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Abstract. Though forecasting methods are used in numerous fields, we have
seen no work on providing a general theoretical framework to build forecast op-
erators into temporal databases. In this paper, we first develop a formal defini-
tion of a forecast operator as a function that satisfies a suite of forecast axioms.
Based on this definition, we propose three families of forecast operators called
deterministic, probabilistic, and possible worlds forecast operators. Additional
properties of coherence, monotonicity, and fact preservation are identified that
these operators may satisfy (but are not required to). We show how deterministic
forecast operators can always be encoded as probabilistic forecast operators, and
how both deterministic and probabilistic forecast operators can be expressed as
possible worlds forecast operators. Issues related to the complexity of these op-
erators are studied, showing the relative computational tradeoffs of these types of
forecast operators. Finally, we explore the integration of forecast operators with
standard relational operators in temporal databases and propose several policies
for answering forecast queries.

1 Introduction

Though time series analysis methods have been studied extensively over the years in
many contexts [3], there has only recently been work that merges classical forecasting
with standard operations in temporal databases [1,5,6]. Given the widespread use of
temporal data, there are numerous applications that require such capabilities, allowing
for the consistent use and application of time series forecasts in databases. A university
might want to forecast research grant income (or expenditures) in the future by examin-
ing a database of research projects. A stock market firm might want to include support
for various kinds of specialized forecasting algorithms that predict the values of mutual
fund portfolios or a single stock over time. A government might want to forecast the
number of electricity connections or other development indicators in their country over
time. Such forecasts might not just be made about the future, but also used to fill in gaps
about the past. For instance, using data about the number of electricity connections in
Ecuador from 1990–2000 and 2002–2007, officials may want to interpolate the number
of connections there might have been in 2001.

This paper is not about how to make such forecasts. Currently, in all forecasting
applications, the model building and forecasting is performed outside of the database
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system itself, rather than as a smoothly integrated process. The implementation of these
forecasting models are often ad hoc in nature, and general relationships between differ-
ent forecasting tasks and domains are not exploited to their full potential. Yet, the broad
demand for forecasting and predictive analyses creates a need for a robust theoretical
framework that can incorporate forecasting directly into temporal databases.

The field of forecasting is extensive and widely studied, with an array of general
techniques [3] as well as specialized forecast models for a variety of domains, such as fi-
nance [15], epidemiology [9], politics [2,10,11,14], and even product liability
claims [13]. All these methods are very different from one another, and even within
a restricted domain such as the stock market, there are hundreds of forecasting mod-
els available, each with varying strengths and weaknesses. In spite of these variations,
we can identify general properties of forecasting that will facilitate integration of these
methods into query languages, making them available for managing and analyzing tem-
poral databases.

In this paper, the question “what should count as a forecast operator” is answered
by first providing a set of axioms that a forecast operator must satisfy. We assume that
forecast operators apply to temporal relational databases—the main reason for this as-
sumption is that in today’s world, most (though certainly not all) temporal data is in fact
stored in such databases. Subsequently, we define three classes of forecast operators—
deterministic forecast (DF) operators, probabilistic forecast (PF) operators, and pos-
sible worlds forecast (PWF) operators. We show that DF operators are a special case
of PF operators which in turn are a special case of PWF operators. Certain classi-
cal forecasting methods such as linear regression, polynomial regression, and logistic
regression methods are all demonstrated to be special cases of this framework. Some
new operators for forecasting are also developed, along with results characterizing the
complexity of applying certain forecast operators. This generalized understanding of
the properties and relationships of forecast operators will allow such forecasts to be
incorporated into temporal databases in a consistent way, as well as provide possible
transformations for choosing the best operator for a particular application.

The remainder of this paper is organized as follows. Section 2 contains two moti-
vating examples—one about forecasting academic grant incomes, and another about
electricity connections in developing countries based on real data from the World Bank.
Section 3 introduces basic notation for temporal databases. Section 4 provides an ax-
iomatic definition of a forecast operator and then defines the classes of DF, PF and
PWF forecast operators. This section also develops theorems showing relationships be-
tween DF, PF and PWF operators and the complexity of specific types of operator
constructions. In Section 5, query answering mechanisms are presented that incorpo-
rate forecast operators into the standard relational algebra. Finally, related work and
conclusions are given in Section 6.

2 Motivating Examples

Two motivating examples are used throughout this paper. The grants example specifies
the total dollar amount (“Amount”) of grants and number of employees (“Employees”)
of a Math and a CS department. Here, we are interested in predicting both of these
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attributes. The electricity example is drawn from real World Bank1 data about the total
expenditures (“Expend”) on electricity and the number of electricity connections (“Con-
nections”) in some Latin American countries. Here, we wish to forecast the number of
electricity connections and the amount of total expenditures (which includes operating
costs and capital investment).

