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Towards a Singleton Undergraduate Computer Graphics Course in
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This paper discusses the evolution of a single undergraduate computer graphics course over five semesters,
driven by a primary question: if one could offer only one undergraduate course in graphics, what would
it include? This constraint is relevant to many small and medium-sized colleges that lack resources, ade-
quate expertise and enrollment to sustain multiple courses in graphics that spread out its vast and evolving
content. We strive to include material that would provide (a) a basic but solid theoretical foundation (b)
topics, data structures and algorithms that are most practically used (c) ample experience in actual graph-
ics programming and (d) a basic awareness of advanced topics. We have a secondary objective of relating
and complementing computer graphics knowledge and programming with topics in other computer science
courses to provide a more cohesive understanding to our students. We achieve both objectives by using an
“early-scenegraphs” approach to progressively create graphics applications that use XML-based modeling
and both pipeline-based and ray traced rendering. We report and analyze results that show how students
were able to achieve more complex results within similar time periods while largely retaining prior average
student performance in the course. Students also report higher rates of satisfaction with the course when
it follows our proposed approach. Pedagogically our main contribution is an evolving blueprint for a single
undergraduate CG course that offers flexibility to emphasize different aspects like modeling, rendering, etc.
according to the instructor’s and students’ interests, while aligning the course better within the computer
science curriculum especially when resources are limited.
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1. INTRODUCTION

As is typically found in undergraduate computer science degree programs, our com-
puter graphics course is one of the most popular upper-level courses. One of the
main reasons for this popularity is the prior exposure of most students to the glam-
orous manifestations of computer graphics, such as computer games, special effects
in movies, etc. It is not uncommon for instructors to find students taking a computer
graphics course hoping to write a game at the end of the semester. Such high expecta-
tions, along with the inherent mathematical nature of the subject and its ever-evolving
vast content, make designing and teaching computer graphics courses challenging.
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Many degree programs spread out the content of graphics over several courses, form-
ing a cohesive sequence. This allows them to offer courses specializing in animation,
real-time graphics, non-photo-realistic rendering, etc. that require a basic foundation
provided by an earlier course. However offering multiple courses related to computer
graphics alone is not feasible at many universities, due to insufficient resources and
enrollment to sustain them or inadequate research focus and expertise in graphics.
Given the vast array of topics, if one could offer only one graphics course, what would
it include? This paper attempts to answer this question by reporting our experience in
incorporating various topics and techniques, looking at students’ achievements and ar-
riving at what we consider a set of “optimized” content and assignments. This content
to us represents material and programming experience that will best prepare students
to either pursue graphics in advanced, graduate studies or dabble in writing computer
games and other applications themselves using available frameworks.

A secondary objective is to make the graphics course more “inclusive” and integrated
with the overall computer science curriculum. While a typical introductory CG course
builds upon prior knowledge of linear algebra, coordinate geometry and programming,
it introduces mostly unique and specialized content to its students. This is certainly
not because computer graphics as a subject is not inclusive, but because given the vast
content such courses focus exclusively on concepts in graphics. Can a graphics course
incorporate material that students can relate to other courses? In small but significant
ways we were able to introduce topics that are not only related to graphics, but also
either taught or used in other courses.

Pedagogically the main contribution of this paper is a customizable blueprint of con-
tent and assignments for an introductory undergraduate computer graphics course
that has evolved over 5 semesters. This paper does not propose a new graphics curricu-
lum or a novel teaching technique. This paper reports our experience with including a
collection of traditional topics using specific, progressive and challenging assignments
and evaluates how successful it was in fulfilling course objectives and students’ expec-
tations. We introduce three themes in our assignments.

First we use an “early-scenegraphs” approach in our assignments, i.e. have students
implement and use a scene graph. In addition to being the central data structure in
many graphics applications and supported in most game engines, scene graphs can
also be valuable pedagogical tools to teach new and reinforce previously taught con-
cepts from other courses. Basing our assignments on scene graphs also allows us to
customize the course from one semester to another by emphasizing some topics more
than others: modeling, rendering, animation, etc. Scene graphs also work well with
XML, a representational format that is widely used but is seldom taught in detail in
traditional programming courses.

