
Ann Math Artif Intell (2007) 51:295–331
DOI 10.1007/s10472-008-9089-2

Computing most probable worlds of action probabilistic
logic programs: scalable estimation for 1030,000 worlds

Samir Khuller · M. Vanina Martinez · Dana Nau ·
Amy Sliva · Gerardo I. Simari · V. S. Subrahmanian

Published online: 26 February 2008
© Springer Science + Business Media B.V. 2008

Abstract The semantics of probabilistic logic programs (PLPs) is usually given
through a possible worlds semantics. We propose a variant of PLPs called action
probabilistic logic programs or ap-programs that use a two-sorted alphabet to
describe the conditions under which certain real-world entities take certain actions.
In such applications, worlds correspond to sets of actions these entities might take.
Thus, there is a need to find the most probable world (MPW) for ap-programs.
In contrast, past work on PLPs has primarily focused on the problem of entailment.
This paper quickly presents the syntax and semantics of ap-programs and then shows
a naive algorithm to solve the MPW problem using the linear program formulation
commonly used for PLPs. As such linear programs have an exponential number
of variables, we present two important new algorithms, called HOP and SemiHOP
to solve the MPW problem exactly. Both these algorithms can significantly re-
duce the number of variables in the linear programs. Subsequently, we present a

S. Khuller · M. Vanina Martinez · D. Nau · A. Sliva ·
G. I. Simari · V. S. Subrahmanian (B)
Department of Computer Science and University of Maryland
Institute for Advanced Computer Studies (UMIACS),
University of Maryland College Park,
College Park, MD 20742, USA
e-mail: vs@cs.umd.edu

S. Khuller
e-mail: samir@cs.umd.edu

M. Vanina Martinez
e-mail: mvm@cs.umd.edu

D. Nau
e-mail: nau@cs.umd.edu

A. Sliva
e-mail: asliva@cs.umd.edu

G. I. Simari
e-mail: gisimari@cs.umd.edu

296 S. Khuller et al.

“binary” algorithm that applies a binary search style heuristic in conjunction with
the Naive, HOP and SemiHOP algorithms to quickly find worlds that may not be
“most probable.” We experimentally evaluate these algorithms both for accuracy
(how much worse is the solution found by these heuristics in comparison to the exact
solution) and for scalability (how long does it take to compute). We show that the
results of SemiHOP are very accurate and also very fast: more than 1030,000 worlds
can be handled in a few minutes. Subsequently, we develop parallel versions of these
algorithms and show that they provide further speedups.

Keywords Uncertainty · Probabilistic logic programs · Most probable worlds ·
Scalable approximations

Mathematics Subject Classification (2000) 68T37

1 Introduction

Probabilistic logic programs (PLPs) [17] have been proposed as a paradigm for
probabilistic logical reasoning with no independence assumptions. PLPs used a
possible worlds model based on prior work by [6, 7], and [15] to induce a set of
probability distributions on a space of possible worlds. Past work on PLPs [16, 17]
focuses on the entailment problem of checking if a PLP entails that the probability
of a given formula lies in a given probability interval.

However, we have recently been developing several applications for cultural
adversarial reasoning [1, 18] where PLPs and their variants are used to build a
model of the behavior of certain socio-cultural-economic groups in different parts
of the world.1 Such PLPs contain rules that state things like “There is a 50 to 70%
probability that group g will take action(s) a when condition C holds.” In such
applications, the problem of interest is that of finding the most probable action
(or sets of actions) that the group being modeled might do in a given situation. This
corresponds precisely to the problem of finding a “most probable world” that is the
focus of this paper.

In Section 2, we define the syntax and semantics of action-probabilistic logic
programs (ap-programs for short). This is a straightforward variant of PLP syntax
and semantics from [16, 17] and is not claimed as anything dramatically new. We
describe the most probable world (MPW) problem by immediately using the linear
programming methods of [16, 17]—these methods take exponential compute time
in the size of the logic program (but polynomial in the number of worlds—which in
turn are exponential in the size of the logic program) because the linear programs
are exponential in the number of ground atoms in the language. The new content of
this paper starts in Section 4 where we present the head oriented processing (HOP)
approach; HOP reduces the linear program for ap-programs, and we show that using

1Our group has thus far built models of approximately 40 groups around the world including tribes
such as the Shinwaris and Waziris, terror groups like Hezbollah, PKK, KDPI, political parties such
as the Pakistan People’s Party and the Harakat-e-Islami, as well as nation states. Of course, all these
models only capture a few actions that these entities might take.

Action probabilistic logic programs 297

HOP, we can often find a much faster solution to the MPW problem. We define a
variant of HOP called SemiHOP that has slightly different computational properties,
but are still guaranteed to find the most probable world. Thus, we have three exact
algorithms to find the most probable world.

Subsequently, in Section 5, we develop a heuristic called the binary heuristic
that can be applied in conjunction with the Naive, HOP, and SemiHOP algorithms.
The basic idea is that rather than examining all worlds corresponding to the linear
programming variables used by these algorithms, only some fixed number k of
worlds is examined. This leads to a linear program whose number of variables
is k. We subsequently present some alternative parallel implementations of our
algorithms, as well as an algorithm that can be used to extract ap-rules from
data automatically. Finally, Section 8 describes a prototype implementation of our
ap-program framework and includes a set of experiments to assess combinations of
exact algorithm and the heuristic. We assess both the efficiency of our algorithms,
as well as the accuracy of the solutions they produce. We show that the SemiHOP
algorithm with the binary heuristic is quite accurate (at least when only a small
number of worlds is involved) and then show that it scales very well, managing to
handle situations with over 1027 worlds in a few minutes. The parallel algorithms also
exhibit appropriate speedups.

2 Syntax and semantics of ap-programs

Action probabilistic logic programs (ap-programs) are an immediate and obvious
variant of the probabilistic logic programs introduced in [16, 17]. We assume the
existence of a logical alphabet that consists of a finite set Lcons of constant symbols,
a finite set Lpred of predicate symbols (each with an associated arity) and an infinite
set V of variable symbols: function symbols are not allowed in our language. Terms
and atoms are defined in the usual way [10]. We assume that a subset Lact of Lpred

are designated as action symbols—these are symbols that denote some action. Thus,
an atom p(t1, . . . , tn), where p ∈ Lact, is an action atom. Every atom (resp. action
atom) is a well-formed formula (wff) (resp. an action well-formed formula, or action
wff). If F, G are wffs (resp. action wffs), then (F ∧ G), (F ∨ G) and ¬F are all wffs
(resp. action wffs).

Definition 1 If F is a wff (resp. action wff) and μ = [α, β] ⊆ [0, 1], then F : μ is called
a p-annotated wff (resp. ap-annotated—short for “action probabilistic” annotated
wff). μ is called the p-annotation (resp. ap-annotation) of F.

Without loss of generality, throughout this paper we will assume that F is in
conjunctive normal form (i.e. it is written as a conjunction of disjunctions). Notice
that wffs are annoted with probability intervals rather than point probabilities. There
are three reasons for this. (1) In many cases, we are told that an action formula F is
true in state s with some probability p plus or minus some margin of error e—this
naturally translates into the interval [p − e, p + e]. (2) As shown by [6, 17], if we do
not know the relationship between events e1, e2, even if we know point probabilities
for e1, e2, we can only infer an interval for the conjunction and disjunction of e1, e2.
(3) Interval probabilities generalize point probabilities anyway, so our work is also
relevant to point probabilities.

298 S. Khuller et al.

Definition 2 (ap-rules) If F is an action formula, A1, A2, ..., Am are action atoms,
B1, . . . , Bn are non-action atoms, and μ, μ1, ..., μm are ap-annotations, then
F : μ ← A1 : μ1 ∧ A2 : μ2 ∧ ... ∧ Am : μm ∧ B1 ∧ . . . Bm is called an ap-rule.
If this rule is named c, then Head(c) denotes F : μ, Bodyact(c) denotes A1 : μ1 ∧
A2 : μ2 ∧ ... ∧ Am : μm, and Bodystate(c) denotes B1 ∧ . . . Bn.

Intuitively, the above ap-rule says that an unnamed entity (e.g. a group g, a person
p etc.) will take action F with probability in the range μ if B1, . . . , Bn are true in the
current state (we will define this term shortly) and if the unnamed entity will take each
action Ai with a probability in the interval μi for 1 ≤ i ≤ n.

Definition 3 (ap-program) An action probabilistic logic program (ap-program for
short) is a finite set of ap-rules.

Figure 1 shows a small rule base consisting of some rules we have derived
automatically about Hezbollah using behavioral data from [22]. The behavioral data
in [22] has tracked over 300 terrorist groups for about 25 years from 1980 to 2004.
For each year, values have been gathered for about 150 measurable variables for
each group in the sample. These variables include conditions such as tendency to
commit assassinations and armed attacks, as well as background information about
the type of leadership, whether the group is involved in cross border violence, etc.
Our automatic derivation of these rules was based on a data mining algorithm we
have developed, as discussed in Section 7. We show four rules we have extracted for
the group Hezbollah in Fig. 1. For example, the third rule says that when Hezbollah
has a strong, single leader and its popularity is moderate, its propensity to conduct
armed attacks has been 42% to 53%. However, when it has had a standing military,
its propensity to conduct armed attacks is 93% to 100%.

Definition 4 (world/state) A world is any set of ground action atoms. A state is any
finite set of ground non-action atoms.

Example 1 Consider the ap-program from Fig. 1; there are two ground action
atoms: kidnap and armed_attacks, and there are therefore a total of 22 = 4 pos-
sible worlds. These are: w0 = ∅, w1 = {kidnap}, w2 = {armed_attacks}, and w3 =
{kidnap, armed_attacks}. The following are two possible states:

s1 = {statusMilitaryWing(standing), unDemocratic, internalConflicts},
s2 = {interOrganizationConf licts, orgPopularity(moderate)}

Fig. 1 Four simple rules for modeling the behavior of Hezbollah in certain situations

Action probabilistic logic programs 299

Note that both worlds and states are just ordinary Herbrand interpretations. As
such, it is clear what it means for a state to satisfy Bodystate.