Year Dept Amount Employees
t1 2000 CS 6M 70
t2 2001 CS 6.2M 70
t3 2002 CS 7M 75
t4 2003 CS 6M 75
t5 2004 CS 7.3M 74
t6 2005 CS 9M 80
t7 2000 Math 1M 71
t8 2001 Math 1.1M 74
t9 2002 Math 1M 73
t10 2003 Math 0.5M 66
t11 2004 Math 1.5M 79
t12 2006 Math 1.2M 77

Year Country Connections Expend
e1 2000 Brazil 48,000,000 6.8B
e2 2001 Brazil 50,200,000 7.5B
e3 2002 Brazil 52,200,000 6.9B
e4 2003 Brazil 53,800,000 6.3B
e5 2004 Brazil 56,300,000 7.7B
e6 2005 Brazil 57,900,000 10.7B
e7 2000 Venezuela 4,708,215 7.7B
e8 2001 Venezuela 4,877,084 5.2B
e9 2002 Venezuela 4,998,433 4.3B
e10 2003 Venezuela 5,106,783 3.3B
e11 2004 Venezuela 5,197,020 3.1B
e12 2005 Venezuela 5,392,500 3B

The grants relation The electricity relation

3 Basic Notation

The forecasting framework discussed in this paper applies only to temporal databases.
Therefore, some basic temporal database (DB) notation is introduced in this section.
We assume the existence of a finite set rel of relation names, and a finite set att
of attribute names, disjoint from rel. A temporal relation schema will be denoted as
S(A1, . . . , An−1, AT ) where S ∈ rel and A1, . . . , An−1, AT ∈ att. Each attribute
A ∈ att is typed and has a domain dom(A). Assume the existence of a special attribute
AT denoting time whose domain dom(AT ) is the set of all integers (positive and nega-
tive). Also assume that each attribute is either a variable or invariant attribute. Invariant
attributes do not change with time, while variable attributes might. In grants, “Dept”
is an invariant attribute, while “Amount” and “Employees” are variable attributes. In
electricity , “Country” is invariant, while “Connections” and “Expend” are variable.

A temporal tuple over S(A1, . . . , An−1, AT ) is a member of dom(A1) × · · · ×
dom(An−1) × dom(AT ). A temporal relation instance R over the relation schema
S is a set of tuples over S.

Given a tuple t over S(A1, . . . , An), we use t[Ai] (where i ∈ [1...n]) to denote the
value of attribute Ai in tuple t. We use Attr(S) to denote the set of all attributes in S.
Given a relation schema S, we say that schema Se is an extension of schema S, denoted
Se ⊇ S iff Attr(Se) ⊇ Attr(S).

1 Benchmarking Data of the Electricity Distribution Sector in the Latin America and Caribbean
Region 1995-2005. Available at: http://info.worldbank.org/etools/lacelectricity/home.htm
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Throughout the rest of the paper, we will abuse notation and write S(A1, . . . , An)
instead of S(A1, . . . , An−1, AT ), simply assuming that the last attribute in any schema
is the time attribute.

Definition 1 (Equivalence of tuples). Let R be a temporal relational instance R over
schema S, A ⊆ Attr(S) a set of attributes of S, and t1, t2 tuples over S. t1 ∼A t2 iff for
each Ai ∈ A, t1[Ai] = t2[Ai]. It is easy to see that ∼A is an equivalence relation—we
define a cluster for relation R w.r.t. the set of attributes A to be any equivalence class
under ∼∗

A, and clusters(R,A) denotes the set of clusters of R w.r.t. A.

The following example shows clusters w.r.t. the grants and electricity examples.

Example 1. Consider the grants relation and suppose A = {Dept}. Then
clusters(grants, {Dept}) contains two clusters {t1, . . . , t6} and {t7, . . . , t12}. On
the other hand, if the electricity relation and the invariant set A = {Country}
are considered, there are again two clusters ({e1, . . . , e6} and {e7, . . . , e12}) in
clusters(electricity, {Country}).

4 Forecast Operator

In this section, we formally define a generic forecast operator for any temporal DB
and identify several families of forecast operators. Intuitively, a forecast operator must
take as input some historical information and a time period for which to produce a
forecast, which might include the future as well as past times where data is missing.
The output of a forecast operator, however, can vary dramatically in form. For instance,
forecasts can contain a single unambiguous prediction (called deterministic forecasts),
or a single probabilistic forecast (called a probabilistic forecast), or a set of possible
situations (called a possible worlds forecast). For each of these “types” of forecasts,
the content can vary widely as well. The following definition accounts for all of these
classes of forecasts, but requires that they satisfy specific desired properties.

Definition 2 (Forecast Operator). Given a temporal relation instance R over the
schema S and a temporal interval I defined over dom(AT ), a forecast operator φ is
a mapping from R and I to a set of relation instances {R1, . . . , Rn} over a schema
Se ⊇ S satisfying the following axioms:

Axiom A1. Every tuple in each Ri (i ∈ [1..n]) has a timestamp in I. This axiom says
that the forecast operator only makes predictions for the time interval I.