Secondly we have observed many benefits of building a single graphics system pro-
gressively during the semester rather than piece-wise assignments that concentrate
on specific aspects of graphics and OpenGL. While this is not a unique idea, we find
that when students progressively build a single application by adding new or replacing
existing functionality, their knowledge of relevant concepts is reinforced. Pedagogically
this presents an additional advantage: such a project reinforces relevant software de-
sign concepts while concentrating on their implementation.

Thirdly we include ray tracing in our course. Although uncommon in undergradu-
ate courses [Wolfe 2000] and usually part of a graduate-level course, we have found
that our undergraduate students respond enthusiastically to ray-tracing assignments.
It also unifies and demystifies all the math and graphics discussed throughout the
course, and in our opinion reinforces student understanding. Lastly it fits very well
with the overall project architecture, and thus over 15 weeks students end up with an
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Table I. Overview of our course

Week Topics

1, 2 Introduction to graphics and OpenGL

3 2D graphics and transformations

4 Introduction to 3D modeling, transformations

5, 6 Transformations, coordinate systems, hierarchical modeling

8− 9 Lighting: basics and OpenGL lighting

10 Texture Mapping

11 Shadow techniques and OpenGL buffers

12− 14 Ray tracing

14− 15 Optional topics (Intro to GLSL, advanced rendering techniques, etc.)

interactive OpenGL-based application capable of rendering lit, textured objects, with
an in-built ray tracer capable of producing shadows, reflections and transparency.

We find that students in such a course are able to achieve more complex implemen-
tations within the same time, respond enthusiastically and maintain or exceed prior
average student performance. Such a course also offers a good mix of the foundations
of computer graphics and the latest techniques. Instructors can also customize this
content, concentrating on specific techniques and algorithms for modeling, rendering,
animation, shader programming or even other advanced topics.

The rest of the paper is organized as follows: Section 2 places our course in con-
text of previous relevant literature. Section 3 summarizes the five different trials of
our course with respect to assignments and increasingly complex student work, cul-
minating in the proposed set of assignments (listed in the appendix). Section 4 dis-
cusses the main aspects of our course and correlates them with recommendations in
the ACM Computer Science curriculum [2008]. Section 5 briefly discusses some ma-
terial that integrates with other CS courses. Section 6 assesses the effectiveness of
our approach qualitatively (illustrated by student work) and its quantitative impact
on student learning, performance and perception. Section 7 discusses some possible
variations of our approach to suit similar courses and Section 8 concludes the paper.

2. RELATED WORK

The ACM computer science curriculum [2008] is a widely-used benchmark for assess-
ing the quality of offerings in a computer science degree program. Our course fulfills all
the core requirements of this curriculum and includes topics from most other elective
offerings. Our course also includes the most popular concepts taught in such introduc-
tory courses as well as topics that are relatively uncommon at this level.