Definition 5 Let � be an ap-program and s a state. The reduction of � w.r.t. s,
denoted by �s is {F : μ ← Bodyact | s satisfies Bodystate and F : μ ← Bodyact ∧
Bodystate is a ground instance of a rule in �}.

Note that �s never has any non-action atoms in it. The following is an example of
a reduction with respect to a state.

Example 2 Let � be the ap-program from Fig. 1, and suppose we have the following
state:

s = statusMilitaryWing(standing), unDemocratic, internalConf licts}
The reduction of � with respect to state s is:

�s = {kidnap : [0.60, 0.68], armed_attacks : [0.93, 1.0]}.

Key differences. The key differences between ap-programs and the PLPs of [16, 17]
are that (1) ap-programs have a bipartite structure (action atoms and state atoms)
and (2) they allow arbitrary formulas (including ones with negation) in rule heads
([16, 17] do not). They can easily be extended to include variable annotations and
annotation terms as in [16]. Likewise, as in [16], they can be easily extended to allow
complex formulas rather than just atoms in rule bodies. Due to space restrictions,
we do not do either of these in this paper. However, the most important difference
between our paper and [16, 17] is that this paper focuses on finding most probable
worlds, while those papers focus on entailment, which is a fundamentally different
problem.

Throughout this paper, we will assume that there is a fixed state s. Hence, once
we are given � and s, �s is fixed. We can associate a fixpoint operator T�s with �, s
which maps sets of ground ap-annotated wffs to sets of ground ap-annotated wffs as
follows. We first define an intermediate operator U�s(X).

Definition 6 Suppose X is a set of ground ap-wffs. We define U�s(X) = {F : μ | F :
μ ← A1 : μ1 ∧ · · · ∧ Am : μm is a ground instance of a rule in �s and for all 1 ≤
j ≤ m, there is an A j : η j ∈ X such that η j ⊆ μ j}.

Intuitively, U�s(X) contains the heads of all rules in �s whose bodies are deemed
to be “true” if the ap-wffs in X are true. However, U�s(X) may not contain all ground
action atoms. This could be because such atoms do not occur in the head of a rule—
U�s(X) never contains any action wff that is not in a rule head. The following is an
example of the calculation of U�s(X).

Example 3 Consider the simple program depicted in Fig. 2, and let X =
{d : [0.5, 0.55]}. In this case, U�s(X) = {d : [0.52, 0.82], b ∧ a : [0.55, 0.69]}.

In order to assign a probability interval to each ground action atom, we use
the same procedure followed in [16]. We use U�s(X) to set up a linear program
CONSU (�, s, X) as follows.

300 S. Khuller et al.

Fig. 2 A simple example of an ap-program with action atoms in the body of the rules, which is
already reduced with respect to a certain state

Definition 7 Let � be an ap-program and s be a state. For each world wi, let pi be a
variable denoting the probability of wi being the “real world”. As each wi is just an
Herbrand interpretation (where action symbols are treated like predicate symbols),
the notion of satisfaction of an action formula F by a world w, denoted by w 	→ F,
is defined in the usual way.

1. If F : [�, u] ∈ U�s(X), then � ≤ �wi 	→F pi ≤ u is in CONSU (�, s, X).
2. �wi pi = 1 is in CONSU (�, s, X).

We refer to these as constraints of type (1) and (2), respectively.

These constraints are similar to those of [6, 7]. The following is an example of how
these constraints look.

Example 4 Let � be the ap-program from Fig. 2, and X = {d : [0.5, 0.55]}. The
possible worlds are: w0 = ∅, w1 = {d}, w2 = {b}, w3 = {a}, w4 = {d, b}, w5 = {d, a},
w6 = {b , a}, and w7 = {d, b , a}. In this case, the linear program CONSU (�, s, X)

contains the following constraints:

0.52 ≤ p1 + p4 + p5 + p7 ≤ 0.82

0.55 ≤ p6 + p7 ≤ 0.69

p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1

To find the lower (resp. upper) probability of a ground action atom A, we merely
minimize (resp. maximize) �wi 	→A pi subject to the above constraints. We also do the
same w.r.t. each formula F that occurs in U�s(X)—this is because this minimization
and maximization may sharpen the bounds of F. Let �(F) and u(F) denote the results
of these minimizations and maximizations, respectively. Our operator T�s(X) is then
defined as follows.

Definition 8 Suppose � is an ap-program, s is a state, and X is a set of ground
ap-wffs. Our operator T�s(X) is then defined to be

{F : [�(F), u(F)] | (∃μ) F : μ ∈ U�s(X)} ∪
{A : [�(A), u(A)] | A is a ground action atom}.

Thus, T�s(X) works in two phases. It first takes each formula F : μ that occurs
in U�s(X) and finds F : [�(F), u(F)] and puts this in the result. Once all such F :
[�(F), u(F)]’s have been put in the result, it tries to infer the probability bounds of
all ground action atoms A from these F : [�(F), u(F)]’s. The following is an example
of this process.

Action probabilistic logic programs 301

Example 5 Consider the ap-program presented in Fig. 2, with the same state s. For
T�s ↑ 0, we have X = ∅. We first obtain U�s(∅) = {d : [0.52, 0.82]}. Then, T�s(∅) =
{d : [0.52, 0.82], a : [0, 1.0], b : [0, 1.0]}.

To obtain T�s ↑ 1 = T�s(T�s ↑ 0), let X = T�s(∅). Then we have:

U�s(X) = {d : [0.52, 0.82], b ∧ a : [0.55, 0.69]}, and

T�s(X) = {d : [0.52, 0.82], b ∧ a : [0.55, 0.69]}
∪ {A : [�(A), u(A)] | A is a ground action atom}.

In order to infer the probability bounds for all ground action atoms, we need to
build a linear program using the formulas from U�s(X) and solve it for each ground
atom by minimizing and maximizing the objective function of the probabilities
of the worlds that satisfy each atom. The possible worlds are: w0 = ∅, w1 = {d},
w2 = {b}, w3 = {a}, w4 = {d, b}, w5 = {d, a}, w6 = {b , a}, and w7 = {d, b , a}. The
linear program then consists of the following constraints:

0.52 ≤ p1 + p4 + p5 + p7 ≤ 0.82

0.55 ≤ p6 + p7 ≤ 0.69

p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1

In order to obtain �(d) and u(d) (that is, bound the probability value for
action atom d), we minimize and then maximize the objective function p1 + p4+
p5 + p6 subject to the linear program above, obtaining: d : [0.52, 0.82]. Simi-
larly, we use the objective function p3 + p5 + p6 + p7 for atom a, obtaining
a : [0.55, 1.0], and p2 + p4 + p6 + p7 for b , obtaining b : [0.55, 1.0]. Therefore, we
have finished calculating T�s ↑ 1, and we have obtained T�s(X) = {d : [0.52, 0.82],
b ∧ a : [0.55, 0.69], a : [0.55, 1.0], b : [0.55, 1.0]}.

Similar computations with X = T�s(T�s(∅)) allows us to conclude that T�s ↑ 2 =
T�s ↑ 1, which means we reached the fixed point.

A frequent critique of the approach presented thus far is that the lower bound
and upper bounds computed for each world by minimizing and maximizing the
probability of a world subject to the constraints associated with the ap-program can
be very wide. This is true, but it reflects the fact that the linear program set up earlier
reflects complete lack of knowledge about the dependencies between the events
mentioned in the ap-program. For instance, if we additionally know that action atom
a and b are independent, then we can expand our set of constraints to include this by
inserting the constraint:

(�wi|=a pi) × (�w j|=b p j) = �wr |=a ∧ b pr.

Of course, we note that such constraints may be nonlinear.
Given two sets X1, X2 of ap-wffs, we say that X1 ≤ X2 iff for each F1 : μ1 ∈ X1,

there is an F1 : μ2 ∈ X2 such that μ2 ⊆ μ1. Intuitively, X1 ≤ X2 may be read as “X1

is less precise than X2.” The following straightforward variation of similar results
in [16] shows that

Proposition 1

1. T�s is monotonic w.r.t. the ≤ ordering.
2. T�s has a least fixpoint, denoted Tω

�s
.

302 S. Khuller et al.

3 Maximally probable worlds

We are now ready to introduce the problem of, given an ap-program and a current
state, finding the most probable world. As explained through our Hezbollah example,
we may be interested in knowing what combinations of actions a group might take in
a given situation.

Definition 9 (lower/upper probability of a world) Suppose � is an ap-program and
s is a state. The lower probability, low(wi) of a world wi is defined as: low(wi) =
minimize pi subject to CONSU (�, s, Tω

�s
). The upper probability, up(wi) of world

wi is defined as up(wi) = maximize pi subject to CONSU (�, s, Tω
�s

).

Thus, the lower probability of a world wi is the lowest probability that that world
can have in any solution to the linear program. Similarly, the upper probability for
the same world represents the highest probability that that world can have. It is
important to note that for any world w, we cannot exactly determine a point proba-
bility for w. This observation is true even if all rules in � have a point probability
in the head because our framework does not make any simplifying assumptions
(e.g. independence) about the probability that certain things will happen.

In this section, we include two simple results that state that checking if the low
(resp. up) probability of a world exceeds a given bound (called the BOUNDED-
LOW and BOUNDED-UP problems respectively) is intractable. The hardness
results, in both cases, are by reduction from the problem of checking consistency
of a probabilistic logic program (PLP-CONS) whose proof is given below.

Proposition 2 The problem of deciding if a probabilistic logic program � is consistent
in a state s is N P-hard.

Proof We will perform a reduction of the boolean formula satisfiability problem
(SAT) to checking consistency of � with respect to a given state s (PLP-CONS).
In order to perform the reduction, we must define a polynomial time computable
function R that maps an arbitrary boolean formula f into an instance of PLP-
CONS such that f is satisfiable if and only if CONSU (�, s, Tω

�s
) is solvable (note

that CONSU (�, s, Tω
�s

) is solvable if and only if � is consistent in state s; this well
known property was proved in [17]). The PLP-CONS instance will correspond to a
simplified version of the problem, in which only one rule is present, and the upper
and lower probabilities are equal to 1. Define:

R(f) = { f : [1, 1] ←}
to be the PLP built from an arbitrary ground formula f . It is clear that this
transformation can be performed in polynomial time. We will now prove that
f is satisfiable if and only if � is consistent with respect to the empty state,
(i.e., CONSU (R(f),∅, Tω

�s
) is solvable):

– f is satisfiable ⇒ CONSU (�, s, Tω
�s

) is solvable: By hypothesis, there exists an
assignment of variables in f such that f is true. We use such values to build
a world w such that formula f is satisfied by w. Because the upper and lower
probabilities in the rule are both 1, we can assign 1 to pw, the probability of

Action probabilistic logic programs 303

world w, whereas every other world receives probability 0. We have therefore
constructed a solution to the constraints that proves that � is consistent in s.