Axiom A2. For each relation Ri (i ∈ [1..n]) and for each tuple t ∈ R such that t[AT ] ∈
I, there is exactly one tuple ti ∈ Ri such that ∀A ∈ Attr(S), t[A] = ti[A]. This
axiom says that tuples of R having a timestamp in I are preserved by the forecast
operator (though they can be extended to include new attributes of the schema Se).

Axiom A3. For each timestamp ts ∈ I and tuple t ∈ R, there is relation Ri with i ∈
[1..n] containing the (forecasted) tuple t′ such that t′[AT ] = ts and t′ ∼A t where
A ⊆ Attr(S) is a set of invariant attributes. This axiom says that the forecasting
is complete with respect to the timestamps in I and original tuples in R.

Note that axioms (A1) to (A3) above are not meant to be exhaustive. They represent
a minimal set of conditions that any forecast operator should satisfy. Specific forecast
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operators may satisfy additional properties. In addition, we reiterate that the temporal
interval I in the above definition can represent both the future and the past, i.e., it can
include times that follow and/or precede those in relation R.

Forecast operators may satisfy the following additional properties; however, they are
not mandatory for definition as an operator.

Definition 3 (Coherence). Suppose R is a temporal relational instance over a tempo-
ral relational schema S, I is a temporal interval, and A a set of invariant attributes. A
forecast operator φ is coherent w.r.t. A iff for each Ri ∈ φ(R, I) = {R1, R2, . . . , Rn},
there is a bijection βi : clusters(R,A) → clusters(Ri,A) such that for each
cl ∈ clusters(R,A), it is the case that φ(cl, I) = {β1(cl), β2(cl), · · · , βn(cl)}.

Basically, a forecast operator φ is coherent w.r.t. a set of attributes A if the result of
applying φ on the whole relation R is equivalent to the union of the results obtained by
applying φ on every single cluster in clusters(R,A). For instance, consider the elec-
tricity example and A = {Country}. In this case, a coherent forecast operator says that
the number of electricity connections and the amount of expenditures in a country only
depends on that country. Likewise, in the grants example with A = {Dept}, using a
coherent forecast operator implies that the amount of grants and number of employees
only depend upon the department. Forecast operators are not required to be coherent
because this property may not always be valid in all applications. For instance, there
may be a correlation between grant amounts in the CS and Math departments (e.g., de-
creases in NSF funding may affect both of them proportionately). As a consequence, if
the grants relation had an additional tuple t13 with information on the 2007 grant in-
come of Math, then this may be relevant for a forecast about CS’s grant income in 2007,
but the coherence assumption would not allow this dependency. As such, coherence is
not considered a basic forecast axiom.

Another property that forecast operators may satisfy (but are not required to) is
monotonicity. Given a relation R, two disjoint sets A,B of attributes2, and two clus-
ters cl1, cl2 ∈ clusters(R,A), we say that cl1 <B cl2 iff ∀ t1 ∈ cl1, t2 ∈ cl2, B ∈ B it
is the case that t1[B] ≤ t2[B] We now use this ordering to define monotonicity.

Definition 4 (Monotonicity). Let R be a temporal relational instance over a schema
S, I a temporal interval, and A,B ⊆ Attr(S) \ AT two disjoint sets of attributes. A
forecast operator φ is monotonic w.r.t. the pair 〈A,B〉 iff for each Ri ∈ φ(R, I), there
is a bijection βi : clusters(R,A) → clusters(Ri,A) such that:

(i) ∀ cl ∈ clusters(R,A), cl ∼A βi(cl) (i.e., ∀ t1 ∈ cl, t2 ∈ βi(cl), A ∈ A it is the
case that t1[A] = t2[A]); and

(ii) ∀ cl1, cl2 ∈ clusters(R,A) such that cl1 <B cl2, it is the case that βi(cl1) <B
βi(cl2).

A forecast operator is monotonic if trends of attributes in B in the clusters w.r.t. A of
the original relation R are preserved by the clusters w.r.t. A in the predicted relations
R1, R2, . . . , Rn. In the rest of this section, we study three families of forecast operators
— deterministic forecasts, probabilistic forecasts, and possible world forecasts.

2 An ordering of Dom(B) for each B ∈ B is assumed.
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4.1 Deterministic Forecast Operator

A deterministic forecast operator is one that returns a single relation with exactly the
same schema as the input relation.

Definition 5 (Deterministic Forecast Operator). Given a temporal relation R over
the schema S and a temporal interval I, a deterministic forecast operator (DF operator
for short) δ is a forecast operator such that δ(R, I) = {R′} with R′ defined over S.