Over the years there has been consistent interest in evolving graphics
courses in response to changes in graphics hardware, approaches, and support-
ing frameworks [Cunningham et al. 1988; Grissom et al. 1995; Cunningham 1999;
Hitchner et al. 1999; Cunningham 2000; Angel et al. 2006]: Paquette [2005] provides
a survey. Various themes to teach computer graphics have been proposed over the
years. Bresenham et al. [1994] discuss alternatives: systems-based (i.e. using a spe-
cific system/API), engineering (i.e. creating libraries for basic graphics algorithms)
and application-oriented (i.e. focused on a specific application of graphics). Two
distinct approaches to teaching computer graphics have emerged: top-down (using
a particular API to implement specific applications and techniques) and bottom-
up (focusing on fundamental algorithms while giving API usage secondary impor-
tance) [Sung and Shirley 2003; Angel et al. 2006; Tori et al. 2006]. More complete tools
like Renderman [Owen 1992] or API-agnostic approaches [Schweitzer et al. 2010] have
been used in the top-down approach instead of programming APIs. Our course has el-
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ements of both strategies. While we discuss most concepts related to modeling and
rendering in a generic way, our assignments adopt a specific API (OpenGL). How-
ever implementation of a ray tracer in the end forces students to implement op-
erations that had been abstracted or not supported by OpenGL, thus incorporat-
ing the bottom-up approach. Due to the ubiquity of inexpensive graphics processors
(GPU) shader programming has been integrated in traditional content of graphics
courses [Angel and Shreiner 2011]. Section 7.3 provides a brief discussion on how this
approach compares with our proposed blueprint. Fink et al. [Fink et al. 2012] suggest
a shader-focussed approach to building progressive assignments in one course. How-
ever their assignments involve completing a significant implementation provided to
students, whereas most of our assignments are built by students from scratch. Gear-
ing graphics teaching and programming to specific audiences has also been investi-
gated [Cunningham 2000; McDonald and Luecking 2002; Linares-Pellicer et al. 2010].
Another interesting approach has been to teach graphics in a completely applied way,
using it as a means to complete activities [Anderson and Peters 2009]. Techniques
focusing on classroom teaching rather than curriculum in graphics have also been
proposed (Web-based [Klein et al. 1998], interactive tools [Schweitzer et al. 2011] and
rapid prototyping [Gómez-Martı́n and Gómez-Martı́n 2006]).

Much work on computer graphics education recommends that hierarchi-
cal representations in general and scene graphs in particular be a part
of traditional CG courses [Cunningham 1999; Wolfe 2000; Bouvier 2002b;
Cunningham and Bailey 2001]. Bouvier [2002a] suggests using scene graphs to
understand the composition of a 3D scene, using them to compose specified 3D
environments, familiarizing the use of scene graph APIs and implementing them
(recommended for graduate courses). Our course incorporates all these aspects in our
latest set of assignments.

Implementing ray tracers in an introductory undergraduate graphics course is rel-
atively uncommon [Wolfe 2000], although there are some examples [Gribble 2008].
However some work has been done to use ray tracing as a teaching tool in such
courses [Hu 2010]. Shirley et al. [2007] discuss the how CG courses in the future may
adapt to advances in interactive ray tracing, a topic we briefly allude to when talking
in class about advances in and other applications of ray casting.

Some results shown in this paper were presented as a student
project [Jones and Shesh 2013]. This paper discusses the details and the course
itself.

3. THE COURSE: OVERVIEW AND EVOLUTION

This course is the first and only undergraduate course in computer graphics offered at
our mid-sized university in the United States. It is offered once a year and requires
relevant courses in data structures and algorithms (core courses) and basic knowledge
of linear algebra. Students taking this course are typically in the third or fourth year of
their 4-year computer science degree program. Most students taking this course have
no prior experience in graphics. Table I summarizes the typical topics and time line of
this course. The course uses C++ with OpenGL for all its programming projects.

We taught the same course for five semesters using different assignments each time,
culminating in the proposed set of assignments that we are currently using. In all
semesters we encouraged students to create their own models for the ray tracer. Also,
all ray tracers worked with implicit shapes, not triangle meshes. Each semester began
with one assignment in 2D graphics to ease students into 3D graphics.
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Fig. 1. The three varieties of assignments that we tried over five semesters. Arrows show that the next
assignment built upon the previous one. Version 1 (red) used largely independent assignments, culminating
in the ray tracer using a list of objects representation. Version 2 (yellow), used for 2 semesters included more
progressive assignments. The program used for modeling and viewing was extended to support lighting, tex-
tures and finally ray tracing, all using a common list of objects read from XML files. Version 3 (green) is our
proposed pipeline using scene graphs. Similar to version 2 it progressively builds a complete graphics appli-
cation. However because of the scene graph representation, more complicated models and their animations
were produced by students in the same time as corresponding assignments in Version 2.