– CONS(�, s, Tω
�s

) is solvable ⇒ f is satisfiable: By hypothesis, there exists a
solution to CONS(�, s, Tω

�s
) that assigns a probability pwi to each world that

satisfies f . Because the set of worlds satisfying f is nonempty, this means it
is possible to find at least one assignment for the variables in f such that f is
satisfied.

We have therefore shown that SAT is polynomial time reducible to checking
consistency in PLP, and therefore this problem is N P-hard. ��

Proposition 3 (BOUNDED-LOW complexity) Given a ground ap-program �,
a state s, a world w, and a probability threshold pth, deciding if low(w) ≥ pth is
N P-hard.

Proof We will reduce the PLP-CONS problem to the problem of deciding if a certain
world w is such that low(w) ≥ pth for a certain probability value pth. Because PLP-
CONS was proven to be N P-hard above, this reduction will prove that BOUNDED-
LOW is N P-hard as well.

Given an instance of PLP-CONS consisting of a program � and a state s, we build
an instance of BOUNDED-LOW, consisting of an ap-program �′, a state s′, a world
w, and a probability threshold pth in the following manner: program �′ is equal to
� and state s′ is equal to s, world w is an arbitrary world, and pth = 0. We must now
show that this transformation yields a reduction by proving that � is consistent in
state s if and only if low(w) ≥ 0 with respect to �′ and state s′:

– � is consistent ⇒ low(w) ≥ 0 with respect to �′ in state s′: If � is consistent, this
means that CONSU (�, s, Tω

�s
) is solvable. Therefore, it is clear that any possible

world will receive a probability value greater than or equal to zero.
– low(w) ≥ 0 with respect to �′ in state s′ ⇒ � is consistent: If low(w) ≥ 0 with

respect to �′ in state s′, this means that w has received a probability value
greater than or equal to zero, subject to CONSU (�, s, Tω

�s
). This is only possible

if CONSU (�, s, Tω
�s

) is solvable, which means that � is consistent.

Note that, whenever � is inconsistent, the value of low(w) is undefined, for any
possible world w. To complete the proof, we note that the transformation from a
PLP-CONS instance to a BOUNDED-LOW instance can be done in polynomial
time with respect to the size of the ap-program given for PLP-CONS. ��

It is easy to show that, for ground (or propositional) ap-programs, BOUNDED-
LOW is in EXPTIME as long as we assume that we are only interested in rule heads
with at most k atoms in them for some arbitrary, but fixed constant k. Intuitively, this
requirement ensures that we do not try to find arbitrarily long (unboundedly long)
combinations of ground atoms.

Proposition 4 Suppose � is a propositional (or ground) ap-program, and suppose
T� only considers formulas F containing k atoms or less in them. Then, BOUNDED-
LOW is in EXPTIME.

304 S. Khuller et al.

Proof The result follows directly from the following observations. First, we can
compute Tω

�s
in exponential time as follows. Computing the U�() operator is

clearly polynomial. CONSU (�, s, X) takes exponential time to set up because it has
an exponential number of variables. As a consequence, solving CONSU (�, s, X)

takes exponential time in the size of the input (because solving linear programs
is polynomial in the size of the linear program). The fixpoint operator terminates
after a maximum of an exponential number of iterations because the only linear
programs to be solved are those associated with sets of heads of ap-rules, and each
such linear program is solved at most once per clause. The problem is therefore in
EXPTIME. ��

Throughout the rest of this paper, we assume that the restrictions in the above
proposition applies to all complexity results.

Proposition 5 (BOUNDED-UP complexity) Given a ground ap-program �, a state
s, a world w, and a probability threshold pth, deciding if up(w) ≤ pth is N P-hard.

Proof This proof is very similar to the one for the N P-hardness of BOUNDED-
LOW. As before, we will reduce the PLP-CONS problem to the problem of deciding
if a certain world w is such that up(w) ≤ pth for a certain probability value pth.
Because PLP-CONS was proven to be N P-hard above, this reduction will prove that
BOUNDED-UP is N P-hard as well.

Given an instance of PLP-CONS consisting of a program � and a state s, we build
an instance of BOUNDED-UP, consisting of an ap-program �′, a state s′, a world
w, and a probability threshold pth in the following manner: program �′ is equal to
� and state s′ is equal to s, world w is an arbitrary world, and pth = 1. We must now
show that this transformation yields a reduction by proving that � is consistent in
state s if and only if up(w) ≤ 1 with respect to �′ and state s′:

– � is consistent ⇒ up(w) ≤ 1 with respect to �′ in state s′: If � is consistent, this
means that CONSU (�, s, Tω

�s
) is solvable. Therefore, it is clear that any possible

world will receive a probability value less than or equal to one.
– up(w) ≤ 1 with respect to �′ in state s′ ⇒ � is consistent: If up(w) ≤ 0 with

respect to �′ in state s′, this means that w has received a probability value
less than or equal to one, subject to CONSU (�, s, Tω

�s
). This is only possible if

CONSU (�, s, Tω
�s

) is solvable, which means that � is consistent.

Note that, whenever � is inconsistent, the value of up(w) is undefined, for any
possible world w. To complete the proof, we note that the transformation from a
PLP-CONS instance to a BOUNDED-UP instance can be done in polynomial time
with respect to the size of the ap-program given for PLP-CONS. ��

Proposition 6 BOUNDED-UP is in EXPTIME.

Proof Analogous to the proof of Proposition 4 ��

An open problem is to characterize the precise complexity of the BOUNDED-
LOW and BOUNDED-UP problems.

Action probabilistic logic programs 305

The MPW Problem. The most probable world problem (MPW for short) is the
problem where, given an ap-program � and a state s as input, we are required to
find a world wi where low(wi) is maximal.2

4 Exact algorithms for finding a maximally probable world

In this section, we develop algorithms to find the most probable world for a given
ap-program and a current state. As the above results show us, there is no unique
probability associated with a world w; the probability could range anywhere between
low(w) and up(w). Hence, in the rest of this paper, we will assume the worst case,
i.e. the probability of world w is given by low(w). We will try to find a world for which
low(w) is maximized.

In this section, we study the following problem: given an ap-program � and a state
s, find a world w such that low(w) is maximized. If we replace low(w) by up(w), the
techniques to find a world w such that up(w) is maximal are similar (though not all
apply directly). There may also be cases in which we are interested in using some
other value (e.g. the average of low(w) and up(w) and so on).

A Naive Algorithm. The naive algorithm to find the most probable world is the
direct implementation of the definition of the problem, and it basically consists of
the steps described in Fig. 3.

The Naive algorithm does a brute force search after computing Tω
�s

. It finds the
low probability for each world and chooses the best one. Clearly, we can use it
to solve the MPW-Up problem by replacing the minimization in Step 2(a) by a
maximization.

There are two key problems with the naive algorithm. The first problem is that
in Step (1), computing Tω

�s
is very difficult. When some syntactic restrictions are

imposed, this problem can be solved without linear programming at all as in the case
when � is a probabilistic logic program (or p-program as defined in [17]) where all
heads are atomic.

The second problem is that in Step 2(a), the number of (linear program) variables
in CONSU (�, s, Tω

�s
) is exponential in the number of ground atoms. When this

number is, say 20, this means that the linear program contains over a million
variables. However, when the number is say 30 or 40 or more, this number is
inordinately large. In this paper, when we say that we are focusing on lowering the
computation time of our algorithms, we are referring to improving Step 2(a).

In this section, we will present two algorithms, the HOP and the SemiHOP
algorithms, both of which can significantly reduce the number of variables in the
linear program by collapsing multiple linear programming variables into one. They
both stem from the basic idea that when variables always appear in certain groups
in the linear program, these groups can be collapsed into a single variable. As we
will see, the basic idea can lead to great savings, but being too ambitious in trying to

2A similar MPW-Up Problem can also be defined. The most probable world-up problem (MPW-Up)
is: given an ap-program � and a state s as input, find a world wi where up(wi) is maximal. Due to
space constraints, we only address the MPW problem.

306 S. Khuller et al.

Fig. 3 The naive algorithm for finding a most probable world

collapse all possible sets can be detrimental to our benefits; this last observation is
the root of the second algorithm.

4.1 HOP: head-oriented processing

We can do better than the naive algorithm without losing any precision in the
calculation of a most probable world. In this section we present the HOP algorithm,
prove its correctness, and propose an enhancement that also provably yields a most
probable world.

Given a world w, state s, and an ap-program �, let Sat(w) = {F | c is a ground
instance of a rule in �s and Head(c) = F : μ and w 	→ F}. Intuitively, Sat(w) is the
set of heads of rules in �s (without probability annotations) whose heads are satisfied
by w.

Definition 10 Suppose � is an ap-program, s is a state, and w1, w2 are two worlds.
We say that w1 and w2 are equivalent, denoted w1 ∼ w2, iff Sat(w1) = Sat(w2).

In other words, we say that two worlds are considered equivalent if and only if
the two worlds satisfy the formulas in the heads of exactly the same rules in �s. It is
easy to see that ∼ is an equivalence relation; we use [wi] to denote the ∼-equivalence
class to which a world wi belongs. The intuition for the HOP algorithm is given in
Example 6.

