
Finding Most Probable Worlds
of Probabilistic Logic Programs

Samir Khuller, Vanina Martinez, Dana Nau,
Gerardo Simari, Amy Sliva, V.S. Subrahmanian??

University of Maryland College Park, College Park, MD 20742, USA
{samir,mvm,nau,gisimari,asliva,vs}@cs.umd.edu

Abstract. Probabilistic logic programs have primarily studied the problem of en-
tailment of probabilistic atoms. However, there are some interesting applications
where we are interested in finding a possible world that is most probable. Our first
result shows that the problem of computing such ”maximally probable worlds”
(MPW) is intractable. We subsequently show that we can often greatly reduce the
size of the linear program used in past work (by Ng and Subrahmanian) and yet
solve the problem exactly. However, the intractability results still make computa-
tional efficiency quite impossible. We therefore also develop several heuristics to
solve the MPW problem and report extensive experimental results on the accu-
racy and efficiency of such heuristics.

1 Introduction

Probabilistic logic programs (PLPs) [1] have been proposed as a paradigm for prob-
abilistic logical reasoning with no independence assumptions. PLPs used a possible
worlds model based on prior work by [2], [3], and [4] to induce a set of probability
distributions on a space of possible worlds. Past work on PLPs [5, 1] focuses on the
entailment problem of checking if a PLP entails that the probability of a given formula
lies in a given probability interval.

However, we have recently been developing several applications for cultural adver-
sarial reasoning [6] where PLPs and their variants are used to build a model of the be-
havior of certain socio-cultural-economic groups in different parts of the world.1 Such
PLPs contain rules that state things like “There is a 50 to 70% probability that group
g will take action(s) a when condition C holds.” In such applications, the problem of
interest is that of finding the most probable action (or sets of actions) that the group
being modeled might do. This corresponds precisely to the problem of finding a “most
probable world” that is the focus of this paper.

In Section 2 of this paper, we recall the syntax and semantics of such programs [5,
1]. We state the most probable world (MPW) problem by immediately using the lin-
ear programming methods of [5, 1] - these methods are exponential because the linear
?? Authors listed in alphabetical order; authors 2, 4, 5, and 6 were funded in part by

grant N6133906C0149, ARO grant DAAD190310202, AFOSR grants FA95500610405 and
FA95500510298, and NSF grant 0540216.

1 Our group has thus far built models of the Afridi tribe in Pakistan, Hezbollah in the Middle
East, and the various stakeholders in the Afghan drug economy.

2

programs are exponential in the number of ground atoms in the language. Then, in Sec-
tion 4, we present the Head Oriented Processing (HOP) approach where a (usually)
smaller linear program is introduced. We show that using HOP, we can often find a
much faster solution to the MPW problem. We define a variant of HOP called Semi-
HOP that has slightly different computational properties, but is still guaranteed to find
the most probable world. Thus, we have three exact algorithms to find the most probable
world.

Subsequently, in Section 5, we develop a heuristic that can be applied in conjunction
with the Naive, HOP, and SemiHOP algorithms. The basic idea is that rather than
examining all worlds, only some fixed number of worlds is explored using a linear
program that is reduced in size. Section 6 describes a prototype implementation of our
APLP framework and includes a set of experiments to assess combinations of exact
algorithm and the heuristic. We assess both the efficiency of our algorithms, as well as
the accuracy of the solutions they produce.

2 Overview of Action Probabilistic Logic Programs

Action probabilistic logic programs (APLPs) are an immediate and obvious variant of
the probabilistic logic programs introduced in [5, 1]. We assume the existence of a log-
ical alphabet that consists of a finite set Lcons of constant symbols, a finite set Lpred of
predicate symbols (each with an associated arity) and an infinite set V of variable sym-
bols. Function symbols are not allowed in our language. Terms and atoms are defined in
the usual way [7]. We assume that a subset Lact of Lpred are designated as action sym-
bols - these are symbols that denote some action. Thus, an atom p(t1, . . . , tn), where
p ∈ Lact, is an action atom. Every (resp. action) atom is a (resp. action) wff. If F,G are
(resp. action) wffs, then (F ∧ G), (F ∨ G) and ¬G are all wffs (resp. action wffs).

Definition 1. If F is a wff (resp. action wff) and µ = [α, β] ⊆ [0, 1], then F : µ is
called a p-annotated (resp. ap-annotated—short for “action probabilistic” annotated)
wff. µ is called the p-annotation (resp. ap-annotation) of F .

Without loss of generality, throughout this paper we will assume that F is in conjunctive
normal form (i.e. it is written as a conjunction of disjunctions).

Definition 2 (ap-rules). If F is an action formula, A1, A2, ..., Am are action atoms,
B1, . . . , Bn are non-action atoms, and µ, µ1, ..., µm are ap-annotations, then F : µ←
A1 : µ1 ∧ A2 : µ2 ∧ ... ∧ Am : µm ∧ B1 ∧ . . . Bm is called an ap-rule. If this
rule is named c, then Head(c) denotes F : µ; Bodyact(c) denotes A1 : µ1 ∧ A2 :
µ2 ∧ ... ∧ Am : µm and Bodystate(c) denotes B1 ∧ . . . Bn.