(a) (b) (c)

Fig. 2. Example outputs of various assignments for the 1st semester (Fall 2008) with mostly unrelated as-
signments with no standard input file format (except the ray tracer). (a) Students had to create a “museum”
room model with a triangle mesh. (b) Textured scene from (a) by determining texture coordinates for the
Happy Buddha model. (c) Example output from student’s ray tracer.

3.1. First Semester

In the first semester (red in Figure 1), we emphasized on individual operations such as
modeling, lighting and textures. The first assignment on 3D graphics asked students
to create and render an animated solar system consisting of spheres and orbits, and
transform it using a track-ball interface. The next two assignments wrote programs
to load planes and mesh models and enable lighting (Figure 2(a)) and textures (Fig-
ure 2(b)). Finally the last assignment asked students to write a ray tracer that used a
list of implicit shapes (planes and spheres) as the primary data structure (Figure 2(c)
shows a student’s work). This course presented two difficulties. First, since the ray
tracer worked with a list of objects, building complex 3D models using only a linear
arrangement of simple objects was cumbersome for students (scene graphs were dis-
cussed, but students did not work with them in assignments). Secondly, since the ray
tracer project was not connected to any earlier assignments, the instructor had to pro-
vide a program that rendered a scene using OpenGL which students were asked to ray
trace. This created some difficulties as students had to understand the given program
before attempting to augment it.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3. Example outputs of various assignments for the 2nd and 3rd semesters, which had progressive
assignments with XML-based input. Row 1 (2nd semester, Fall 2009) (a) A floor plan specification provided
to students (please zoom into the PDF document). (b) Corresponding model created by a student. (c) The
model navigated using a keyboard based interface along with lighting. Students were asked to give the
Happy Buddha model a “chocolate”-like appearance by choosing appropriate material properties. (d) Same
model with textures. (e) Example output from a student’s ray tracer using the same XML specification.
Row 2 (3rd semester, Fall 2010) (f) Specification to crudely replicate Hogwart’s School from the Harry Potter
movies (please zoom into the PDF document). (g) Example model created using the specification. (h) Same
model rendered from the cockpit of an airplane model flying through the scene (i) Lit and textured model,
with headlights on a moving airplane (encircled in red)(please see video at the link provided in Section 10).
(j) Example output of a more complicated scene from a student’s ray tracer.

3.2. Second and Third Semesters

In the second semester (yellow in Figure 1) we used XML to specify 3D models and
designed assignments that progressively built upon each other. We also switched from
GLUT [glu 2011] to Qt [qt 2011] as our windowing toolkit. Students were provided
with the skeleton of an XML SAX1 parser (written using Qt classes [qtx 2011]), and
they were asked to extend it to parse a given XML file that specified various implicit
shapes (i.e. planes, spheres, cylinders, etc.) with their colors and transformations. Us-
ing a provided floor plan (Figure 3(a)) students created a 3D scene (Figure 3(b)) using
XML and implemented a keyboard-controlled camera. Subsequent assignments ex-
tended the XML specification to add support for lighting (Figure 3(c)), texturing (Fig-
ure 3(d)) and ray tracing capabilities (Figure 3(e) shows a student’s work) to the same
program. Thus students created a single application that parsed an XML file, rendered
a 3D lit and textured navigable environment using OpenGL, and also switched to a ray
tracing mode that rendered shadows, reflections and optionally, transparency.

The third semester followed a very similar pattern of assignments (a floor plan (Fig-
ure 3(f)) used to create a 3D scene (Figure 3(g))), but added the ability to load objects
from different XML files simultaneously in a single scene. This somewhat eased the
task of creating a 3D scene as it could be “assembled” from multiple XML files of small
sizes. Students used this to add cockpit views to a plane flying along pre-defined paths
(Figure 3(h), accompanying video at the link provided in Section 10) and object-relative
lights (Figure 3(i)). Finally students added a ray tracer to this program (Figure 3(j))
that rendered shadows, reflections and optionally, transparency.