DF operators can be built on top of any standard time series forecast algorithm. The
following example shows how simple linear regression is an instance of the class of
deterministic forecast operators.

Example 2. Suppose (w.r.t. the electricity example) we want to forecast the amount of
connections and expenditures in 2006 and 2007 using simple linear regression3. The
function LINREG(R, I) applies linear regression to each variable attribute in relation
R for time interval I. The result of LINREG(electricity, [2006, 2007]) is given below:

Year Country Connections Expend
2006 Brazil 60,006,666.67 9.6B
2007 Brazil 61,989,523.81 10.157B
2006 Venezuela 5,495,630.8 1.353B
2007 Venezuela 5,623,904.6 0.473B

LINREG(R, I) is an example of a DF operator, as it maps electricity and a time inter-
val I to the single relation electricity′ = LINREG(electricity, [2006, 2007]). In this
example, LINREG(R, I) also satisfies coherence w.r.t. the set A = {Country} and
monotonicity w.r.t. the pair 〈{Country}, {Connections}〉.

4.2 Probabilistic Forecast Operator

Deterministic forecasts are 100% certain in their forecasts. In contrast, probabilistic
forecasts also include information about the probability that a forecast is correct.

Definition 6 (Probabilistic Forecast Operator). Given a temporal relation instance
R over the schema S and a temporal interval I, a probabilistic forecast operator (PF
operator for short) μ is a forecast operator such that μ(R, I) = {R′} with R′ defined
over the schema S′ = Attr(S) ∪ {P} where dom(P ) = [0, 1].

PF operators are just like DF operators except they have an additional probability at-
tribute P . Each tuple returned by a PF operator includes the probability of that tuple be-
ing valid at the timestamp (associated with that tuple). Basically, the result of applying
a PF operator can be seen as a probabilistic database [4] with tuple-level uncertainty4.
In addition to the general axioms (A1)–(A3), we often want PF operators to satisfy a
property called fact preservation.

3 The same method shown in this example would allow us to use a variety of other traditional
forecasting methods, such as logistic regression, nonlinear regression, etc.

4 Extending the framework to the case of forecast operators dealing with attribute-level uncer-
tainty is left as future work.
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Property 1 (Fact Preservation). Let R be a temporal relational instance over S and I
a temporal interval. PF operator μ preserves facts of R if for each tuple t ∈ R such
that t[AT ] ∈ I, there is a tuple t′ ∈ R′ with R′ ∈ μ(R, I) such that ∀A ∈ Attr(S),
t[A] = t′[A] and t′[P ] = 1.

Axiom (A2) ensures that tuples having a timestamp in I are preserved by the forecast
operator, i.e., for each tuple t ∈ R such that t[AT ] ∈ I there is a certain tuple t′ ∈ R′

such that t and t′ have the same values in the attributes in Attr(S). This property
strengthens axiom (A2) for PF operators since it requires the additional condition that
the probability values of the tuples in the resulting relation R′ corresponding to those
of R (preserved tuples) must be exactly 1.

The fact preservation property should be satisfied by a PF operator when the user
trusts what is in the database; in other cases when the user does not trust the content of a
database, he may choose to use a PF operator that does not guarantee fact preservation.

Example 3. Consider the grants relation. Suppose we want to forecast the amount of
grants and employees for the CS and Math departments for 2006 and 2007, along with
their probabilities. We may choose to apply a polynomial regression method P REG(R,
A, I), to variable attributes in each cluster in relation R w.r.t. A for a time interval I.
P REG(R,A, I) is an operator that computes the probability that the actual value will
be within one standard deviation of the forecasted value, based on a normal distribu-
tion. Assuming independence, the probability of the entire tuple is the product of the
probabilities for the individual attributes.

P REG(R,A, I) is an example of a PF operator. It first computes the forecasted
values for each cluster:

Year Dept Amount Employees
2006 CS 6.929471566 74
2007 CS 6.932925939 74
2006 Math 1.051905341 73
2007 Math 1.052429721 74

The probability of each forecasted value is computed as mentioned above:

CS: P (Amount = 6.929471566 ± σ|Y ear = 2006) = 0.68266
P (Amount = 6.932925939 ± σ|Y ear = 2007) = 0.68264
P (Employees = 74 ± σ|Y ear = 2006) = 0.68268
P (Employees = 74 ± σ|Y ear = 2007) = 0.68268

Math: P (Amount = 1.051905341 ± σ|Y ear = 2006) = 0.68268
P (Amount = 1.052429721 ± σ|Y ear = 2007) = 0.68267
P (Employees = 73 ± σ|Y ear = 2006) = 0.68141
P (Employees = 74 ± σ|Y ear = 2007) = 0.6776

The final relation, grants′ is shown below:

Year Dept. Amount Employees Prob
2006 CS 6.929471566 74 0.46604
2007 CS 6.932925939 74 0.46603
2006 Math 1.051905341 73 0.46519
2007 Math 1.052429721 74 0.46258
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It is clear that every deterministic forecast can be expressed as a probabilistic forecast.
Given a DF δ, a temporal relation instance R over schema S, and a time period I, we
can define a simple probabilistic forecast operator μsimp,δ(R, I) to return {(t, 1) | t ∈
R′} where δ(R, I) = {R′}.