Intuitively, the above ap-rule says that an unnamed entity (e.g. a group g, a person p
etc.) will take action F with probability in the range µ if B1, . . . , Bn are true in the
current state (we will define this term shortly) and if the unnamed entity will take each
action Ai with a probability in the interval µi for 1 ≤ i ≤ n.

Definition 3 (ap-program). An action probabilistic logic program (ap-program for
short) is a finite set of ap-rules.

3

1. kidnap: [0.35, 0.45] ← interOrganizationConflicts.
2. kidnap: [0.60, 0.68] ← notDemocratic ∧ internalConflicts.
3. armed attacks: [0.42, 0.53] ← typeLeadership(strongSingle) ∧ orgPopularity(moderate).
4. armed attacks: [0.93, 1.0] ← statusMilitaryWing(standing).

Fig. 1. Four simple rules for modeling the behavior of a group in certain situations.

Figure 1 shows a small rule base consisting of some rules we have derived automatically
about Hezbollah using behavioral data in [8]. The behavioral data in [8] has tracked
over 200 terrorist groups for about 20 years from 1980 to 2004. For each year, values
have been gathered for about 300 measurable variables for each group in the sample.
These variables include tendency to commit assassinations and armed attacks, as well
as background information about the type of leadership, whether the group is involved
in cross border violence, etc. Our automatic derivation of these rules was based on a
data mining algorithm we have separately developed [9]. We show 4 rules we have
extracted for the group Hezbollah in Figure 1. For example, the third rule says that
when Hezbollah has a strong, single leader and its popularity is moderate, its propensity
to conduct armed attacks has been 42 to 53%. However, when it has had a standing
military, its propensity to conduct armed attacks is 93 to 100%.

Definition 4 (world/state). A world is any set of ground action atoms. A state is any
finite set of ground non-action atoms.

Note that both worlds and states are just ordinary Herbrand interpretations. As such, it
is clear what it means for a state to satisfy Bodystate.

Definition 5. Let Π be an ap-program and s a state. The reduction of Π w.r.t. s, de-
noted by Πs is {F : µ ← Bodyact | s satisfies Bodystate and F : µ ← Bodyact ∧
Bodystate is a ground instance of a rule in Π}.

Note that Πs never has any non-action atoms in it.
Key differences. The key differences between action probabilistic LPs (APLPs) and
the programs of [5, 1] are that APLPs have a bipartite structure (action atoms and state
atoms) and they allow arbitrary formulas (including ones with negation) in rule heads
([5, 1] do not). They can easily be extended to include variable annotations and annota-
tion terms as in [5]. Likewise, as in [5], they can be easily extended to allow complex
formulas rather than just atoms in rule bodies. Due to space restrictions, we do not do
either of these in the paper. However, the most important difference between our pa-
per and [5, 1] is that this paper focuses on finding most probable worlds, while those
papers focus on entailment, which is a fundamentally different problem.

Throughout this paper, we will assume that there is a fixed state s. Hence, once we
are given Π and s, Πs is fixed. We can associate a fixpoint operator TΠs with Π, s
which maps sets of ground ap-annotated wffs to sets of ground ap-annotated wffs as
follows.

Definition 6. Suppose X is a set of ground annotated action atoms. We first define
an intermediate operator UΠs(X) as follows. UΠs(X) = {F : µ | F : µ ← A1 :

4

µ1 ∧ · · · ∧ Am : µm is a ground instance of a rule in Πs and for all 1 ≤ j ≤ m, there
is an Aj : ηj ∈ X such that ηj ⊆ µj}.

Intuitively, UΠs(X) contains the heads of all rules in Πs whose bodies are deemed
to be “true” if the action atoms in X are true. However, UΠs(X) may not contain all
ground action atoms. This could be because such atoms don’t occur in the head of a
rule - UΠs

(X) never contains any action wff that is not in a rule head.
In order to assign a probability interval to each ground action atom, we use the same

procedure followed in [5]. We use UΠs(X) to set up a linear program CONSU (Π, s, X)
as follows. For each world wi, let pi be a variable denoting the probability of wi being
the “real world”. As each wi is just a Herbrand interpretation, the notion of satisfaction
of an action formula F by a world w, denoted by w 7→ F , is defined in the usual way.

1. If F : [`, u] ∈ UΠs(X), then ` ≤ Σwi 7→F pi ≤ u is in CONSU (Π, s, X).
2. Σwipi = 1 is in CONSU (Π, s, X).

We refer to these as constraints of type (1) and (2), respectively. To find the lower (resp.
upper) probability of a ground action atom A, we merely minimize (resp. maximize)
Σwi 7→Api subject to the above constraints. We also do the same w.r.t. each formula
F that occurs in UΠs(X) — this is because this minimization and maximization may
sharpen the bounds of F . Let `(F) and u(F) denote the results of these minimizations
and maximizations, respectively. Our operator TΠs

(X) is then defined as follows.

Definition 7. Suppose Π is an APLP, s is a state, and X is a set of ground ap-wffs. Our
operator TΠs(X) is then defined to be {F : [`(F), u(F)] | (∃µ) F : µ ∈ UΠs(X)} ∪
{A : [`(A), u(A)] | A is a ground action atom }.

