while the other proposer’s deal
makes itself better off. The deal that makes the respon-
der better off is accepted. The proposer who offered this
deal gainsB, while the other proposer does not gain any-
thing.

3. (L,L): Both players propose deals which would help the
responder, thereby trying to achieve score B. Since both
proposals are equally good for the responder, it again
accepts each of them with equal probability. Therefore,
the expected reward for each proposer is 1

2B.

By changing the constants in Table 5, two kinds of typical
normal form games can originate.3 If A > 2B, the game
can be classified as Stag Hunt. If A < 2B, the game can be
classified as Prisoner’s Dilemma. Examples of the two games
which fit those requirements are given in Tables 6 and 7.

H L
H 3, 3 0, 2
L 2, 0 1, 1

Table 6: Example payoff matrix for the Stag Hunt version of
the two-player Colored Trails game, with A = 6 and B = 2.

H L
H 3, 3 0, 4
L 4, 0 2, 2

Table 7: Example payoff matrix for the Prisoner’s Dilemma
version of the two-player Colored Trails game, with A = 6
and B = 4.

5.2 Three Metastrategies
Looking back at the CT Game, the two metastrategies of help-
ing the responder or not helping it, might not cover all op-
tions the proposers have because they are the most extreme
options. Therefore, we introduce a third, intermediate metas-
trategy, M , which refers to a deal that is higher than the low
deal, L, but lower than the high deal, H . The two-player,
three-strategy game that includes this new strategy is given in
Table 8 where strategy H gives payoff A, strategy M gives
payoff B and strategy L gives payoff C to the proposer. By
definition, A > B > C.

The cells of the matrix in Table 8 represent the following
game situations:

3The special case of A = 2B is not regarded in this study.

(v. August 23, 2010, p.5)
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H M L
H 1

2A,
1
2A 0, B 0,C

M B, 0 1
2B,

1
2B 0,C

L C, 0 C, 0 1
2C,

1
2C

Table 8: Payoff matrix for the reduced two-player, three-
strategy Colored Trails game.

• (H,H), (M,M) and (L,L): Both players propose equal
deals. To the responder, it does not matter which deal
to choose, thus both deals are accepted with equal prob-
ability. The expected gain for both proposers is 1

2 times
their wanted reward.

• (H,M), (H,L), (M,H), (M,L), (L,H), (L,M): Both players
propose different deals. The deal that makes the respon-
der better off is accepted. The proposer who offered that
deal gains its wanted reward, while the other proposer
does not gain anything.

Independent of the parameters in the matrix in Table 8,
there is always a Nash equilibrium at (L,L) because playing
L is the best response strategy for both players. Two other
game situations, i.e. (M,M) and (H,H), could become Nash
equilibria, depending on the parameters of the game. If A >
2B, then (H,H) becomes a Nash equilibrium. If B > 2C,
then (M,M) becomes a Nash equilibrium. Therefore, if A >
2B > 4C, all three strategies where both players choose the
same action become Nash equilibria.

This analysis provides us with the following four games
for which, for convenience, the same names as for the two-
player, two-strategy games are used:

1. A SH with three equilibria at (H,H), (M,M) and (L,L), if
A > 2B > 4C.

2. A combination of PD and SH with two equilibria at
(M,M) and (L,L), if A < 2B and B > 2C.

3. A SH with two equilibria at (H,H) and (L,L), if A > 2B
and B < 2C.

4. A PD with one equilibrium at (L,L), if A < 2B and
B < 2C.

s1 s2 . . . sn

s1
1
2r1,

1
2r1 0, r2 . . . 0, rn

s2 r2, 0 1
2r2,

1
2r2 . . . 0, rn

. . . . .

. . . . .

. . . . .
sn rn, 0 rn, 0 . . . 1

2rn,
1
2rn

Table 9: Payoff matrix for the reduced two-player, n-strategy
Colored Trails game.

5.3 Generalized Metastrategies
In general, given that each player has a set of n metastrate-
gies, CT falls apart into 2n different games. Each of those
games can then be identified as an extension of a SH, a PD or
a combination of both. The general structure of such a two-
player, n-strategy game is given in Table 9, where si is the
i-th strategy of each player and ri is the reward associated
with that strategy. Given strategies si and si+1, it is assumed
that, for the proposer, the reward for strategy si is higher than
the reward for strategy si+1, and for the responder, the reward
for strategy si is lower than the reward for strategy si+1. If
the proposers offer two different deals, the responder always
accepts the deal that makes itself better off and rejects the
other. This gives the wanted reward to the player whose pro-
posal is accepted and 0 to the other player. If both proposers
offer the same deal, the responder accepts each of them with
equal probability and thus the expected gain is 1

2 times the
wanted reward of the proposer.