Example 6 Consider the setCONSU (�, s, Tω
�s

) of constraints. For example, consider
a situation where CONSU (�, s, Tω

�s
) contains just the three constraints below:

0.7 ≤ p2 + p3 + p5 + p6 + p7 + p8 ≤ 1 (1)

0.2 ≤ p5 + p7 + p8 ≤ 0.6 (2)

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1 (3)

In this case, each time one of the variables p5, p7, or p8 occurs in a constraint,
the other two also occur. Thus, we can replace these by one variable (let’s call it y

Action probabilistic logic programs 307

for now). In other words, suppose y = p5 + p7 + p8. Thus, the above constraints can
be replaced by the simpler set

0.7 ≤ p2 + p3 + p6 + y ≤ 1

0.2 ≤ y ≤ 0.6

p1 + p2 + p3 + p4 + p6 + y = 1

The process in the above example leads to a reduction in the size of the set
CONSU (�, s, Tω

�s
). Moreover, suppose we minimize y subject to the above con-

straints. In this case, the minimal value is 0.2. As y = p5 + p7 + p8, it is immediately
obvious that the low probability of any of the pi’s is 0. Note that we can also group
p2, p3, and p6 together in the same manner.

We build on top of this intuition. The key insight here is that for any ∼-equivalence
class [wi], the entire summation �w j∈[wi] pj either appears in its entirety in a constraint
of type (1) in CONSU (�, s, Tω

�s
) or does not appear at all. This is what the next result

states.

Proposition 7 Suppose � is an ap-program, s is a state, and [wi] is a ∼-equivalence
class. Then for each constraint c of the form

� ≤ �wr 	→F pr ≤ u (4)

in CONSU (�, s, Tω
�s

), either every variable in the summation �w j∈[wi] pj appears in the
summation in (4) above or no variable in the summation �w j∈[wi] pj appears in the
summation in (4).

Proof Let c be a constraint of the form (4) and suppose for a contradiction that
there exist two variables, px and py such that wx, wy ∈ [wi] and px appears in the
constraint c, while py does not. In this case, wx 	→ F and wy � 	→ F. However, in this
case, wx �∼ wy, and therefore cannot be in the same equivalence class [wi], yielding a
contradiction. ��

Example 7 Here is a toy example of this situation. Suppose �s consists of the two
very simple rules:

(a ∨ b ∨ c ∨ d) : [0.1, 0.5] ← .

(a ∧ e) : [0.2, 0.5] ← .

Assuming our language contains only the predicate symbols a, b , c, d, e, there are
32 possible worlds. However, what the preceding proposition tells us is that we
can group the worlds into four categories. Those that satisfy both the above head
formulas (ignoring the probabilities), those that satisfy the first but not the second
head formula, those that satisfy the second but not the first head formula, and those
that satisfy neither. This is shown graphically in Fig. 4, in which pi is the variable
in the linear program corresponding to world wi. For simplicity, we numbered the
worlds according to the binary representation of the set of atoms. For instance, world
{a, c, d, e} is represented in binary as 10111, and thus corresponds to w23. Note that
only three variables appear in the new linear constraints; this is because it is not
possible to satisfy ¬(a ∨ b ∨ c ∨ d ∨ e) and (a ∧ e) at the same time.

308 S. Khuller et al.

Fig. 4 Reducing CONSU (�, s, Tω
�s

) by grouping variables. The new LPs are called
RedCONSU (�, s, Tω

�s
) and S_RedCONSU (�, s, Tω

�s
), as presented in Definitions 11 and 13

Effectively, what we have done is to modify the number of variables in the linear
program from 2card(Lact) to 2card(�s)—a saving that can be significant in some cases
(though not always, and in some cases it can actually result in an increase in size).
The number of constraints in the linear program stays the same. Formally speaking,
we define a reduced set of constraints as follows.

Definition 11 (RedCONSU (�, s, Tω
�s

)) For each equivalence class [wi],
RedCONSU (�, s, Tω

�s
) uses a variable p′

i to denote the summation of the probability
of each of the worlds in [wi]. For each ap-wff F : [�, u] in Tω

�s
, RedCONSU (�, s, Tω

�s
)

contains the constraint:

� ≤ �[wi]	→F p′
i ≤ u.

Here, [wi] 	→ F means that some world in [wi] satisfies F. In addition,
RedCONSU (�, s, Tω

�s
) contains the constraint

�[wi] p′
i = 1.

When reasoning about RedCONSU (�, s, Tω
�s

), we can do even better than men-
tioned above. The result below states that to find the most probable world, we only
need to look at the equivalence classes that are of cardinality 1.

Theorem 1 Suppose � is an ap-program, s is a state, and wi is a world. If
card([wi]) > 1, then low(wi) = 0.

Proof Immediate, by observing that there are no restrictions on the values assigned
to the variables that correspond to worlds in the same ∼-class. If there is more than
one world in a class [wx], there is always a solution that assigns zero to each variable
pi such that wi ∈ [wx], and therefore low(wi) = 0. ��

Action probabilistic logic programs 309

Fig. 5 The head-oriented processing (HOP) algorithm

Going back to Example 6, we can conclude that low(w5)= low(w7)= low(w8)=0.
As a consequence of this result, we can suggest the head oriented processing (HOP)
algorithm (Fig. 5) which works as follows. First we present some simple notation.
Let FixedWff (�, s) = {F | F : μ ∈ U�s(Tω

�s
)}. Given a set X ⊆ FixedWff (�, s), we

define Formula(X,�, s) to be
∧

G∈X

G ∧
∧

G′∈FixedWff (�,s)−X

¬G′.

Here, Formula(X,�, s) is the formula which says that X consists of all and
only those formulas in FixedWff (�, s) that are true. Given two sets X1, X2 ⊆
FixedWff (�, s), we say that X1 ∼ X2 if and only if Formula(X1,�, s) and
Formula(X2, �, s) are logically equivalent.

Theorem 2 (correctness of HOP) Algorithm HOP is correct, i.e. it is guaranteed to
return a world whose low probability is greater than or equal to that of any other
world.

Proof We will prove this property in two stages:

– Soundness: We wish to show that if HOP returns a world wsol, then there is no
other world wi such that low(wi) > low(wsol). Suppose HOP does return wsol but
that there is a world wi such that low(wi) > low(wsol). Clearly, [wi] and [wsol]
must be different ∼-equivalence classes. In this case, step 3 of theHOP algorithm
will consider both these equivalence classes. As bestval is set to the highest value
of low(w j) for all equivalence classes [w j], it follows that low(wsol) ≤ low(wi),
yielding a contradiction.

– Completeness: We wish to show that if there exists a world wmax such that
low(wmax) ≥ low(wi)∀wi ∈ W , then HOP will return a world wsol such that
low(wsol) = low(wmax). Similar to the case made for soundness, if there exists
a world wmax with the highest possible low value, it is either in the same class as
the world that is returned by the algorithm, or in a different class. In the former
case, the world returned clearly has the same value as wmax; in the latter, this must

310 S. Khuller et al.

also be the case, since otherwise the algorithm would have selected the variable
corresponding to [wmax] instead.

This concludes the proof, and we therefore have that HOP is guaranteed to return
a world whose low probability is greatest. ��

Step 3(a) of the HOP algorithm is known as the UNIQUE-SAT problem—it can be
easily implemented via a SAT solver as follows.

1. If
∧

F∈X F ∧ ∧
G∈X̄ ¬G is satisfiable (using a SAT solver that finds a satisfying

world w) then

a. If
∧

F∈X F ∧ ∧
G∈X̄ ¬G ∧ (∨

a∈w ¬a ∨ ∨
a′∈w̄ a′) is satisfiable (using a SAT

solver) then return “two or more” (two or more satisfying worlds exist) else
return “exactly one”

2. else return “none.”

The following example shows how theHOP algorithm would work on the program
from Example 7.

Example 8 Consider the program from Example 7, and suppose X = {(a ∨ b ∨ c ∨
d ∨ e), (a ∧ e)}. In Step (3a), the algorithm will find that {a, d, e} is a model of
(a ∨ b ∨ c ∨ d ∨ e) ∧ (a ∧ e); afterwards, it will find {a, c, e} to be a model of (a ∨ b ∨
c ∨ d ∨ e) ∧ (a ∧ e) ∧ ((¬a ∨ ¬d ∨ ¬e) ∨ (b ∨ c)). Thus, X has more than one model
and the algorithm will not consider any of the worlds in the equivalence class induced
by X as a possible solution, which avoids solving the linear program for those worlds.

The worst-case complexity of HOP is, as its Naive counterpart, exponential.
However,HOP can sometimes (but not always) be preferable to the Naive algorithm.
The number of variables in RedCONSU (�, s, Tω

�s
) is 2card(�s), which is much smaller

than the number of variables in CONSU (�, s, Tω
�s

) when the number of ground rules
whose bodies are satisfied by state s is smaller than the number of ground atoms.
The checks required to find all the equivalence classes [Xi] take time proportional
to 22∗card(�s). Lastly, HOP avoids solving the reduced linear program for all the
non-singleton equivalence classes (for instance, in Example 8, the algorithm avoids
solving the LP three times). This last saving, however, comes at the price of solving
SAT twice for each equivalence class and the time required to find the [Xi]’s. We will
now explore a way in which we can trade off computation time against how many of
these savings we obtain, again without giving up obtaining an exact solution.

4.2 Enhancing HOP: the SemiHOP algorithm

A variant of theHOP algorithm, which we call the SemiHOP algorithm, tries to avoid
computing the full equivalence classes. As in the case of HOP, SemiHOP is also
guaranteed to return a most probable world. The SemiHOP algorithm avoids finding
pairs of sets that represent the same equivalence class, and therefore does not need
to compute the checks for logical equivalence of every possible pair, a computation
which can prove to be very expensive.

Action probabilistic logic programs 311

Proposition 8 Suppose � is an ap-program, s is a state, and X is a subset of
FixedWff (�, s). Then there exists a world wi such that {w | w 	→ Formula(X, �, s)} ⊆
[wi].

Proof Immediate from Definition 10. ��

We now define the concept of a subpartition.

Definition 12 A subpartition of the set of worlds of � w.r.t. s is a partition
W1, . . . , Wk where:

1.
⋃k

i=1 Wi is the entire set of worlds.
2. For each Wi, there is an equivalence class [wi] such that Wi ⊆ [wi].

The following result, which follows immediately from the preceding proposition,
says that we can generate a subpartition by looking at all subsets of FixedWff (�, s).

Proposition 9 Suppose � is an ap-program, s is a state, and {X1, . . . , Xk} is the
power set of FixedWff (�, s). Then the partition W1, . . . , Wk where Wi = {w | w 	→
Formula(Xi, �, s)} is a subpartition of the set of worlds of � w.r.t. s.