Thus, TΠs(X) works in two phases. It first takes each formula F : µ that occurs in
UΠs(X) and finds F : [`(F), u(F)] and puts this in the result. Once all such F :
[`(F), u(F)]’s have been put in the result, it tries to infer the probability bounds of all
ground action atoms A from these F : [`(F), u(F)]’s.

Given two sets X1, X2 of ap-wffs, we say that X1 ≤ X2 iff for each F1 : µ1 ∈ X1,
there is an F1 : µ2 ∈ X2 such that µ2 ⊆ µ1. Intuitively, X1 ≤ X2 may be read as
“X1 is less precise than X2.” The following straightforward variation of similar results
in [5] shows that

Proposition 1. 1. TΠs
is monotonic w.r.t. the ≤ ordering.

2. TΠs has a least fixpoint, denoted Tω
Πs

.

3 Maximally Probable Worlds

We are now ready to introduce the problem of finding the most probable world. As ex-
plained through our Hezbollah example, we may be interested in knowing what actions
Hezbollah might take in a given situation.

Definition 8 (lower/upper probability of a world). Suppose Π is an ap-program and
s is a state. The lower probability, low(wi) of a world wi is defined as: low(wi) =
minimize pi subject to CONSU (Π, s, Tω

Πs
). The upper probability, up(wi) of world

wi is defined as up(wi) = maximize pi subject to CONSU (Π, s, Tω
Πs

).

5

Thus, the low probability of a world wi is the lowest probability that that world can
have in any solution to the linear program. Similarly, the upper probability for the same
world represents the highest probability that that world can have. It is important to
note that for any world w, we cannot exactly determine a point probability for w. This
observation is true even if all rules in Π have a point probability in the head because
our framework does not make any simplifying assumptions (e.g. independence) about
the probability that certain things will happen.

We now state two simple results that state that checking if the low (resp. up) proba-
bility of a world exceeds a given bound (called the BOUNDED-LOW and BOUNDED-
UP problems respectively) is intractable. The hardness results, in both cases, are by
reduction from the problem of checking consistency of a generalized probabilistic logic
program. The problem is in the class EXPTIME.

Proposition 2 (BOUNDED LOW COMPLEXITY). Given an ap-program Π , a state
s, a world w, and a probability threshold pth, deciding if low(w) > pth is NP -hard.

Proposition 3 (BOUNDED UP COMPLEXITY). Given an ap-program Π , a state
s, a world wi, and a probability threshold pth, deciding if up(w) < pth is NP -hard.

The MPW Problem. The most probable world problem (MPW for short) is the prob-
lem where, given an APLP Π and a state s as input, we are required to find a world wi

where low(wi) is maximal. 2

A Naive Algorithm. A naive algorithm to find the most probable world would be:

1. Compute Tω
Πs

; Best = NIL; Bestval = 0;
2. For each world wi,

(a) Compute low(wi) by minimizing pi subject to the set CONSU (Π, s, Tω
Πs

) of
constraints.

(b) If low(wi) > Bestval then set Best = wi and Bestval = low(wi);
3. If Best = NIL then return any world whatsoever, else return Best.

The Naive algorithm does a brute force search after computing Tω
Πs

. It finds the low
probability for each world and chooses the best one. Clearly, we can use it to solve the
MPW-Up problem by replacing the minimization in Step 2(a) by a maximization.

There are two key problems with the naive algorithm. The first problem is that in
Step (1), computing Tω

Πs
is very difficult. When some syntactic restrictions are imposed,

this problem can be solved without linear programming at all as in the case when Π is a
probabilistic logic program (or p-program as defined in [1]) where all heads are atomic.

The second problem is that in Step 2(a), the number of (linear program) variables in
CONSU (Π, s, Tω

Πs
) is exponential in the number of ground atoms. When this number

is, say 20, this means that the linear program contains over a million variables. However,
when the number is say 30 or 40 or more, this number is inordinately large. This paper
focuses primarily on improving Step 2(a).

2 A similar MPW-Up Problem can also be defined. The most probable world-up problem
(MPW-Up) is given an APLP Π and a state s as input, and tries to find a world wi where
up(wi) is maximal. Due to space constraints, we only address the MPW problem.

6

4 HOP: Head-Oriented Processing

We can do better than the naive algorithm. Given a world w, state s, and an ap-program
Π , let Sat(w) = {F | c is a ground instance of a rule in Πs and Head(c) = F : µ
and w 7→ F}. Intuitively, Sat(w) is the set of heads of rules in Πs (without probability
annotations) whose bodies are satisfied by w.

Definition 9. Suppose Π is an APLP, s is a state, and w1, w2 are two worlds. We say
that w1 and w2 are equivalent, denoted w1 ∼ w2, iff Sat(w1) = Sat(w2).

In other words, we say that two worlds are considered equivalent iff the two worlds
satisfy the formulas in the heads of exactly the same rules in Πs. It is easy to see that
∼ is an equivalence relation. We use [wi] to denote the ∼-equivalence class to which a
world wi belongs. The intuition for the HOP algorithm is given in Example 1.