The Nash equilibria in the two-player, n-strategy game
can be found on the diagonal of its payoff matrix. There are
no equilibria outside the diagonal and there is always an equi-
librium at (sn,sn). The number of potential Nash equilibria
that can be found in the game is n.

6 Experiments and Results
In this section, we first introduce the tools to analyze the dy-
namics of learning automata in games, then we specify the
parameters and initial conditions of the experiments and give
results. Finally, those results are discussed.

6.1 Methodology
To examine the learning dynamics of FALA in the reduced
CT games and to compare between learning with inequity
aversion and without, we present two visual methods to per-
form this analysis, i.e. policy trajectory plots and direction
field plots.

Policy Trajectory Plots The evolvement of strategies in a
two-player, two-strategy normal form game can be plotted
by means of a trajectory plot. Since the probabilities for
the actions of each player add up to one, the probabilities
for the second action of both players can be calculated as:
π12 = 1 − π11 and π22 = 1 − π21. Therefore the strategy
profile π = {π1, π2} can be reduced to the pair (π11, π21)
without losing information. During one single or multiple
runs, the trajectory of this pair is recorded and plotted in a
two-dimensional space. Grayscales are used to illustrate the
direction and speed of convergence. The higher the number
of iterations of the learning algorithm is at, the darker is the
color of the trajectory.

For the two-player, three-strategy game, the strategy pro-
file π = {π1, π2} cannot just be reduced to be plotted in a

(v. August 23, 2010, p.6)
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Figure 2: Trajectory plots of FALA in the Prisoner’s
Dilemma. The plots in the left column display trajectories
of automata without inequity aversion, while the plots in the
right column display those with inequity aversion.

two-dimensional space. However, the trajectory of each strat-
egy πi can be displayed in a single ternary plot by recording
the evolvement of the tuple (πi1, πi2, πi3). The vertices of the
triangle in this plot correspond to the pure strategies (1, 0, 0),
(0, 1, 0) and (0, 0, 1).

Direction Field Plots Another way to illustrate the evolve-
ment of strategies in a two-player, two-strategy normal form
game are direction field plots in which arrows indicate the
direction and velocity of movement of the strategies through
the probability space. The arrows start at regular grid points
over [0, 1]2. For grid points π11(t0), π21(t0) ∈ [0, 1]× [0, 1],
the velocity field is then given by

d(v, u)
dt

=
(π11(t0 + ∆t)− π11(t0), π21(t0 + ∆t)− π21(t0))

∆t
,

(7)
where ∆t is the number of iterations spent at each grid

point and v and u represent the strategies of the first player
and the second player, respectively. The arrows based on
Equation 7 point in the direction of d(v,u)

dt .

6.2 Experimental Setup
In the following experiments, for the two-strategy games, the
maximum number of iterations is set to Imax = 1000 and the
set of initial probabilities for the strategy profile π = {π1, π2}
contains all values in (0.1, 0.9) with a step size of 0.1. The
learning parameter of the automaton is set to λ = 0.01, and
the linear reward-inaction scheme is used for training.

For the three-strategy games, the maximum number of it-
erations is set to Imax = 5000 and the set of initial proba-
bilities for the strategy profile π = {π1, π2} contains only
a reasonable small collection of values in (0.1, 0.9) due to
visibility. The learning parameter of the automata is set to
λ = 0.01, and the linear reward-inaction scheme is again
used for training.

For IA, the parameters are set to α = 0.6 and β = 0.3,
respectively [4]. IA is applied in two ways: (1) to both pro-
posers, and (2) to one proposer and the responder. The first
approach is used to compare the learning dynamics of FALA
with and without IA in the two-strategy and three-strategy
games. The second approach is additionally examined in the
two-strategy game to contrast the impact of IA on the behav-
ior of the proposers.

6.3 Results
In this section, we provide the results obtained by learning
FALA with and without IA to play the two reduced versions
of the CT game, presented in Section 5.