Theorem 1. Suppose δ is a DF operator. Then, the following relationships are true:

(i) μsimp,δ is a probabilistic forecast operator.
(ii) If δ is coherent w.r.t. A (resp. monotonic w.r.t. pair 〈A,B〉), then μsimp,δ is coherent

w.r.t. A (resp. monotonic w.r.t. pair 〈A,B〉).
(iii) μsimp,δ is fact-preserving.

4.3 Possible Worlds Forecast Operator

Probabilistic forecasts still only give one value for the attributes being forecasted per
time period. However, in general, there may be many possible instances of relation R
at a future (or past) time point t. Possible worlds forecasts try to return not one instance
as the output of a forecast, but a set of relations, each of which is a possible instance of
the relation at the time being forecast.

Definition 7 (Possible Worlds Forecast Operator). Given a temporal relation in-
stance R over the schema S and a temporal interval I, a possible worlds forecast
operator (PWF operator for short) ω is a forecast operator such that ω(R, I) =
{R1, . . . , Rn} where each Ri is defined over S and has probability value P(Ri) such
that (i) P(Ri) > 0 and (ii)

∑
i∈[1..n] P(Ri) = 1.

Basically, every resulting relation instance Ri represents a possible forecasted world.
Observe that axiom (A2) entails that every world includes the tuples representing facts
in the temporal interval I that were assumed to be true in the original relation R.

Given any DF operator δ, we can define a PWF operator ωδ. One possible method
called the discretized PWF w.r.t. δ, denoted ωdisc,δ, is given below. Suppose R is a
temporal relation over schema S and I is a temporal interval; ωdisc,δ is defined as:

1. Let R′ be the relation returned by δ(R, I). Consider each tuple t ∈ R′. For each
variable attribute A ∈ Attr(S), define P(�t[A]) = �t[A]�−t[A] and P(�t[A]�) =
1 − P(�t[A]). The set of tuple worlds tw(t) associated with any tuple t ∈ R′ is
now defined to be:
(a) tw(t) = {t′ | for all variable attributes A ∈ Attr(S), t′[A] = �t[A] or

t′[A] = �t[A]� and for all invariant attributes B ∈ Attr(S), t[B] = t′[B]}.
(b) tw(t) = {t} if t[AT ] ∈ I.

2. The probability of a tuple t′ ∈ tw(t) is defined to be the product of the probabilities
of all the variable attribute elements of t′, i.e., if X ⊆ S is the set of all variable
attributes in the schema of R, then P(t′) = ΠA∈XP(t′[A]). If tw(t) coincides
with t, then P(t) = 1.

3. The set of relation worlds rw(δ, R, I) is now defined to be the Cartesian product
of all tuple worlds, i.e., Πt∈δ(R,I)tw(t). Each member of rw(δ, R, I) is called a
relation world. The probability of a given relation world w ∈ rw(δ, R, I) is given
by P(w) = Πt′∈wP(t′)5.

5 This assumes that the events represented by different tuples in δ(R,I) are independent of one
another.



Embedding Forecast Operators in Databases 381

4. Return rw(δ, R, I) and the probability distribution P on rw(δ, R, I).

Theorem 2. Suppose δ is any deterministic forecast operator. Then, the following re-
lationships are true:

(i) ωdisc,δ is a PWF operator.
(ii) If δ is coherent w.r.t. the set of attributes A, then ωdisc,δ is coherent w.r.t. A.

Example 4. Let us return to the electricity relation and consider using the simple linear
regression LINREG(electricity, [2006, 2006]) for just the one year 2006. The result
of this operator follows immediately from Example 2 and consists of the first and third
tuple in the relation electricity′ of Example 2. For this relation, the construction ωdisc,δ

creates 16 possible relation worlds. The total number of connections in Brazil in 2006
could be 60,006,666 (33%) or 60,006,667 (67%), and the corresponding number in
Venezuela could be 5,495,630 (20%) or 5,495,631 (80%). The possible expenditures in
Brazil are 9B (40%) or 10B (60%), and in Venezuela are 1B (64.7 %) or 2B (35.3 %).
The probability of each world is the product of the probabilities of the tuples selected.
As an example, for world w given below, P (w) = (0.33 ∗ 0.6) ∗ (0.8 ∗ 0.647) = 0.102.

Year Country Connections Expend
2006 Brazil 60,006,666 10B
2006 Venezuela 5,495,631 1B

It is worth noting that, as both DF and PWF operators satisfy axiom (A2), the tuples of
the original relation belonging to the predicted temporal interval are preserved by DF
operator δ, and then preserved by PWF operator ωdisc,δ as well.