Example 1. Consider the set CONSU (Π, s, Tω
Πs

) of constraints. For example, consider
a situation where CONSU (Π, s, Tω

Πs
) contains just the three constraints below:

0.7 ≤ p2 + p3 + p5 + p6 + p7 + p8 ≤ 1 (1)

0.2 ≤ p5 + p7 + p8 ≤ 0.6 (2)

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1 (3)

In this case, each time one of the variables p5, p7, or p8 occur in a constraint, the other
two also occur. Thus, we can replace these by one variable (let’s call it y for now). In
other words, suppose y = p5 + p7 + p8. Thus, the above constraints can be replaced by
the simpler set

0.7 ≤ p2 + p3 + p6 + y ≤ 1

0.2 ≤ y ≤ 0.6

p1 + p2 + p3 + p4 + p6 + y = 1

The process in the above example leads to a reduction in the size of CONSU (Π, s, Tω
Πs

).
Moreover, suppose we minimize y subject to the above constraints. In this case, the
minimal value is 0.2. As y = p5 + p7 + p8, it is immediately obvious that the low
probability of any of the pi’s is 0. Note that we can also group p2, p3, and p6 together
in the same manner.

We build on top of this intuition. The key insight here is that for any ∼-equivalence
class [wi], the entire summation Σwj∈[wi]pj either appears in its entirety in each con-
straint of type (1) in CONSU (Π, s, Tω

Πs
) or does not appear at all (i.e. none of the

pj variables associated with worlds wj in [wi] appear in any constraint of type (1) in
CONSU (Π, s, Tω

Πs
)). This is what the next result states.

Proposition 4. Suppose Π is an ap-program, s is a state, and [wi] is a ∼-equivalence
class. Then for each constraint of the form

` ≤ Σwr 7→F pr ≤ u (4)

in CONSU (Π, s, Tω
Πs

), either every variable in the summation Σwj∈[wi]pj appears in
the summation in (4) above or no variable in the summation Σwj∈[wi]pj appears in the
summation in (4).

7

Example 2. Here is a toy example of this situation. Suppose Πs consists of the two very
simple rules:

(a ∨ b ∨ c ∨ d) : [0.1, 0.5]← .

(a ∧ e) : [0.2, 0.5]← .

Assuming our language contains only the predicate symbols a, b, c, d, e, there are 32
possible worlds. However, what the preceding proposition tells us is that we can group
the worlds into four categories. Those that satisfy both the above head formulas (ignor-
ing the probabilities), those that satisfy the first but not the second head formula, those
that satisfy the second but not the first head formula, and those that satisfy neither. This
is shown graphically in Figure 2, in which pi is the variable in the linear program corre-
sponding to world wi. For simplicity, we numbered the worlds according to the binary
representation of the set of atoms. For instance, world {a, c, d, e} is represented in bi-
nary as 10111, and is thus w23. Note that only three variables appear in the new linear
constraints; this is because it is not possible to satisfy ¬(a ∨ b ∨ c ∨ d ∨ e) and (a ∧ e)
at once.

Fig. 2. Reducing CONSU (Π, s, T ω
Πs

) by grouping variables. The new LPs are called
RedCONSU (Π, s, T ω

Πs
) and S RedCONSU (Π, s, T ω

Πs
), as presented in Definition 10 and 12.

Effectively, what we have done is to modify the number of variables in the linear pro-
gram from 2card(Lact) to 2card(Πs) - a saving that can be significant in some cases
(though not always!). The number of constraints in the linear program stays the same.
Formally speaking, we define a reduced set of constraints as follows.

Definition 10 (RedCONSU (Π, s, Tω
Πs

)). For each equivalence class [wi], RedCONSU (Π, s, Tω
Πs

)
uses a variable p′i to denote the summation of the probability of each of the worlds in
[wi]. For each ap-wff F : [`, u] in Tω

Πs
, RedCONSU (Π, s, Tω

Πs
) contains the constraint:

` ≤ Σ[wi] 7→F p′i ≤ u.

8

Here, [wi] 7→ F means that some world in [wi] satisfies F . In addition, RedCONSU (Π, s, Tω
Πs

)
contains the constraint

Σ[wi]p
′
i = 1.

When reasoning about RedCONSU (Π, s, Tω
Πs

), we can do even better than men-
tioned above. The result below states that in order to find the most probable world, we
only need to look at the equivalence classes that are of cardinality 1.

Theorem 1. Suppose Π is an ap-program, s is a state, and wi is a world. If card([wi]) > 1,
then low(wi) = 0.

Going back to Example 1, we can conclude that low(w5) = low(w7) = low(w8) = 0.
As a consequence of this result, we can suggest the Head Oriented Processing (HOP) al-
gorithm which works as follows. Before presenting HOP, we present some simple nota-
tion. Let FixedWff (Π, s) = {F |F : µ ∈ UΠs

(Tω
Πs

)}. Given a set X ⊆ FixedWff (Π, s),
we define Formula(X, Π, s) to be∧

G∈X

G ∧
∧

G′∈FixedWff (Π,s)−X

¬G′.

Here, Formula(X, Π, s) is the formula which says that X consists of all and only those
formulas in FixedWff (Π, s) that are true. Given two sets X1, X2 ⊆ FixedWff (Π, s),
we say that X1 ≈ X2 iff Formula(X1,Π, s) and Formula(X2,Π, s) are logically
equivalent
HOP Algorithm.