Proof Immediate from Proposition 8. ��

The intuition behind the SemiHOP algorithm is best presented by going back to
constraints (1) and (2) given in Example 6. Obviously, we would like to collapse all
three variables p5, p7, p8 into one variable y. However, if we were to just collapse
p7, p8 into a single variable y′, we would still reduce the size of the constraints
(through the elimination of one variable), though the reduction would not be
maximal (because we could have eliminated two variables). The SemiHOP algorithm
allows us to use subsets of equivalence classes instead of full equivalence classes. We
define a semi-reduced set of constraints as follows.

Definition 13 (S_RedCONSU (�, s, Tω
�s

)) Let W1, . . . , Wk be a subpartition of the
set of worlds for � and s. For each Wi, S_RedCONSU (�, s, Tω

�s
) uses a variable p	

i
to denote the summation of the probability of each of the worlds in Wi. For each
ap-wff F : [�, u] in Tω

�s
, S_RedCONSU (�, s, Tω

�s
) contains the constraint:

� ≤ �Wi 	→F p	
i ≤ u.

Here, Wi 	→ F implies that some world in Wi satisfies F. In addition,
S_RedCONSU (�, s, Tω

�s
) contains the constraint

�Wi p	
i = 1

Example 9 Returning to Example 6, S_RedCONSU (�, s, Tω
�s

) could contain the fol-
lowing constraints: 0.7 ≤ p2 + p3 + p5 + p6 + y′ ≤ 1, 0.2 ≤ p5 + y′ ≤ 0.6, and p1 +
p2 + p3 + p4 + p5 + p6 + y′ = 1 where y′ = p7 + p8.

The pseudo-code for the SemiHOP algorithm is depicted in Fig. 6. The following
theorem ensures the correctness of this algorithm.

312 S. Khuller et al.

Fig. 6 The SemiHOP algorithm

Theorem 3 (correctness of SemiHOP) Algorithm SemiHOP is correct, i.e. it is
guaranteed to return a world whose low probability is greater than or equal to that
of any other world.

Proof The proof is completely analogous to that of Theorem 2, with the only dif-
ference in this case being that some of the equivalence classes will be partitioned. ��

The key advantage of SemiHOP over HOP is that we do not need to con-
struct the set [wi] of worlds, i.e. we do not need to find the equivalence
classes [wi]. This is a potentially big saving because there are 2n possible
worlds (where n is the number of ground action atoms) and finding the equiv-
alence classes can be expensive. However, this advantage comes with a draw-
back, since the size of the set S_RedCONSU (�, s, Tω

�s
) can be bigger than the

size of the set RedCONSU (�, s, Tω
�s

). It is hard to quantify how much bigger
S_RedCONSU (�, s, Tω

�s
) is w.r.t. RedCONSU (�, s, Tω

�s
)—in general, the more logi-

cally equivalent rule heads we have, the more unnecessary variables will be included
in S_RedCONSU (�, s, Tω

�s
).

5 The binary heuristic

In this section, we introduce a heuristic called the Binary Heuristic that can be utilized
in conjunction with any of the three exact algorithms described thus far (Naive,HOP,
and SemiHOP) in the paper. The basic idea behind the Binary Heuristic is to limit
the number of variables in the linear programs associated with the Naive, HOP, and
SemiHOP algorithms to a fixed number k that is chosen by the user.

Suppose we use VNaive,VHOP, and VSemiHOP to denote the set of variables
occurring in the linear programs CONSU (�, s, Tω

�s
), RedCONSU (�, s, Tω

�s
) and

S_RedCONSU (�, s, Tω
�s

), respectively. Note that all these linear programs contain
two kinds of constraints:

– Interval constraints which have the form � ≤ pi1 + · · · + pim ≤ u and
– A single equality constraint of the form p1 + · · · + pn = 1.

Action probabilistic logic programs 313

Let Vk
Naive,Vk

HOP,Vk
SemiHOP be some subset of k variables from each of these sets,

respectively. Let CONS be one of CONSU (�, s, Tω
�s

), RedCONSU (�, s, Tω
�s

), or
S_RedCONSU (�, s, Tω

�s
). We now construct a linear program CONS′ from CONS

as follows.

– For all constraints of the form

� ≤ pi1 + · · · + pim ≤ u

remove all variables in the summation that do not occur in the selected set of k
variables and re-set the lower bound to 0.

– For the one constraint of the form p1 + · · · + pn = 1, remove all variables in the
summation that do not occur in the selected set of k variables and replace the
equality “=” by “≤”.

Example 10 Consider the program from Example 7, and suppose m = 10 and CONS
refers to the constraints associated with the naive algorithm which has 32 worlds
altogether. Then, we can select a sample of ten worlds such as

Wm = {w2, w4, w8, w10, w12, w16, w18, w22, w23, w25}
Now, CONS′

(�, s, Tω
�s

) contains the following constraints:

0 ≤ p2 + p4 + p8 + p10 + p12 + p16 + p18 + p22 + p23 + p25 ≤ 0.5

0 ≤ p23 + p25 ≤ 0.5

p2 + p4 + p8 + p10 + p12 + p16 + p18 + p22 + p23 + p25 ≤ 1

Theorem 4 Let � be an ap-program, m > 0 be an integer, and s be a state. Then
every solution of CONS is also a solution of CONS′ where CONS is one of
CONSU (�, s, Tω

�s
), RedCONSU (�, s, Tω

�s
), or S_RedCONSU (�, s, Tω

�s
) and CONS′

is constructed according to the above construction.

Proof Suppose σ is a solution to CONS. For any interval constraint

� ≤ pi1 + · · · + pim ≤ u

deleting some terms from the summation preserves the upper bound and clearly the
summation still is greater than or equal to 0. Hence, σ is a solution to the modified
interval constraint inCONS′. For the equality constraint p1 + . . . + pn = 1, removing
some variables from the summation causes the resulting sum (under the solution σ)
to be less than or equal to 1 and hence the corresponding constraint in CONS′ is
satisfied by σ . ��

A major problem with the above result is that CONS′ is always satisfiable because
setting all variables to have value 0 is a solution. The binary algorithm tries to tighten
the lower bound in the interval constraints involved so that we have a set of solutions
that more closely mirror the original set. It does this by looking at each interval
constraint in CONS′ and trying to set the lower bound of that constraint first to
�/2 where � is the lower bound of the corresponding constraint in CONS. If the
resulting set of constraints is satisfiable, it increases it to 3�/4, otherwise it reduces it
to �/4. This is repeated for different interval constraints until reasonable tightness is

314 S. Khuller et al.

achieved. It should be noted that the order in which the constraints are processed
is important—different orders can lead to different CONS′ being generated. The
detailed algorithm is shown in Fig. 7. The algorithm is called with �′ = Tω

�s
, and

CONS equal to one of CONSU , RedCONS, or S_RedCONS.
The binary algorithm takes a chance. Rather than use a very crude estimate of the

lower bound in the constraints (such as 0, the starting point), it tries to “pull” the
lower bounds as close to the original lower bounds as possible in the expectation that
the revised linear program is closer in spirit to the original linear program. Here is an
example of this process.

Example 11 Consider the following very simple program:

a ∧ b : [0.8, 0.9] ← .

a ∧ c : [0.2, 0.3] ← .

Fig. 7 The binary heuristic algorithm

Action probabilistic logic programs 315

LetW = {w0 = ∅, w1 = {a}, w2 = {b}, w3 = {c}, w4 = {a, b}, w5 = {a, c}, w6 = {b , c},
w7 = {a, b , c}}, but suppose m = 4 and we select a sample of four worlds Wm =
{w0, w2, w6, w7}. Now, assuming s = ∅, CONS′

(�, s, Tω
�s

) contains the following
constraints:

0 ≤ p7 ≤ 0.9

0 ≤ p7 ≤ 0.3

p0 + p2 + p6 + p7 ≤ 1

which is clearly solvable, but yielding the all-zero solution. The binary heuristic will
then modify the first constraint so that its lower bound is 0.4 and, since this new
program is unsolvable, will subsequently adjust it to 0.2. At this point, the program
is now back to being solvable, and one more iteration leaves the lower bound at
(0.4 + 0.2)/2 = 0.3, which results once again in a solvable program. At this point, we
decide to stop, and the final value of the lower bound is thus 0.3. The algorithm then
moves on to the following constraint, and adjusts its lower bound first to 0.1 and then
to 0.15, and decides to stop. The final set of constraints is then:

0.3 ≤ p7 ≤ 0.9

0.15 ≤ p7 ≤ 0.3

p0 + p2 + p6 + p7 ≤ 1

In general, in the experiments conducted in this paper, we construct CONS′ by
randomly sampling worlds. It would be interesting to see if there are techniques
which would use non-random sampling and produce higher accuracy within a fixed
computation time window. This will be the subject of some of our future work.

6 Towards parallel algorithms

In the previous sections we have described several algorithms that can be used to
solve the maximally probable worlds problem. However, even with the given simpli-
fications and heuristic approximation algorithms, the computation time and memory
requirements do not always allow us to achieve the desired level of performance. In
this section, we will present various parallel versions of the the sequential algorithms
presented earlier. Parallelism will not only reduce the computation time of the
algorithms for finding the most probable worlds, but will also allow us to examine
a greater number of worlds, permitting analysis of larger ap-programs, and possibly
improving the accuracy of the end result.

6.1 Parallelism for reducing computation time

All of our algorithms given above lend themselves to being parallelized in a
straightforward way. This new class of algorithms, the P-MPW (Parallel Maximally
Probable World) algorithms, operate identically to the serial algorithms, except that
the computation of low(wi) or up(wi) for all of the worlds wi is distributed among n
nodes of a computing cluster such that m worlds at a time are given to each node.
Figure 8 contains the basic P-MPW algorithm in pseudo code.