The following example shows that ωdisc,δ does not preserve monotonicity.

Example 5. Assume that for countries C1 and C2, electricity connections are almost
the same in a given year, differing only in their decimal number, as shown below:

Year Country Connections
2005 C1 50,900,800.4
2005 C2 50,900,800.8

Year Country Connections
2008 C1 50,900,802.3
2008 C2 50,900,802.9

Relation el Relation δ(el, [2008, 2008])

Suppose the result of δ(el, [2008, 2008]) is the relation given above. Clearly, δ
is monotonic w.r.t. the pair 〈{Country}, {Connections}〉. In contrast, ωdisc,δ is
not monotonic w.r.t. 〈{Country}, {Connections}〉, since there is relation world
w = {(2008, C1, 50, 900, 803), (2008, C2, 50, 900, 802)} in rw(δ, el, [2008, 2009]) for
which the number of electricity connections of C2 is not greater than that of C1.

The ωdisc,δ construction takes exponential time to enumerate the possible relation
worlds and compute the associated probability distribution; the number of tuple worlds
tw(t) for a tuple t is exponential in the number of variable attributes, and the total
number of relation worlds is exponential in the number of tuple worlds.

Theorem 3. Suppose R is a temporal relation instance over schema S, I is a temporal
interval, and A ⊂ Attr(S) is a set of variable attributes. For any DF operator δ, the
running time of ωdisc,δ is O(2|A|·|R′|), where R′ is the relation returned by δ(R, I).
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From the possible relation worlds produced by ωdisc,δ, a user may only be interested in
examining those relations that are sufficiently probable and contain a given tuple.

Proposition 1. Suppose R is a temporal relation instance over schema S, I is a tempo-
ral interval, and δ is a polynomial-time computable DF operator. Given a tuple t over
the schema S and probability threshold k, deciding whether there is a relation world
w ∈ rw(δ, R, I) such that t ∈ w and P(w) ≥ k (or P(w) ≤ k) is in PTIME.

Proof (Sketch). Let R′ be the relation returned by δ(R, I). First check if there is tuple
t′ ∈ R′ such that by rounding its value, for each variable attribute A, we obtain t. If
no, the answer to our decision problem is “no.” Otherwise, keep this tuple t′ and find
a relation world wmax with max probability, i.e., ∀t′′ ∈ R′, t′′ �= t′ create a maximal
tuple world by choosing t′′[A] = argmax P(t′′[A]) for all variable attributes A. If
P(wmax) ≥ k, then the answer is “yes.”

We can also convert a PF operator μ to a PWF operator. Two possible mechanisms are
provided below where R is a temporal relation and I is a temporal interval:

(i) ωsimp,μ(R, I) returns just one world as follows. Suppose μ(R, I) = {R′}. Then
ωsimp,μ(R, I) = {πAttr(S)(R′)}. In other words, it eliminates the probability col-
umn in R′. This one world has probability 1 according to the PWF ωsimp,μ.

(ii) ωind,μ(R, I) operates as follows:
1. Compute μ(R, I) = {R′} as above.
2. Let W be the power set of πAttr(S)(R′).
3. For each tuple t in a relation Ri ∈ W , let P(t) be the probability attribute of

the tuple in R′ whose non-probability attributes are identical to those of t. The
probability of a particular relation Ri in W is set to P(Ri) = Πt∈RiP(t) ×
Πt′∈πAttr(S)(R′)\Ri

(1 − P(t′)).
4. Let W ′ be the set of relations Ri ∈ W such that P(Ri) > 0. Return W ′

together with the above probability distribution on this set.

The following theorem shows a strong relationship between a PF operator μ and the
PWF operator ωsimp,μ.

Theorem 4. Suppose μ is any PF operator. Then the following relationships are true:

(i) ωsimp,μ is a PWF operator.
(ii) If μ is coherent w.r.t. A (resp. monotonic w.r.t. 〈A,B〉), then ωsimp,μ is also coher-

ent w.r.t. A (resp. monotonic w.r.t. 〈A,B〉).

The above theorem holds irrespective of whether the PF operator μ is fact preserving
or not. In contrast, ωind,μ will be a PWF operator only if constructed using a fact
preserving PF operator. To see this, consider a relation R containing tuple t such that its
timestamp t[AT ] belongs to the temporal interval I. If PF operator μ(R, I) forecasts t′

whose invariant attributes are identical to those of t and its probability value is P(t′) <
1, then there is a possible world returned by ωind,μ that does not contain any tuple
having invariant attributes identical to those of t. Hence, A2 would be violated.
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Theorem 5. Suppose μ is any fact preserving PF operator. Then the following rela-
tionships are true:

(i) ωind,μ is a PWF operator.
(ii) If μ is coherent w.r.t. A (resp. monotonic w.r.t. 〈A,B〉), then ωind,μ is also coherent

w.r.t. A (resp. monotonic w.r.t. 〈A,B〉).
Theorem 6. Suppose R is a temporal relation instance over schema S and I is a tem-
poral interval. For any probabilistic operator μ, the running time complexity of ωind,μ

is O(2|R
′|), where R′ is the relation returned by μ(R, I).