1. Compute Tω
Πs

. bestval = 0; best = NIL.
2. Let [X1], . . . , [Xn] be the ∼-equivalence classes defined above for Π, s.
3. For each equivalence class [Xi] do:

(a) If there is exactly one interpretation that satisfies Formula(Xi,Π, s) then:
i. Minimize p′i subject to RedCONSU (Π, s, Tω

Πs
) where [wi] is the set of

worlds satisfying exactly those heads in Xi. Let Val be the value returned.
ii. If Val > best, then {best = wi; bestval = Val}.

4. If bestval = 0 then return any world whatsoever otherwise return best.

Theorem 2 (correctness of HOP). Algorithm HOP is correct, i.e. it is guaranteed to
return a world whose low probability is greater than or equal to that of any other world.

Step 3(a) of the HOP algorithm is known as the UNIQUE-SAT problem—it can be
easily implemented via a SAT solver as follows.

1. If
∧

F∈X F ∧
∧

G∈X̄ ¬G is satisfiable (using a SAT solver that finds a satisfying
world w) then
(a) If

∧
F∈X F ∧

∧
G∈X̄ ¬G ∧ (

∨
a∈w ¬a ∨

∨
a′∈w̄ a′) is satisfiable (using a

SAT solver) then return “two or more” (two or more satisfying worlds exist)
else return “exactly one”

2. else return “none.”

9

The following example shows how the HOP algorithm would work on the program
from Example 2.

Example 3. Consider the program from Example 2, and suppose X = {(a∨ b∨ c∨d∨
e), (a ∧ e)}. In Step (3a), the algorithm will find that {a, d, e} is a model of (a ∨ b ∨
c ∨ d ∨ e) ∧ (a ∧ e); afterwards, it will find {a, c, e} to be a model of (a ∨ b ∨ c ∨ d ∨
e) ∧ (a ∧ e) ∧ ((¬a ∨ ¬d ∨ ¬e) ∨ (b ∨ c)). Thus, X has more than one model and the
algorithm will not consider any of the worlds in the equivalence class induced by X as
a possible solution, which avoids solving the linear program for those worlds.

The complexity of HOP is also exponential. However, HOP can sometimes be prefer-
able to the Naive algorithm. The number of variables in RedCONSU (Π, s, Tω

Πs
) is

2card(T ω
Πs

), which is much smaller than the number of variables in CONSU (Π, s, Tω
Πs

)
when the number of ground rules whose bodies are satisfied by state s is smaller than
the number of ground atoms. The checks required to find all the equivalence classes [Xi]
take time proportional to 22∗card(T ω

Πs
). Lastly, HOP avoids solving the reduced linear

program for all the non-singleton equivalence classes (for instance, in Example 3, the
algorithm avoids solving the LP three times). This last saving, however, comes at the
price of solving SAT twice for each equivalence class and the time required to find the
[Xi]’s.

A variant of the HOP algorithm, which we call the SemiHOP algorithm, tries to
avoid computing the full equivalence classes. The SemiHOP algorithm omits finding
pairs of sets that represent the same equivalence class, and therefore does not need to
compute the checks for logical equivalence of every possible pair, a computation which
can be very expensive.

Proposition 5. Suppose Π is an APLP, s is a state, and X is a subset of FixedWff (Π, s).
Then there exists a world wi such that {w | w 7→ Formula(X, Π, s)} ⊆ [wi].

We now define the concept of a sub-partition.

Definition 11. A sub-partition of the set of worlds of Π w.r.t. s is a partition W1, . . . ,Wk

where:

1.
⋃k

i=1 Wi is the entire set of worlds.
2. For each Wi, there is an equivalence class [wi] such that Wi ⊆ [wi].

The following result - which follows immediately from the preceding proposition - says
that we can generate a subpartition by looking at all subsets of FixedWff (Π, s).

Proposition 6. Suppose Π is an APLP, s is a state, and {X1, . . . , Xk} is the power set
of FixedWff (Π, s). Then the partition W1, . . . ,Wk where Wi = {w|w 7→ Formula(Xi,Π, s)}
is a sub-partition of the set of worlds of Π w.r.t. s.

The intuition behind the SemiHOP algorithm is best presented by going back to con-
straints 1 and 2 given in Example 1. Obviously, we would like to collapse all three
variables p5, p7, p8 into one variable y. However, if we were to just collapse p7, p8 into
a single variable y′, we would still reduce the size of the constraints (through the elim-
ination of one variable), though the reduction would not be maximal. The SemiHOP
algorithm allows us to use subsets of equivalence classes instead of full equivalence
classes. We first define a semi-reduced set of constraints as follows.

10

Definition 12 (S RedCONSU (Π, s, Tω
Πs

)). Let W1, . . . ,Wk be a subpartition of the
set of worlds for Π and s. For each Wi, S RedCONSU (Π, s, Tω

Πs
) uses a variable p?

i

to denote the summation of the probability of each of the worlds in Wi. For each ap-wff
F : [`, u] in Tω

Πs
, RedCONSU (Π, s, Tω

Πs
) contains the constraint:

` ≤ ΣWi 7→F p?
i ≤ u.

Here, Wi 7→ F implies that some world in Wi satisfies F . In addition, S RedCONSU (Π, s, Tω
Πs

)
contains the constraint

ΣWi
p?

i = 1.