316 S. Khuller et al.

Fig. 8 The P-MPW algorithm. This is the general parallel algorithm for computing the most
probable worlds. The variable remainingVars is a stack containing the j sets of variables of size
m; divideVariables is a procedure that performs the division of CONS into these sets

The number m of worlds for which to compute the low or up values can be
determined in several ways. The most obvious is to simply divide the problem evenly
across all of the n nodes such that m = |CONSU (�,s,Tω

�s)|
n where |CONSU (�, s, Tω

�s
)| is

the number of variables in CONSU (�, s, Tω
�s

).
The CONS parameter of the P-MPW algorithm can be either CONSU (�, s, Tω

�s
),

RedCONSU (�, s, Tω
�s

), S_RedCONSU (�, s, Tω
�s

), or the CONS′ returned by the
binary heuristic. The basic P-MPW and the PAMPW algorithms allow for, in the
best case, a computation time improvement of up to a factor of n, where n is
the number of nodes in the cluster.

6.2 Parallelism for improving solution accuracy of heuristics

We can also utilize parallel algorithms to improve the quality of the final solutions.
In this section we will describe explicitly parallel algorithms that are able to take into
account additional samples of worlds for the heuristic approximations, propagating
the most probable worlds from each sample throughout the successive computations
and allowing more thorough comparisons between the most probable worlds found
by each iteration of the parallel computation.

The first algorithm, PAMPW-MS (parallel approximation of the maximally proba-
ble worlds—multi-sample), allows us to examine a greater proportion of the possible
worlds in computing the most probable world. With this method, each parallel
computation investigates a distinct sample of possible worlds for the binary heuristic
constraint selection algorithm; the resulting most probable worlds from each sample
are then compared to find the most probable world overall. Using the PAMPW-MS
algorithm we are able to look at larger samples of the possible worlds and thereby
have a better chance of finding an approximate solution that is more accurate with

Action probabilistic logic programs 317

Fig. 9 The PAMPW-MS algorithm. This is a parallel algorithm for computing an approximation of
the most probable world using the binary heuristic. On each node, the binary heuristic algorithm is
used to select a different reduced set of constraints containing r variables. The most probable world
is then that with the maximum low probability across all of the nodes

respect to the solutions returned by the naive,HOP orSemiHOP algorithms. Figure 9
contains pseudo code for the PAMPW-MS algorithm.

Using PAMPW-MS we can further generalize the functionality of the algorithm
to find the k most probable worlds from each node and compare these sets of worlds
to find the k worlds that are the most probable overall.

To further increase our ability to examine a larger sample of the possible worlds,
we have also developed an iterative version of the PAMPW-MS algorithm, called
the iPAMPW-MS. In iPAMPW-MS, we first compute the k most probable worlds
on each node of the cluster as described in PAMPW-MS. Then, we again generate
a set of constraints for each node, propagating the k most probable worlds from
the first iteration into the second sample set. For example, if our world selection
method selects 1,000 worlds and k is chosen to be 20, then in the second iteration
we only select 980 worlds and automatically include the 20 most probable worlds
from previous computation. Using this new set of constraints, the k most probable
worlds are again computed and propagated into the next iteration. We continue this
process until we have completed I iterations of the algorithm, choosing the final k
most probable worlds from the last sets of k obtained across all processors. This
iterative process allows us to progressively refine the solution set of the k most
probably worlds, improving the accuracy of the approximation heuristic algorithms.
The steps in the iPAMPW-MS algorithm are given in the pseudo code in Fig. 10.

6.3 Parallelism for increasing computation capacity

Last, but not least, rather than simply distributing the MPW algorithms and per-
forming the same computation in a shorter amount of time, we can also design a
“pleasantly parallel” algorithm for finding the most probable world of larger ap-
programs, i.e. programs with a larger number of ground atoms. To accomplish
this task, we must be able to distribute the set of constraints among nodes in a

318 S. Khuller et al.

Fig. 10 The iPAMPW-MS algorithm. This algorithm solves multiple iterations of the PAMPW-MS,
using the modConstraints function to perform the Binary heuristic, replacing k of the r constraints
with the variables in the set prevWorlds. The most probable world is then that with the maximum
low probability across all of the nodes and iterations

cluster, rather than simply dividing the task of computing low or up for each of the
worlds wi.

An ap-program can be represented as a graph in which the vertices are literals in
the program and an edge indicates that its two endpoints occur together in a ap-rule.

Definition 14 (Literal Relationship (LR) Graph) Let � be a ground ap-program.
The literal relationship graph G� = (V, E) is an undirected graph defined as follows.
V = {l | l is a literal (positive or negative) appearing in a rule in �}.
E = {(li, l j) | li, l j ∈ V and li and l j are either complementary literals or they both
appear in a rule in �}.
We use G� = (V, E) to denote the Literal Relationship Graph for the program �.

Consider the simple ap-program �:

(a ∨ b) : [0.7, 1] ← .

((a ∧ b) ∨ (b ∧ c)) : [0.2, 0.6] ← .

(a) : [0.4, 0.4] ← .

Figure 11 shows the LR-graph associated with �.
The rank of an LR-graph is the maximum cardinality of the connected compo-

nents of the graph.

Definition 15 (Rank of an LR-Graph) Let � be a ground ap-program, and G� =
(V, E) be the LR-Graph for �. We say that graph G� has rank k, if k is the maximum
cardinality of any connected component in G�.

Action probabilistic logic programs 319

Fig. 11 The literal-
relationship graph G� for a
simple ap-program �

For example, when the rank of the LR-graph G� is 1, this means that all rules in
� are only literals, and there are no complementary literals. Note that the graph in
our example has rank 3. On the other hand, if we deleted the second probabilistic
statement from the program � for Fig. 11, we would have a graph of rank 2. Note
that we can compute the rank of an LR-graph in polynomial time (w.r.t. the size of
the graph), and we can also compute the LR-graph itself in polynomial time. As a
consequence, checking if the LR-graph’s rank is below some a priori set bound b is
a polynomial-time operation.

Each connected component c in an LR-graph G� represents a subprogram
�c of � that utilizes only the literals in that component. Therefore, each con-
nected component comprises a separate set of linear constraints CONS(�c, s, Tω

�s
),

RedCONSU (�c, s, Tω
�s

), S_RedCONSU (�c, s, Tω
�s

), or CONS′. By finding the maxi-
mally probable world in each component, we can compare these individual solutions
and find the maximally probable world across all components of the original set
of constraints for �. The PAMPW-LR algorithm uses this methodology to divide
a much larger ap-program into smaller pieces that can be computed in parallel.

Fig. 12 The PAMPW-LR Algorithm. This is a parallel algorithm for computing an approximation of
the most probable world. The variable components is a stack containing the j connected components
in G�; getComponents is a procedure that returns these connected components

320 S. Khuller et al.

On a cluster with n nodes, the PAMPW-LR algorithm assigns a connected com-
ponent of G� to each node and then computes the most probable world of each
component. The algorithm will then aggregate the results and return the most
probable world overall. While the PAMPW-LR approach does not provide any
time savings with regards to the computation time, it does allow the analysis of
much larger ap-programs that can be divided into computationally feasible parallel
components. Figure 12 contains pseudo code for the PAMPW-LR algorithm.

7 Applications of ap-programs

We have developed approximately 40 ap-programs in our lab to date that are
carefully constructed models of 40 different groups from around the world. The
groups modeled include tribes (e.g. Shinwari, Waziri, Mohmand tribes in along
the Pakistan/Afghanistan border), several terrorist groups (e.g. Hezbollah, Fatah
Revolutionary Council—Abu Nidal Organization, the Kurdish group PKK and
others), as well as political parties (e.g. Jamaat-i-Ulema Islami, Pakistan People’s
Party). For each of these groups, we identified a small set of actions that the group
has taken in the past. For each such action, we tried to find conditions that are good
predictors of when those groups would take those actions, and when they would not.
These led to rules in the ap-program syntax.

The rules themselves have been developed in three ways: by manually having
students (and in the case of about 20 groups, terrorism experts) code them, and by
automatically extracting them from certain data sets. We started with the manual
coding strategy and later transitioned to the use of an automatic extractor that works
on a specialized data set called the “Minorities at Risk Organizational Behavior”
data set [22]. This data set has identified around 150 parameters to monitor for about
300 groups around the world that are either involved in terrorism or are at risk of
becoming full-fledged terrorist organizations. The 150 attributes describe aspects
of these groups, such as whether or not the group engaged in violent attacks, if
financial or military support was received from foreign governments, and the type of
leadership the group has. The data was easy to divide into outcome conditions—or
actions that could be taken by the group (i.e. bombings, kidnappings, armed attacks,
etc.)—and environmental conditions (i.e. the type of leadership, the kind and amount
of foreign support, whether the group has a military wing, etc.). Values for these 150
parameters are available for up to 20 years per group, though it is less for some
groups (e.g. groups that have been around for a shorter duration). For each group,
MAROB provides a table whose columns correspond to the 150 parameters and the
rows correspond to the years.

The automated extraction has been applied thus far to about 15 groups (such as
Hezbollah, FRC-ANO, PKK, Baath Party, Kurdistan Democratic Party of Iran). The
automatic ap-program extraction (APEX) algorithm requires that we assume that
the MAROB columns can be divided into action parameters—those attributes which
will form the heads of the ap-rules—and environmental parameters—those attributes
that will appear in the body of the rules. The APEX algorithm for extracting ap-rules
consists of three main steps:

1. Select an action condition (an action parameter with an instantiated value) to be
the head of the rule,

Action probabilistic logic programs 321

2. Fix one environmental condition as part of the body of the rule,
3. Add varying combinations of the remaining environmental conditions to the

body to determine if significant correlations exist between the body conditions
and the outcome condition.

We then use the standard measurements of support and confidence from the
literature.

Definition 16 (Support) For an action condition A, an environmental condition E,
and a database DB, the support is defined as:

SA,E = |t s.t. t ∈ DB ∧ (A = true ∧ E = true)|
|DB| .

Definition 17 (Confidence) For an action condition A, an environmental condition
E, and a database DB, the confidence is defined as:

CA,E = |{t s.t. t ∈ DB ∧ (A = true ∧ E = true)}|
|{t s.t. t ∈ DB ∧ E = true}| .

The APEX algorithm calculates the difference between the confidence value pro-
duced by an environmental condition and by its negation. If this difference is above a
given threshold, then an ap-rule is extracted. To obtain the probability range for the
extracted rule, we use the confidence value initially obtained, plus/minus the standard
deviation σ of the values involved in its calculation.