We characterize the complexity of determining whether there is a possible world re-
turned by ωind,μ such that it is sufficiently probable and contains a tuple of interest
t.

Proposition 2. Suppose R is a temporal relation instance over schema S, I is a tem-
poral interval, and μ is a polynomial-time computable PF operator. Given a tuple t
over the schema S and a probability threshold k, deciding whether there is a world w
returned by ωind,μ such that t ∈ w and P (w) ≥ k (or P (w) ≤ k) is in PTIME.

Proof (Sketch). First check if t ∈ πS(R′), where R′ is the relation returned by μ(R, I).
If t �∈ πS(R′), then it cannot belong to ωind,μ, thus the answer is ‘no’. If t ∈ πS(R′),
then there is at least one possible world w that contains t. The possible world wmax

(resp. wmin) that contains t is constructed using a strategy similar to that in the proof
of Proposition 1. Finally, verify whether P (wmax) ≥ k (or P (wmin) ≤ k).

5 Query Answering with Forecasting Operators

In this section, we study the relationship between forecast operators and standard rela-
tional algebra (RA) operators. We suggest adding new operators to the relational algebra
to combine classical operators with the forecast operators presented here. Each RA op-
erator can be augmented by forecast operators by either applying the forecast operators
first and then applying the RA operator, or the other way around. Before formalizing
this concept, we introduce two semantics for the evaluation of RA operators (these se-
mantics are inspired by the notions of possible and certain answers introduced in [8]).

Definition 8 (Possibility and cautious semantics). Given two sets of temporal relation
instances S1, S2 whose elements are defined over the schemas S1,S2 respectively, and
a binary relational algebra operator op(·, ·),
(i) the possibility semantics for op is the set opposs(S1, S2) =

⋃
R1 ∈ S1
R2 ∈ S2

op(R1, R2)

(ii) the cautious semantics for op is the set opcaut(S1, S2) =
⋂

R1 ∈ S1,
R2 ∈ S2

op(R1, R2)

This definition can be straightforwardly extended to the case of unary RA operators.

Definition 9 (Forecast-first and forecast-last plans). Given two temporal relation in-
stances R1, R2 over the schemes S1,S2, respectively, a temporal interval I, a forecast
operator φ, a relational algebra operator op, and semantics sem ∈ {poss, caut},
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(i) a forecast-first plan is defined as
Φforecast−first(R1, R2, I, φ, op) = opsem(φ(R1, I), φ(R2, I))

(ii) a forecast-last plan is defined as
Φforecast−last(R1, R2, I, φ, op) = φ(opsem({R1}, {R2}), I) = φ(op(R1, R2), I)

The latter equality in the forecast-last plan follows from the fact that opsem(·, ·), with
sem ∈ {poss, caut}, is equivalent to op(·, ·) if applied to singletons. A forecast-first
plan returns a set of tuples, whereas a forecast-last plan returns a set of relations.

For some classes of forecast operators, these query policies satisfy some additional
properties. The following proposition follows directly from the definition of possibility
and cautious semantics for a given RA operator.

Proposition 3. Let R1, R2 be temporal relation instances, I a temporal interval, and
op an RA operator. For DF and PF operators φ, the forecast-first plans under pos-
sibility and cautious semantics are equivalent, that is, opposs(φ(R1, I), φ(R2, I)) =
opcaut(φ(R1, I), φ(R2, I)).

Depending on the particular query application, the basic forecast-first plan as given in
Definition 9 can be further extended to allow for more flexibility in the forecast intervals
and operators. Given temporal relation instances R1, R2 and RA operator op, then we
can define the following variations of the forecast-first plan:

(i) Multiple interval plan. Consider two temporal intervals I1, I2, then a multiple in-
terval (MI) forecast-first plan is defined as ΦMI(R1, R2, I1, I2, φ, op) = op(φ(R1,
I1), φ(R2, I2)). Here, two distinct forecasts are made using the intervals I1 and I2

before the RA operator op is applied.
(ii) Multiple operator plan. Given a temporal interval I and two forecast operators

φ1, φ2, a multiple operator (MO) forecast-first plan is defined as ΦMO(R1, R2, I1,
I2, φ1, φ2, op) = op(φ1(R1, I), φ2(R2, I)). In this plan, two different forecast op-
erators are applied to the same interval, and the results are used by the RA operator.