Example 4. Returning to Example 1, S RedCONSU (Π, s, Tω
Πs

) could contain the fol-
lowing constraints: 0.7 ≤ p2 + p3 + p5 + p6 + y′ ≤ 1, 0.2 ≤ p5 + y′ ≤ 0.6, and
p1 + p2 + p3 + p4 + p5 + p6 + y′ = 1 where y′ = p7 + p8.

SemiHOP Algorithm.

1. Compute Tω
Πs

.
2. bestval = 0; best = NIL.
3. For each set X ⊆ FixedWff (Π, s) do:

(a) If there is exactly one interpretation that satisfies Formula(X, Π, s) then:
i. Minimize p?

i subject to S RedCONSU (Π, s, Tω
Πs

) where Wi is a subpar-
tition of the set of worlds of Π w.r.t. s. Let Val be the value returned.

ii. If Val > best, then {best = wi; bestval = Val}.
4. If bestval = 0 then return any world whatsoever otherwise return best.

Theorem 3 (correctness of SemiHOP). Algorithm SemiHOP is correct, i.e. it is
guaranteed to return a world whose low probability is greater than or equal to that
of any other world.

The key advantage of SemiHOP over HOP is that we do not need to construct
the set [wi] of worlds, i.e. we do not need to find the equivalence classes [wi]. This is
a potentially big saving because there are 2n possible worlds (where n is the number
of ground action atoms) and finding the equivalence classes can be expensive. This
advantage comes with a drawback - the size of the set S RedCONSU (Π, s, Tω

Πs
) can be

a bit bigger than the size of the set RedCONSU (Π, s, Tω
Πs

).

5 Heuristic Methods for finding a Maximally ProbableWorld

In the preceding sections, we have developed three sets of constraints associated, re-
spectively, with the naive algorithm, HOP, and SemiHOP. In all cases, the set of con-
straint variables can be enormous, even though HOP and SemiHOP try to reduce the
number of variables. In this section, we develop a heuristic algorithm to reduce the
number of variables even further. To see how the algorithm works, let C be the set of
constraints generated by either Naive, HOP, or SemiHOP. The constraints have one
of the forms

` ≤ q1 + · · ·+ qr ≤ u (5)

11

q1 + · · ·+ qm = 1. (6)

Suppose we make an a priori commitment to only look at some set Sk of k variables
from the linear program. In this case, we could eliminate variables not in Sk from any
summation in (5). Thus, we might weaken (5) and (6) above to

` ≤ Σ{q1,...,qr}∩Sk
qi ≤ u (7)

Σ{q1,...,qm}∩Sk
qi ≤ 1. (8)

Let C′ be the modification of the constraints in C derived in this way. It is immediately
apparent that as all the lower bounds are set to `, a solution to C′ may or may not
exist. Rather than weakening the lower bound from ` to 0 (which would guarantee
a solution), we wondered how “close” to ` one can get while still having a solvable
system of equations.

As a consequence, our binary heuristic works as follows by only modifying lower
bounds of such constraints. We start with C′ and see if it is solvable by itself. If so, we
minimize each variable in Sk subject to C′ and return the variable (and value) with the
highest value. If not, we try to decrease the lower bounds of one or more constraints in
C′ as follows. Suppose c? is one such constraint of the form

`? ≤ Σqi∈Sk
qi ≤ u

Furthermore, suppose this constraint was derived from a constraint of the type shown
in Equation (5). In this case, we try to replace `? by `?

2 . If this yields a solvable set
of equations, we try to replace `?

2 by 3×`?

4 - if the resulting system of equations is
unsolvable, we try to replace it with 5×`?

8 and so forth. Effectively, we try to keep the
lower bounds of constraints as close to those in C as possible, while still being solvable
when terms not in Sk are eliminated from the summations in Equation (5). We will call
this the binary heuristic due to the fact that it resembles a binary search.

Once we have completed this process of modifying the lower bounds of constraints
in C′ (let the resulting system of constraints be called C•) we minimize each and every
variable in Sk subject to the constraints in C•. The variable with the highest minimal
value is returned (together with its value).

Example 5. Suppose we have the same set CONSU (Π, s, Tω
Πs

) as in Example 1. If we
now choose the set of four variables Sk = {p2, p4, p6, p8}, C′ contains the following
constraints:

0.7 ≤ p2 + p6 + p8 ≤ 1
0.2 ≤ p8 ≤ 0.6
p2 + p4 + p6 + p8 ≤ 1

If the algorithm starts by considering the first constraint in C′ it replaces it with 0.35 ≤
p2 + p6 + p8 ≤ 1, which yields an unsolvable set of constraints. The lower bound gets
succesively replaced by 0.525, 0.4375, and 0.39375, which finally yields a solvable
system. At this point, the algorithm decides to accept this value as the lower bound for
the constraint. The same process is also carried out for the other constraint.