Fig. 13 The APEX algorithm

322 S. Khuller et al.

The complete APEX Algorithm for a database DB with a set of action conditions
AC, environmental conditions EC, and confidence difference threshold t is summa-
rized in Fig. 13. Note that this algorithm is not a novel one, and simply performs
calculations to capture interesting variations in the data in order to build rules.

For instance, we have extracted approximately 14,000 ap-rules for Hezbollah.
Some examples of the ap-rules extracted from the data for Hezbollah are given in
Fig. 14.

Fig. 14 A sample of the rules extracted by APEX from the Hezbollah dataset. The atoms in the rules
are represented as a variable and its value. The English translation of each rule is also provided

Action probabilistic logic programs 323

8 Implementation and experiments

We have implemented several of the algorithms described in this paper—the naive,
HOP, SemiHOP, and the binary heuristic algorithms—using approximately 6,000
lines of Java code. The P-MPW algorithm has also been implemented, and is
described in more detail below. The binary heuristic algorithm was applied to each
of the CONSU (�, s, Tω

�s
), RedCONSU (�, s, Tω

�s
), and S_RedCONSU (�, s, Tω

�s
)

constraint sets; we refer to these approximations as the naivebin, HOPbin, and
SemiHOPbin algorithms respectively. Our experiments were performed on a Linux
computing cluster comprised of 64 8-core, 8-processor nodes with between 10 and
20 GB of RAM. The linear constraints were solved using the QSopt linear program-
ming solver library, and the logical formula manipulation code from the COBA belief
revision system and SAT4J satisfaction library were used in the implementation of
the HOP and SemiHOP algorithms.

For each experiment, we held the number of rules constant at 10, where each
rule consisted of an empty body (we assume they are the rules that are relevant in
the state, and after computing the fixpoint) and a number of clauses in the head
distributed uniformly between 1 and 5. The probability intervals were also generated
randomly, making sure that the lower bound was less than or equal to the upper
bound. All random number selection were implemented using the random number
generator provided by Java. The experiments then consisted of the following: (1)
generate a new ap-program and send it to each of the three algorithms, (2) vary
the number of worlds from 32 to 16,384, performing at least ten runs for each
value and recording the average time taken by each algorithm, and (3) measure the
quality of SemiHOP and all algorithms that use the binary heuristic by calculating
the average distance from the solution found by the exact algorithm. Due to the
immense time complexity of the HOP algorithm, we do not directly compare its
performance to the naive algorithm or SemiHOP. In the discussion below we use
the metric ruledensity = Lact

card(Tω
�s)

to represent the size of the ap-program; this allows

for the comparison of the naive and HOP and SemiHOP algorithms as the number
of worlds increases.

Running time Figure 15 shows the running times for each of the naive, SemiHOP,
naivebinary, and SemiHOPbinary algorithms for increasing number of worlds. As ex-
pected, the binary search approximation algorithm is superior to the exact algorithms
in terms of computation time, when applied to both the naive and SemiHOP
constraint sets. With a sample size of 25%, naivebinary and SemiHOPbinary take
only about 132.6 and 58.19 s for instances with 1,024 worlds, whereas the naive
algorithm requires almost 4 h (13,636.23 s). This result demonstrates that the naive
algorithm is more or less useless and takes prohibitive amounts of time, even for
small instances. Similarly, the checks for logical equivalence required to obtain each
[wi] for HOP cause the algorithm to consistently require an exorbitant amount of
time; for instances with only 128 worlds,HOP takes 58,064.74 s, which is much greater
even than the naive algorithm for 1024 worlds. Even when using the binary heuristic
to further reduce the number of variables, HOPbin still requires a prohibitively large
amount of time.

At low rule densities, SemiHOP runs slower than the naive algorithm; with
ten rules, SemiHOP uses 18.75 and 122.44 s for 128 worlds, while the naive

324 S. Khuller et al.

Fig. 15 Running time of the
algorithms for increasing
number of worlds

algorithm only requires 1.79 and 19.99 s respectively. However, SemiHOP vastly
outperforms naive for problems with higher densities—358.3 s versus 13,636.23 s
for 1,024 worlds—which more accurately reflect real-world problems in which the
number of possible worlds is far greater than the number of ap-rules. Because the
SemiHOP algorithm uses subpartitions rather than unique equivalence classes in
the RedCONSU (�, s, Tω

�s
) constraints, the algorithm overhead is much lower than

that of the HOP algorithm, and thus yields a more efficient running time.
The reduction in the size of the set of constraints afforded by the binary heuristic

algorithm allows us to apply the naive and SemiHOP algorithms to much larger ap-
programs. In Fig. 16, we examine the running times of the naivebin and SemiHOPbin

algorithms for large numbers of worlds (up to 290 or about 1.23794 × 1027 possible
worlds) with a sample size for the binary heuristic of 2%; this is to ensure that the
reduced linear program is indeed tractable. SemiHOPbinary consistently takes less
time than naivebinary, though both algorithms still perform rather well. For 1.23794 ×
1027 possible worlds, naivebinary takes an average 26,325.1 s while SemiHOPbinary

Fig. 16 Running time of
naivebin and SemiHOPbin for
large number of worlds

Action probabilistic logic programs 325

Fig. 17 Running time of the
SemiHOPbinary algorithm for
very large numbers of possible
worlds

requires only 458.07 s. This difference occurs because |S_RedCONSU (�, s, Tω
�s

)| <

|CONSU (�, s, Tω
�s

)| that is the heuristic algorithm is further reducing an already
smaller constraint set. In addition, because SemiHOP only solves the linear con-
straint problem when there is exactly one satisfying interpretation for a subpartition,
it performs fewer computations overall. Because of this property, experiments
running SemiHOPbinary on problems with very large ap-programs (from 1,000 to
100,000 ground atoms) only take around 300 s using a 2% sample rate. However, this
aspect of the SemiHOP algorithm can also lead to some anomalous behavior, where
the running time will appear to decrease as the number of worlds increases. Figure 17
illustrates this anomaly, as the computation time appears to decrease with very large
numbers of worlds. This occurs when we have taken a small sample of subpartitions
in a problem with very high rule density, and there are no subpartitions with a single
satisfying interpretation; as a result, no “most probable world” computations are
performed, which obviously leads to a drastic reduction in the running time. Further

Fig. 18 Quality of the
solutions produced by
SemiHOP, naivebin, and
SemiHOPbin as compared
to Naive

326 S. Khuller et al.

Fig. 19 Running time of the
P-MPW versions of the naive,
SemiHOP, naivebin,HOPbin,
and SemiHOPbin algorithms
for an increasing number
of worlds

experimentation is necessary to determine the optimal balance between an efficient
running time and a sample large enough to produce meaningful results.

Quality of solution Figure 18 compares the accuracy of the probability found for
the most probable world by SemiHOP, naivebinary, and SemiHOPbinary to the solution
obtained by the naive algorithm, averaged over at least 10 runs for each number of
worlds. The results are given as a percentage of the solution returned by the naive
algorithm, and are only reported in cases where both algorithms found a solution.
The SemiHOP and SemiHOPbinary algorithms demonstrate near perfect accuracy;
this is significant because in the SemiHOPbinary algorithm, the binary heuristic was
only sampling 25% of the possible subpartitions. However, in many of these cases,
both the naive and the SemiHOP algorithms found most probable worlds with a
probability of zero. The most probable world found by the naivebinary algorithm can
be between 75% and 100% as likely as those given by the regular naive algorithm;
however, the naivebinary algorithm also was often unable to find a solution.

8.1 Parallel implementations

In addition to the basic MPW algorithms, we also implemented the P-MPW algo-
rithm and the PAMPW-MS iterative algorithm, using about 6,700 lines of Java code.
The above experiments were repeated running the parallel algorithms on the same

Table 1 Percent speedup achieved with P-MPW algorithms

Worlds Naive SemiHOP Naivebinary HOPbinary SemiHOPbinary

32 50.48 02.73 111.21 94.40 76.64
64 66.15 40.88 123.72 97.78 80.26
128 83.23 47.97 121.58 97.10 78.06
256 89.47 52.01 86.80 13.61 44.73
512 90.29 55.84 89.95 29.15 9.68
1024 72.45 49.16 89.81 1.86 27.88
Avg 75.35 41.43 103.84 55.65 52.87

Action probabilistic logic programs 327

Fig. 20 Running time of the
P-MPW versions of the
naivebin and SemiHOPbin
algorithms for large numbers
of worlds

computing cluster. Each run utilized 16 processors in parallel to solve a single MPW
problem. As expected, the P-MPW algorithms produce a marked speedup in the
computation time for finding the most probable world (Fig. 19). Where the basic
naive algorithm requires almost 4 h (13,636.23 s) for problems with 1,024 possible
worlds, the naive P-MPW algorithm completed the same computation in only about
an hour (4016.83 s). This is a very promising result for situations where an exact
solution is necessary. We see a similar speedup for the SemiHOP and heuristic
algorithms; the P-MPW SemiHOP algorithm uses slightly under 6 min (339.65 s) as
opposed to 33.47 min (2,008.1 s) to solve for 1,024 worlds, and the naive heuristic
improves from 136.08 to 21.78 s. In some cases, however, the P-MPW version of the
SemiHOP algorithm actually performs worse as compared to the serial SemiHOP
algorithm. This anomaly occurs in those instances where there are no subpartitions
with only a single satisfying interpretation; in such cases, we do not actually need
to solve an MPW computation (as described in Section 4.1), so the overhead of
managing parallel threads is greater than the running time of the serial version. In
most instances, though, the P-MPW algorithm greatly improves the efficiency of
computing the most probable world. Table 1 contains the average speedup achieved
by using the P-MPW algorithms compared to their serial counterparts. Similar
improvements can be seen when using the P-MPW heuristic algorithms on large
numbers of worlds, providing an average speedup of about 66%. These running times
are shown in Fig. 20.

9 Related work

Probabilistic logic programming was introduced in [16, 17] and later studied by sev-
eral authors [2, 3, 9, 11, 14]. This work was preceded by earlier—non-probabilistic—
papers on quantitative logic programming of which [21] is an example. Ngo and
Haddawy [14] presents a model theory, fixpoint theory, and proof procedure for
conditional probabilistic logic programming. Lukasiewicz and Kern-Isberner [9]
combines probabilistic LP with maximum entropy. Lukasiewicz [13] presents a condi-
tional semantics for probabilistic LPs where each rule is interpreted as specifying the

328 S. Khuller et al.

conditional probability of the rule head, given the body. Lakshmanan and Shiri [11]
develops a semantics for logic programs in which different general axiomatic meth-
ods are given to compute probabilities of conjunctions and disjunctions. Dekhtyar
and Subrahmanian [3] presents an approach to a similar problem. Damasio et al. [2]
present a well-founded semantics for annotated logic programs and show how to
compute this well-founded semantics.