(iii) Hybrid plan. Given two temporal intervals I1, I2 and two fore-
cast operators φ1, φ2. A hybrid forecast-first plan is defined as
ΦHybrid(R1, R2, I1, I2, φ1, φ2, op) = op(φ1(R1, I1), φ2(R2, I2)). This plan
combines the multiple interval and multiple operator forecast-first plans.

The remainder of this section will examine the relationships between forecast operators
and some RA operators, providing results on the resulting extended relational operators
that could, in principle, be used for query optimization. The result below states that,
for specific kinds of selection conditions, using a forecast-first plan with possibility
semantics will yield a superset of the result given by a forecast-last plan, while the
cautious semantics will produce a subset.

Proposition 4. Let R be temporal relation instance over the schema S, I a tem-
poral interval, φ a forecast operator coherent w.r.t. A ⊆ Attr(S), and C a se-
lection condition filtering out whole clusters only (i.e., σC(R) =

⋃
cl∈CL cl, where

CL ⊆ clusters(R,A)). Then,

(i) σposs
C (φ(R, I)) ⊇ Ri where Ri ∈ φ(σC(R), I)
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(ii) σcaut
C (φ(R, I)) ⊆ Ri where Ri ∈ φ(σC(R), I)

For DF and PF forecast operators, the possibility and cautious semantics coincide for
forecast-first plans (Proposition 3). It then follows that, under the conditions specified
above, σC(φ(R, I)) returns the same relation as φ(σC(R), I).

The interaction between forecast plans and projection RA operator is as follows.

Proposition 5. Let R be temporal relation instance over the schema S, I a temporal
interval, φ a forecast operator, and A ⊆ Attr(S) invariant attributes of S. Then,

(i) πposs
A (φ(R, I)) ⊇ Ri where Ri ∈ φ(πA(R), I)

(ii) πcaut
A (φ(R, I)) ⊆ Ri where Ri ∈ φ(πA(R), I)

Analogously to the selection RA operator, by Proposition 3 it follows that πA(φ(R, I))
coincides with the result of φ(πA(R), I) for DF or PF forecast operators. Also for
the union RA operator, the relationship between forecast-first and forecast-last plans
depends on the choice of possibility or cautious semantics.

Proposition 6. Let R1, R2 be temporal relation instances over the schema S, I a tem-
poral interval, and φ a forecast operator coherent w.r.t. A ⊆ Attr(S). If πA(R1) ∩
πA(R2) = ∅, then

(i) φ(R1, I) ∪poss φ(R2, I) ⊇ Ri where Ri ∈ φ(R1 ∪ R2, I)
(ii) φ(R1, I) ∪caut φ(R2, I) ⊆ Ri where Ri ∈ φ(R1 ∪ R2, I)

As above, φ(R1, I) ∪ φ(R2, I) is equal to φ(R1 ∪ R2, I) for DF and PF operators.

6 Related Work and Conclusions

Though there are numerous works on forecasting in general [3], as well as specialized
forecast models for specific domains, such as finance [15], epidemiology [9], or poli-
tics [2,10,11,14,12], all these methods vary dramatically from one another. With a large
array of possible statistical models, one previous attempt to better understand the rela-
tionship between these forecasting procedures is given by [7], which integrates several
forecasting methods into a common mathematical framework.

There has also been some recent work on the issue of forecasting queries in databases
[1,5,6]. [5] describes the Fa data management system that provides support for declar-
ative predictive queries over time series data, incorporating algorithms to effectively
choose the best model type and attributes for the best query performance. Another Pre-
dictive DBMS is presented in [1] which also proposes a declarative forecasting query
language, including the flexibility for both automated and user-defined predictive mod-
els. [6] investigates the I/O efficiency of forecasting queries, using a skip-list to index
the time series and provide access to multiple regression models at varying levels of
granularity. The model of forecasting presented in this paper differs from these prior
efforts by focusing on general characteristics of forecasting rather than specific queries
for a limited set of potential time series analysis methods. In fact, the framework given
here can serve as a generalized, unifying theory for forecasting in databases that en-
compasses the semantics of these other approaches.
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In this paper, we first provide axioms that any forecast operator should satisfy, to-
gether with additional desirable (but not required) properties. Our methods allow us to
take classical forecasting operators and categorize forecast operators into three increas-
ingly expressive categories and then embed them as operators in a temporal database:
(i) deterministic forecast operators, (ii) probabilistic forecast operators, and (iii) possible
worlds forecast operators. These classes of operators all satisfy our forecasting axioms,
and in some cases, additional desirable properties. We have explored several policies for
combining forecast and standard relational algebra operators to answer forecast queries
and started a theoretical analysis on the interaction between these operators. Future
work will focus on further investigating forecast policy w.r.t. relational algebra opera-
tors and exploiting these results as a basis for optimization of forecast queries. Though
forecasting is often complex, we are able to prove that many of the techniques reported
in this paper are tractable.
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