1Simple API for XML
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In both semesters, students found it easier to specify more complicated models (see
table in Figure 5(a)) using XML. The main limitation was the difficulty in animating
parts of objects. This was because XML models were still stored as a list of objects in
their programs, thereby destroying any semantic relationships between parts.

3.3. Fourth and Fifth Semesters: Proposed Blueprint

(a) (b) (c)

(d) (e) (f)

Fig. 4. Example outputs of various assignments for 4th and 5th semesters, with scene graph based modeling
using XML input. Row 1: Fall 2011. (a) A hierarchical model of a wheeled object created using spheres, boxes,
cylinders and cones. Students animated the model by moving wheels and turning rotors corresponding to
the speed of the vehicle. (b) Same model lit and textured on a circular track. (c) Example output from a
student’s ray tracer using the same XML specification and scene graphs, including shadows, reflections and
transparency. Row 2: Fall 2012. (d) Hierarchical model (e) Same model lit and textured with a headlight
on a circular track (see accompanying video at the link provided in Section 10). (f) Example output from a
student’s ray tracer using the same XML specification and scene graphs.

The pipeline shown in green in Figure 1 shows our proposed course work, and the
appendix provides a set of assignments. The major change from the earlier version was
that students used scene graphs (as trees) to represent the virtual world, while largely
retaining the same XML representation. Students extended an XML parser that cre-
ated a list of objects so that it instead compiled a scene graph and then rendered it.
They implemented the scene graph data structure by themselves from scratch. Stu-
dents then used the program to create an animated wheeled locomotive (Figure 4(a,d),
accompanying video at the link provided in Section 10). Along with lighting and textur-
ing the scene (Figure 4(b,e)), subsequent assignments implemented a ray tracer based
on the same scene graph with similar capabilities as before (Figure 4(c,f)).

The specific benefits of teaching scene graphs [Bouvier 2002b; Bouvier 2002a] and
ray tracing [Hu 2010; Gribble 2008] are well-known in the graphics research and edu-
cation community. We now correlate many objectives of a typical undergraduate graph-

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39, Publication date: March 2012.



39:8 A.Shesh

ics course specified by the ACM curriculum [2008] with our specific material and high-
light implementation details, benefits and opportunities for customization.

4. COURSE CONCEPTS ⇔ MATERIAL

4.1. Concept: Creation of 3D Models

ACM category: Geometric Modeling
3D models in computer graphics are typically represented using triangle meshes,
points or volumes. Irrespective of their representation most practical 3D models are
created progressively out of simpler primitives using 3D modeling software like 3D
Studio Max [3ds 2012], Sketchup [ske 2012], etc. In order to reduce modeling complex-
ity and represent not only structure but motion capabilities, such models are hierar-
chical, with every part composed internally of other parts. Learning how to specify and
use models in a hierarchical fashion is useful for any student of graphics.

Scene graphs and XML both fit the above requirement perfectly. Being naturally hi-
erarchical, it is convenient to specify hierarchical models within an XML specification.
Structural (e.g. normal vectors, positions, transformations, etc.), motion (e.g. animat-
ing transformations, velocity, acceleration, etc.) and material (e.g. color, interaction
with light, textures, etc.) properties can all be embedded within XML. Hierarchical
XML specifications map into hierarchical scene graphs within the program. In our
course students could create more complicated models by manually typing an XML
file rather than a linear arrangement of the same primitives without any hierarchy.
For example, the moving locomotive (Figure 4(a-b)) would be very cumbersome to cre-
ate without a hierarchy, and whereas the Hogwarts model (Figure 3(b-c))) could be
created with a simple collection of basic shapes, using hierarchies for each building
could have made the task more convenient.

4.2. Concept: Transformations and Coordinate Systems

ACM category: Fundamental Techniques
Understanding the nature of transformations, their use to produce a desired output
and the connection between the visual and the underlying math is arguably the most
critical component of a computer graphics course. In our experience students take sig-
nificant time in decomposing a desired animation or camera movement into transfor-
mations. Therefore we strive to give students a lot of practice using transformations
by asking them to implement specific visual results throughout the course.

