Open World Assistive Grasping Using Laser Selection

Abraham M. Shultz[†], James Kuczynski[†], Holly Yanco[†], Andreas ten Pas[‡], Marcus Gualtieri[‡], Robert Platt[‡]

[†]Department of Computer Science, University of Massachusetts Lowell [‡]College of Computer and Information Science, Northeastern University

Motivation

- Millions of people with motor disabilities
- Unable to complete activities of daily living (ADLs)
- Disadvantages of existing assistive systems:
 - 1. High cost
- 2. Difficult to control

Problem Statement

Develop a mobile manipulator that assists people in ADLs.

Laser Detection

- 1. Difference successive frames.
- 2. Look for large changes in intensity.
- 3. Look for areas of high brightness.
- 4. Filter by size and color.
- 5. Check detections over multiple frames.

Active Sensing

Grasp Detection

- Dense metric SLAM
- Plan trajectory with constraints:
 - View not occluded by obstacles
 - Minimum range of depth sensor
 - Minimize trajectory length

System Overview

User Interface

Experiments

Grasping in Isolation

Grasping In-Situ

- 15 trials with 6 objects per each
- Laser detection success rate: 88%
- Grasp success rate: 90%
- Failures:
 - Small kinematic modeling errors
- Incorrect grasp predictions

(a) Manual interface.

(b) Servo interface.

Suited for people with limited upper body functioning
Allow control via sip-and-puff or other interfaces for people with disabilites

Approach

- 1. Point the laser at the desired object.
- 2. View the object actively.
- 3. Detect grasps on the object.
- 4. Select a grasp heuristically.
- 5. Attempt the grasp.

Runtime

Average/min/max time to grasp: 128s, 44s, 374s

Forthcoming Research

- User studies with target patient populations
- Reduce the time required for a grasp
- Add other user interfaces

- ► 5 trials with 10 objects per each
- Laser detection success rate: 89%
- Grasp success rate: 72%
- ► Failures:
- Grasps on table, shelf
- Unseen obstacles

http://robotics.cs.uml.edu/

ashultz@cs.uml.edu, atp@ccs.neu.edu