12

6 Implementation and Experiments

We have implemented four of the algorithms described in this paper—the naive, HOP,
SemiHOP, and the binary heuristic algorithms—using approximately 6,000 lines of
Java code. The binary heuristic algorithm was applied to each of the (CONSU (Π, s, Tω

Πs
),

RedCONSU (Π, s, Tω
Πs

), and S RedCONSU (Π, s, Tω
Πs

)) constraint sets; we refer to
these approximations as the naivebin, HOPbin, and SemiHOPbin algorithms respec-
tively. Our experiments were performed on a Linux computing cluster comprised of 16
dual-core, dual-processor nodes with 8GB RAM. The linear constraints were solved us-
ing the QSopt linear programming solver library, and the logical formula manipulation
code from the COBA belief revision system and SAT4J satisfaction library were used
in the implementation of the HOP and SemiHOP algorithms.

For each experiment, we held the number of rules constant at 10 and did the fol-
lowing: (i) we generated a new ap-program and sent it to each of the three algorithms,
(ii) varied the number of worlds from 32 to 16,384, performing at least 4 runs for each
value and recording the average time taken by each algorithm, and (iii) we also mea-
sured the quality of the SemiHOP and all algorithms that use the binary heuristic by
calculating the average distance from the solution found by the exact algorithm. Due
to the immense time complexity of the HOP algorithm, we do not directly compare its
performance to the naive algorithm or SemiHOP. In the results below we use the met-
ric ruledensity = Lact

card(T ω
Πs

) to represent the size of the ap-program; this allows for

the comparison of the naive, HOP and SemiHOP algorithms as the number of worlds
increases.
Running time. Figure 3 shows the running times for each of the naive, SemiHOP,
naivebinary , and SemiHOPbinary algorithms for increasing number of worlds. As ex-
pected, the binary search approximation algorithm is superior to the exact algorithms in
terms of computation time, when applied to both the naive and SemiHOP contstraint
sets. With a sample size of 25%, naivebinary and SemiHOPbinary take only about
132.6 seconds and 58.19 seconds for instances with 1,024 worlds, whereas the naive
algorithm requires almost 4 hours (13,636.23 seconds). This result demonstrates that
the naive algorithm is more or less useless and takes prohibitive amounts of time, even
for small instances. Similarly, the checks for logical equivalence required to obtain
each [wi] for HOP cause the algorithm to consistently require an exorbitant amount
of time; for instances with only 128 worlds, HOP takes 58,064.74 seconds, which is
much greater even than the naive algorithm for 1,024 worlds. Even when using the
binary heuristic to further reduce the number of variables, HOPbin still requires a pro-
hibitively large amount of time.

At low rule densities, SemiHOP runs slower than the naive algorithm; with 10
rules, SemiHOP uses 18.75 seconds and 122.44 seconds for 128 worlds, while the
naive algorithm only requires 1.79 seconds and 19.99 seconds respectively. However,
SemiHOP vastly outperforms naive for problems with higher densities—358.3 seconds
versus 13,636.23 seconds for 1,024 worlds—which more accurately reflect real-world
problems in which the number of possible worlds is far greater than the number of
ap-rules. Because the SemiHOP algorithm uses subpartions rather than unique equiva-
lence classes in the RedCONSU (Π, seconds, Tω

Πs
) constraints, the algorithm overhead

13

Fig. 3. Running time of the algorithms for
increasing number of worlds.

Fig. 4. Running time of naivebin and Semi-
HOPbin for large number of worlds.

is much lower than that of the HOP algorithm, and thus yields a more efficient running
time.

The reduction in the size of C′ afforded by the binary heuristic algorithm allows us
to apply the naive and SemiHOP algorithms to much larger ap-programs. In Figure 4,
we examine the running times of the naivebin and SemiHOPbin algorithms for large
numbers of worlds (up to about 1.23794× 1027 possible worlds) with a sample size for
the binary heuristic of 2%; this is to ensure that the reduced linear program is indeed
tractable. SemiHOPbinary consistently takes less time than naivebinary , though both
algorithms still perform rather well. For 1.23794 × 1027 possible worlds, naivebinary

takes on average 26,325.1 seconds while SemiHOPbinary requires only 458.07 sec-
onds. This difference occurs because, |S RedCONSU (Π, s, Tω

Πs
)| < |CONSU (Π, s, Tω

Πs
)|

that is the heuristic algorithm is further reducing an already smaller constraint set. In
addition, because SemiHOP only solves the linear constraint problem when there is
exactly one satisfying interpretation for a subpartition, it performs fewer computations
overall. Figure 5 contains additional experiments running SemiHOPbinary on very
large ap-programs (from 1,000 to 100,000 ground atoms). Even for such a large number
of worlds, the running time is only around 300 seconds for a 2% sample rate.
Quality of solution. Figure 6 compares the accuracy of the probability found for the
most probable world by SemiHOP, naivebinary , and SemiHOPbinary to the solu-
tion obtained by the naive algorithm, averaged over at least 4 runs for each number
of worlds. The results are given as a percentage of the solution returned by the naive
algorithm, and are only reported in cases where both algorithms found a solution. The
SemiHOP and SemiHOPbinary algorithms demonstrate near perfect accuracy; this
is significant because in the SemiHOPbinary algorithm, the binary heuristic was only
sampling 25% of the possible subpartitions. However, in many of these cases, both the
naive and the SemiHOP algorithms found most probable worlds with a probability
of zero. The most probable world found by the naivebinary algorithm can be between
75% and 100% as likely as those given by the regular naive algorithm; however, the
naivebinary algorithm also was often unable to find a solution.