Figure 2 shows the learning dynamics of FALA with and
without IA in the PD version of the two-player, two-strategy
game. Without IA, the automata evolve to the mutual defec-
tion strategy (L,L), while with IA, they evolve to the mutual
cooperation strategy (H,H). With regard to the time of con-
vergence, the trajectories displayed in Figure 2 highlight that
automata with IA converge very fast compared to those with-
out IA.

The learning dynamics of FALA with and without IA in
the SH version of the two-player, two-strategy game are dis-
played in Figure 3. Without IA, the automata evolve either
to the mutual defection strategy or to the mutual coopera-
tion strategy, depending on their initial probabilities. With
IA, they evolve to the mutual cooperation strategy. With re-
gard to the time of convergence, automata with IA again con-
verge very fast compared to those without IA, as can be seen
in Figure 3.

Figure 4 illustrates the dynamics of FALA without IA in
the four versions of the two-player, three-strategy game for
a small sample of the complete space of initial probabilities.
The automata always convergence to one of the equilibria in
their particular games.

Displayed in Figure 5 are the dynamics of FALA with
IA in the two-player, three-strategy game. In all four games,
the automata converge very fast to the mutual strategy (H,H)
which is the one with the highest payoffs on the diagonal of
the matrix.

Figure 6 illustrates the trajectories of the learning au-
tomata in the PD and the SH in the case of IA applied to one
proposer and the responder in the two-strategy game. For the
majority of initial conditions, the automata do not converge to
an equilibrium point, but to the strategy which increases the
payoff for the responder, i.e. L.
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Figure 3: Trajectory plots of FALA in the Stag Hunt. The
plots in the left column display trajectories of automata with-
out inequity aversion, while the plots in the right column dis-
play those with inequity aversion.

(a) Prisoner’s Dilemma. (b) Stag Hunt.

Figure 6: Trajectory plots of FALA with IA applied to one
proposer and the responder in the two-strategy games.

6.4 Discussion
The results obtained from the experiments done in this study
indicate convergence to higher payoffs and lower conver-
gence time for automata with IA than for those without IA.

The reason behind the two effects mentioned above is that
IA reduces the payoffs for game situations where one player
gets a payoff of 0. The remaining game situations where both
players get the same payoffs are not affected by IA; they stay
the same.

When IA is applied, the general two-player, two-strategy
game, given in Table 5 in Section 5, can be transformed to the
payoff matrix shown in Table 10.

Considering the PD, the highest payoff is B since it is
assumed that 1

2A < B. Therefore, this payoff is set toB = 1,
if the payoffs are normalized. This normalization allows us
to construct a general form of the PD that includes IA which

(a) Three Nash equilibria. (b) Equilibria at (M,M), (L,L).

(c) Equilibria at (H,H), (L,L). (d) Equilibrium at (L,L).

Figure 4: Trajectory plots of FALA without IA in the three-
strategy game.

H L
H 1

2A,
1
2A 0, B − βB

L B − βB, 0 1
2B,

1
2B

Table 10: Transformed payoff matrix for the reduced two-
player Colored Trails game with inequity aversion (A > 1).

is displayed in Table 11.

H L
H 1

2A,
1
2A 0, 1− β

L 1− β, 0 1
2 ,

1
2

Table 11: Transformed payoff matrix for the reduced two-
player Colored Trails game with inequity aversion.

Table 11 illustrates that the payoffs in game situations
where the players select different actions are only dependent
on the parameter β. Since A > B and thus 1

2A > 1
2B, the

game transforms from a PD to a SH for β ≥ 1
2 , with the

typical two equilibria at mutual cooperation and mutual de-
fection4.

Contrasting the impact of the two approaches of IA, i.e.
to both proposers or to one proposer and the responder, the
proposers emerge to the mutual cooperation strategy in the
former case and to the defection strategy in the latter case. In
terms of IA, this result emphasizes that a proposer can either
be fair to the other proposer or to the responder.

4This is a general result. In the experiments, only β = 0.3 is used.
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(a) Three Nash equilibria. (b) Equilibria at (M,M), (L,L).

(c) Equilibria at (H,H), (L,L). (d) Equilibrium at (L,L).

Figure 5: Trajectory plots of FALA with IA in the three-
strategy game. The indicated equilibria are those of the orig-
inal game; the equilibrium shifts to (H,H) for IA.