However, all works to date on probabilistic logic programming have addressed
the problem of checking whether a given formula of the form F : [L, U] is entailed
by a probabilistic logic program or is true in a specific model (e.g., the well-founded
model [2]). This usually boils down to finding out if all interpretations that satisfy the
PLP assign a probability between L and U to F.

Our work builds on top of the gp-program paradigm [16]. Our framework modifies
gp-programs in three ways: (1) we do not allow extensional predicates to occur in rule
heads, while gp-programs do allow them, (2) we allow arbitrary formulas to occur in
rule heads, whereas gp-programs only allow the so-called “basic formulas” to appear
in rule heads. (3) Most importantly, of all, we solve the problem of finding the most
probable model whereas [16] solve the problem of entailment.

A related work is that of optimal models of disjunctive logic programs [12].
An optimal model of a disjunctive logic program tries to find either a model, a
minimal model, or a stable model of the DLP that maximizes an objective function.
The techniques there assume no knowledge of the objective function (except for
monotonicity). In contrast, our techniques use ap-programs which are a form of
probabilistic logic program (not considered in [12]). Moreover, our techniques set
up a linear program that is associated with an ap-program, while their work has no
such linear program. The complexities associated with finding the most probable
world arise from the linear programming formulation because the linear programs
are exponential, containing one variable for each world. This does not occur in the
non-probabilistic framework of [12]. Leone et al. [12] gives sound and complete ways
to find optimal models by doing a generate and test of models, along with some
intelligent pruning. This paper focuses directly on how to solve the linear program
to find appropriate worlds. Moreover, this paper provides the first heuristic methods
that scale to large scenarios—we developed our algorithms and showed how they
perform when there are about 2100,000, or about 1030,000 worlds.

Another related effort in the agent’s world is that of optimal feasible status
sets [19]. Optimal status sets build upon the status set semantics for agent pro-
grams [5]. Status sets are sets of actions that an agent can take in a given situation.
They bear the same relationship to agent programs that models bear to logic
programs. The work on optimal status sets improves upon work such as that in [12]
because it provides a non-ground framework which avoids grounding out agent
programs till required. This is a big contribution that we would like to extend ap-
programs to. However, the work of [19] has the same differences from our present
work as [12].

The closest work to solving large linear programs is that of [8] who use column
generation methods to solve PSAT, CONDSAT, and minimal modifications to
ensure satisfiability. They report experiments showing that problems of up to 140
variables and 300 clauses can be solved in reasonable time (about 190 min). Even
though this suggests that the Column Generation method could be of use for our
work, it should be noted that the relevant problem (PSAT) that the authors are

Action probabilistic logic programs 329

solving in this paper is much easier computationally than most probable worlds, since
most probable world computations require solving the linear program once for each
world, whereas they only solve the linear program once. Moreover, we deal with
1030,000 worlds and solve this problem in a few minutes, while they deal with a much
smaller number and solve it in 190 min, though some 17 years have gone by since the
publication of those results.

10 Conclusions

In this paper, we have developed the theory and algorithms of ap-programs. ap-
programs are a variant of probabilistic logic programs and their syntax and semantics
is not very different from them. What we have done, however, is to make the
following contributions:

1. This is the first paper that deals with the problem of reducing the size of the linear
programs that are generated by ap-programs and shown that these reductions are
practical; past work on doing this by Lukaseiwicz [9, 13] were not demonstrated
to handle the very large problem sizes (1030,000 worlds) described in this paper.

2. This is the first paper that studies the problem of finding the most probable world,
given an ap-program; we have not seen a single paper addressing this problem
for any kind of PLPs.

3. We have developed three algorithms to find the most probable world and
developed the Binary heuristic that can be used in conjunction with any of them.

4. We have developed the first parallel algorithms for ap-programs (and these are
the first parallel algorithms for any kind of PLP).

5. Our theory has produced tangible results of use to US military officers [1, 20].
6. Our implementation is the only one we are aware of that can work for large

numbers of ground atoms with reasonable accuracy and levels of efficiency much
superior to past efforts (we could only evaluate accuracy in cases with small
numbers of ground atoms).

There is ample scope for further work, even without expanding the current paper
too much. It is clear in our binary algorithm that there are many different ways of
selecting the worlds to consider. Can we identify how different selection policies on
worlds change the accuracy and computation time of the worlds that are returned as
being most probable? Knowing the answer to this question can have a potentially
large impact on the quality of the solutions found by our algorithms. A related
question is to come up with better methods to estimate the quality of the solutions
found by our algorithms when a large number of worlds is processed. We currently
do our accuracy estimates on small numbers of worlds.

Many other problems remain open as well. First, we need an accurate estimation
of the computational complexity of the MPW problem. We have proven NP-hardness
results here, but were unable to establish membership in NP. A more accurate clas-
sification would be desirable. Moreover, it would be desirable to come up with even
more efficient parallel algorithms—the currently scaling offered is not proportional
to the number of CPUs used. Third, it would be nice to get some concrete theoretical
results about the accuracy of solutions produced by the binary heuristic. It is possible

330 S. Khuller et al.

also that a judicious selection of variables in the binary heuristic may yield better
results.

Another major problem is that of grounding. Most existing works on probabilistic
logic programs assume a ground program. However, there has been work on non-
ground computations in non-monotonic logic programs [4]. A major way of further
scaling our system is to support non-ground representations of worlds. For example,
the single atom p(X) may represent all worlds that are instances of p(X). Likewise,
the set {p(X), q(X)} might represent all worlds consisting of two atoms, each of
which is an instance of p(X) and q(X), respectively. It would be interesting to see if
these intuitions can lead to enhanced scalability.

Acknowledgements This work was supported by AFOSR grants FA95500610405 and
FA95500510298, by ARO grant DAAD190310202, by NSF grant 0540216 and by DoD grant
N6133906C0149.

References

1. Bhattacharjee, Y.: Pentagon asks academics for help in understanding its enemies. Science
316(5824), 534–535 (2007)

2. Damasio, C.V., Pereira, L.M., Swift, T.: Coherent well-founded annotated logic programs.
In: Logic Programming and Non-monotonic Reasoning, pp. 262–276 (1999)

3. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. In: International Conference
on Logic Programming, pp. 391–405 (1997)

4. Eiter, T., Lu, J.J., Subrahmanian, V.S.: Computing non-ground representations of stable models.
In: Logic Programming and Non-monotonic Reasoning, pp. 198–217 (1997)

5. Eiter, T., Subrahmanian, V.S., Pick, G.: Heterogeneous active agents, i: semantics. Artif. Intell.
108(1–2), 178–255 (1999)

6. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput.
87(1–2), 78–128 (1990)

7. Hailperin, T.: Probability logic. Notre Dame J. Form. Log. 25(3), 198–212 (1984)
8. Jaumard, B., Hansen, P., de Aragão, M.P.: Column generation methods for probabilistic logic.

In: Proceedings of the First Integer Programming and Combinatorial Optimization Conference,
pp. 313–331. University of Waterloo Press, Waterloo, Ontario, Canada (1990)

9. Lukasiewicz, T., Kern-Isberner, G.: Probabilistic logic programming under maximum entropy.
In: Lecture Notes in Computer Science (Proceedings of ECSQARU 1999) 1638 (1999)

10. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer-Verlag (1987)
11. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncertainty.

IEEE Trans. Knowl. Data Eng. 13(4), 554–570 (2001)
12. Leone, N., Scarcello, F., Subrahmanian, V.S.: Optimal models of disjunctive logic programs:

semantics, complexity, and computation. IEEE Trans. Knowl. Data Eng. 16(4), 487–503 (2004)
13. Lukasiewicz, T.: Probabilistic logic programming. In: European Conference on Artificial Intelli-

gence, pp. 388–392 (1998)
14. Ngo, L., Haddawy, P.: Probabilistic logic programming and bayesian networks. In: Asian Com-

puting Science Conference, pp. 286–300 (1995)
15. Nilsson, N.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)
16. Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective and conditional

probabilities in deductive databases. In: Furukawa, K. (ed.) Proceedings of the Eighth Interna-
tional Conference on Logic Programming, pp. 565–580. The MIT Press (1991)

17. Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Inf. Comput. 101(2), 150–201
(1992)

18. Subrahmanian, V.S., Albanese, M., Martinez, V., Reforgiato, D., Simari, G.I., Sliva, A.,
Udrea, O., Wilkenfeld, J.: CARA: a cultural reasoning architecture. IEEE Intell. Syst. 22(2),
12–16 (2007)

19. Stroe, B., Subrahmanian, V.S., Dasgupta, S.: Optimal status sets of heterogeneous agent
programs. In: AAMAS ’05: Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 709–715. ACM, New York, NY, USA (2005)

Action probabilistic logic programs 331

20. Subrahmanian, V.S.: Cultural modeling in real-time. Science 1507, 309–310 (2007)
21. van Emden, M.H.: Quantitative deduction and its fixpoint theory. J. Log. Program. 4, 37–53

(1986)
22. Wilkenfeld, J., Asal, V., Johnson, C., Pate, A., Michael, M.: The use of violence by ethno-

political organizations in the middle east. Technical report, National Consortium for the Study
of Terrorism and Responses to Terrorism (February 2007)

	Computing most probable worlds of action probabilistic logic programs: scalable estimation for 1030,000 worlds
	Abstract
	Introduction
	Syntax and semantics of ap-programs
	Maximally probable worlds
	Exact algorithms for finding a maximally probable world
	HOP: head-oriented processing
	Enhancing HOP: the SemiHOP algorithm

	The binary heuristic
	Towards parallel algorithms
	Parallelism for reducing computation time
	Parallelism for improving solution accuracy of heuristics
	Parallelism for increasing computation capacity

	Applications of ap-programs
	Implementation and experiments
	Parallel implementations

	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