14

Fig. 5. Running time of the
SemiHOPbinary algorithm for very
large numbers of possible worlds.

Fig. 6. Quality of the solutions produced by
SemiHOP, naivebin, and SemiHOPbin as
compared to Naive.

7 Conclusions and Related Work

Probabilistic logic programming was introduced in [5, 1] and later studied by several au-
thors [10–13]. This work was preceded by earlier—non-probabilistic—papers on quan-
titative logic programming of which [14] is an example. [10] presents a model theory,
fixpoint theory, and proof procedure for conditional probabilistic logic programming.
[11] combines probabilistic LP with maximum entropy. [15] presents a conditional se-
mantics for probabilistic LPs where each rule is interpreted as specifying the conditional
probability of the rule head, given the body. [12] develops a semantics for logic pro-
grams in which different general axiomatic methods are given to compute probabilities
of conjunctions and disjunctions, and [13] presents an approach to a similar problem.
gp-programs were implemented by [16], based on the DisLOG system [17].

However, all works to date on probabilistic logic programming have addressed the
problem of checking whether a given formula of the form F : [L,U] is entailed by a
probabilistic logic program. This usually boils down to finding out if all interpretations
that satisfy the PLP assign a probability between L and U to F .

Our work builds on top of the gp-program paradigm [5]. Our framework modifies
gp-programs in three ways: (i) we do not allow non-action predicates to occur in rule
heads, while gp-programs do, (ii) we allow arbitrary formulas to occur in rule heads,
whereas gp-programs only allow the so-called “basic formulas” to appear in rule heads.
(iii) Most importantly, of all, we solve the problem of finding the most probable model
whereas [5] solve the problem of entailment.

This is justified because in certain classes of applications, a p-program describes
probabilities on possible worlds, and we are interested in finding that world which has
the highest probability. Such an example could be a market model of bidding in a spe-
cialized auction, such as an electricity auction, which contains rules specifying what
actions a potential competitor might take in a given situation. Here, the organization
coming up with the model might want to know the most likely scenarios (worlds) that
they have to face. We have been working on an economic application about what may

15

occur in a given market when certain actions such as “reduce price of fruit by 10%”
are taken (e.g., by increasing supply). Of course, this can be viewed as an entailment
problem (take the conjunction of positive atoms in a world, conjoin that with the con-
junction of negative atoms in that world, solve a linear program for each world, and
choose the best one). This corresponds to the naive (exact) solution in this paper which
is easily shown to not work at all once the amount of worlds exceeds a small number.
What we do in this paper is provide algorithms to find the world that has the maximal
probability, and to our knowledge, we are the first to do this. We further provide two
approximation algorithms that have been experimentally shown to produce solutions
within about 10-15% of the optimal solution in a small fraction of the time required to
find the best solution.

References

1. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computa-
tion 101(2) (1992) 150–201

2. Hailperin, T.: Probability logic. Notre Dame Journal of Formal Logic 25 (3) (1984) 198–212
3. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Information

and Computation 87(1/2) (1990) 78–128
4. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28 (1986) 71–87
5. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective and condi-

tional probabilities in deductive databases. In Furukawa, K., ed.: Proc. of the 8th Int. Conf.
on Logic Programming, The MIT Press (1991) 565–580

6. Subrahmanian, V., Albanese, M., Martinez, V., Reforgiato, D., Simari, G.I., Sliva, A., Udrea,
O., Wilkenfeld, J.: CARA: A Cultural Adversarial Reasoning Architecture. IEEE Intelligent
Systems 22(2) (2007) 12–16

7. Lloyd, J.W.: Foundations of Logic Programming, Second Edition. Springer-Verlag (1987)
8. Wilkenfeld, J., Asal, V., Johnson, C., Pate, A., Michael, M.: The use of violence by ethnopo-

litical organizations in the middle east. Technical report, National Consortium for the Study
of Terrorism and Responses to Terrorism (2007)

9. Ernst, J., Martinez, V., Simari, G.I., Sliva, A.: Mining rules about behaviors of terror groups,
In preparation for submission to a conference (2007)

10. Ngo, L., Haddawy, P.: Probabilistic logic programming and bayesian networks. In: Asian
Computing Science Conf. (1995) 286–300

11. Lukasiewicz, T., Kern-Isberner, G.: Probabilistic logic programming under maximum en-
tropy. LNCS (Proc. ECSQARU-1999) 1638 (1999)

12. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncer-
tainty. IEEE Trans. on Knowledge and Data Engineering 13(4) (2001) 554–570

13. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. In: Int. Conf. on Logic
Programming. (1997) 391–405

14. van Emden, M.: Quantitative deduction and its fixpoint theory. Journal of Logic Program-
ming 4 (1986) 37–53

15. Lukasiewicz, T.: Probabilistic logic programming. In: European Conference on Artificial
Intelligence. (1998) 388–392

16. Pillo, A.: Implementation and investigation of probabilistic reasoning in deductive databases.
Diploma Thesis, University of Wuerzburg (1998)

17. Seipel, D., Thöne, H.: DISLOG - A system for reasoning in disjunctive deductive databases.
In: DAISD. (1994) 325–343