For the second approach of IA, i.e. to one proposer and
the responder, the payoffs given to the responder in the two-
strategy game are depicted in Table 12. It is assumed that the
value of the payoffs are the same as for the proposers, thus
the same constants are used.

H L
H 0 A
L A A

Table 12: Payoff matrix for the responder in the two-strategy
Colored Trails game.

The changed payoffs for the first proposer (the first
player) in the two-strategy game are given in Table 13.

H L
H 1

2A− β
1
2A 0

L B − α(A−B) 1
2B − α(A− 1

2B)

Table 13: Payoff matrix for the proposer in the two-strategy
Colored Trails game with inequity aversion for one proposer
and the responder.

Since the two-strategy game shown in Table 5 is symmet-
ric, the payoffs for the second proposer (the second player)
are the same at the mutual cooperation and the mutual defec-
tion strategies, and the opposite at the other two strategies.

This symmetry allows us to analyze the game with respect to
the α- and β-parameters. Again, if payoffs are normalized,
the reward B is set to B = 1. The changed payoffs for the
first proposer are given in Table 14.

H L
H 1

2A− β
1
2A 0

L 1− α(A− 1) 1
2 − α(A− 1

2 )

Table 14: Transformed payoff matrix for the proposer in the
two-strategy Colored Trails game with inequity aversion for
one proposer and the responder.

The payoff for (L,H) can be rewritten as 1− αA− α and
the payoff (L,L) can be rewritten as 1

2 − αA −
1
2α. Thus the

payoff for (H,L) turns out to be higher than the payoff for
(L,L). Since the game is symmetric, this inequity also holds
for the payoffs to the second proposer in the case of (H,L)
and (L,L). This is the reason why the learning automata do
not converge to the equilibrium point at (L,L) for all initial
conditions, and instead learn to play strategy L, when IA is
applied to one proposer and the responder.

7 Conclusions
In this section, we discuss the research questions given in
Section 1.1 and propose recommendations for further re-
search.

7.1 Discussion of research questions
With respect to the main problem statement, i.e. How can
meaningful metastrategies for Colored Trails be established?,
the research we performed in this study underlines that, based
on a number of sensible abstractions, we are able to derive a
variety of metastrategies to play the game in an optimal way.
From two extreme strategies for the proposer, i.e. to focus on
its own gain or to focus on the responder’s gain, an arbitrary
number of intermediate strategies can be derived. The use of
learning automata illustrates how agents could learn to opti-
mally play Colored Trails using those metastrategies.

Considering the first research question, i.e. Which ab-
stractions or generalizations need to be made?, we made ab-
stractions with respect to the rational behavior of the players
in the game, as described in Section 5. These abstractions
scale the space of possible actions down to a set of metas-
trategies which can be applied to play the game in a reason-
able way.

The second research question asked for the games onto
which CT could be modeled. The research we performed in
this study suggests that, using metastrategies, CT can indeed
be mapped onto existing games. This conclusion is illustrated
by the two-player games developed in Section 5. Starting
with a simple model of the game with only two metastrate-
gies and continuing with a more advanced model of a three-
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strategy game, we finally end up at a model for an arbitrary
number of metastrategies.

As shown in Section 5, for a two-player, two-strategy ver-
sion, the requirements of the SH or the PD can be satisfied
depending on the values of the parameters used in the game.
For a two-player, three-strategy version, four different three-
strategy extensions of the original SH and the original PD
evolve. In general, if CT is played with n metastrategies,
it turned out to be representable as a two-player, n-strategy
game with n potential Nash equilibria.

With respect to the third research question, i.e. What is
the role of inequity aversion in Colored Trails?, we conclude
that proposers can either be fair to each other or to the respon-
der. By mutually cooperating with each other, they increase
their own chance of winning the game. By defecting, they
increase the responder’s gain and decrease their own chance
of winning.

7.2 Recommendations for further research
Given the performance of learning automata in the reduced
versions of the CT game, research with learning automata in
the original version of CT based on the results of this study
should be performed.

Apart from CT, the effect of IA on the learning dynam-
ics of other automata or learning schemes in the PD and the
SH as well as in the three-player versions of those games, as
developed in this study, could be investigated.

Besides, the effects of applying IA to the complete set
of players, i.e. both proposers and the responder, could be
examined.
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