We start by asking students to create 3D models in XML, first linear (3D model from
floor plan (Figure 3(a,f)) and then hierarchical (Figure 4(a-b))), thereby reinforcing the
advantages of scene graphs over lists. These transformations are stored at various
nodes in the resulting scene graph. We ask students to either animate models realisti-
cally or attach cameras to moving parts of the scene. Implementing these effects may
seem complicated to the untrained mind, but representation of the model as a scene
graph is very helpful in such situations.

The scene graph hierarchy is an n-way tree (i.e. each non-leaf node has up to n
children) that implicitly represents each part (node) at the center of its own coordi-
nate system. This coordinate system acts as a reference for all its sub-parts (children
nodes). The part itself is placed relative to its “parent part” (parent node). Drawing any
part correctly requires transforming it to the camera coordinate system which is the
system of the scene graph root. Thus rendering a scene graph requires a simple depth-
first traversal. More importantly, any relative motion of parts requires determining
transformations from the coordinate system of the moving part to that in which it
moves. The duality of transformations and coordinate system changes is a very helpful
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concept, and practically is also one of the most confusing ones for students. Using a
scene graph greatly aids in revealing this duality.

Although earlier semesters taught scene graphs, we believe the illustration and the
learning power was much greater when students actually implemented them. We dis-
covered that in many cases students were able to determine appropriate transforma-
tions, arrange them in the correct order more quickly when the models were already
organized in a scene graph. A preliminary proof of their effectiveness is given by the
fact that students were able to implement a scene graph data structure, create the 3D
model of the moving locomotive in XML (without textures), and animate it with rotat-
ing wheels and fan blades along a circular path in a single assignment in only 2 − 3

weeks while working individually.
Implementation of the ray tracer using the same scene graph further reinforces this

understanding. Tracing rays through a scene requires transforming a ray up and down
the scene hierarchy. More than the practical utility of implementing a ray tracer, we
believe this project further solidifies students’ understanding of 3D transformations
and coordinate systems.

4.3. Concept: Lighting

ACM category: Basic Rendering
Besides transformations, lighting is the most mathematical concept in an introductory
course. Most APIs like OpenGL provide support for basic lighting. However one can-
not directly implement many effects using most available APIs (e.g. specify a moving
light).

We believe using scene graphs earlier in the course helps students understand the
concept of moving lights, because scene graphs help thinking of lights as geometry.
Thus creating moving lights (e.g. a miner’s hat or headlights on a moving object) be-
comes as simple as determining the appropriate scene graph node to attach them to
(i.e. the appropriate coordinate system to specify the light).

While using an API like OpenGL hides students from the implementation of the
lighting model, building a ray tracer forces them to implement it from scratch. Under-
standing how lighting works in a graphics environment is one of the main benefits of
writing the ray tracer. Students are typically asked to implement “per-pixel lighting”,
an effect that cannot be produced in OpenGL without writing GPU shaders.

4.4. Concept: Texture mapping

ACM category: Basic Rendering
Texture mapping is the task of pasting images onto 3D models to give them a realistic
appearance. Most existing APIs support this operation and basic related operations.
However the ray tracer project asks students to implement texture mapping from first
principles. Thus students are exposed to some basic but important math that APIs
successfully abstract from programmers. Knowledge of how such basic operations work
is critical when customizing them using GPU shader programs.

4.5. Concept: Ray Tracing

ACM category: Advanced Rendering
OpenGL implements a “pipeline”-based rendering model. A ray tracer application ex-
poses students to a radically different way of producing realistic images. Progressively
adding both forms of rendering to the same application helps further reinforce and
appreciate the similarities and differences between the two approaches.

Implementing a ray tracer gives students a chance to implement the actual math
that they learn in the course and create pictures without the help of an existing API.
Also it allows students to achieve effects that are not supported directly by traditional
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APIs (e.g. shadows). Students implement realistic shadows, reflections and (optionally)
transparency, which are conceptually much simpler in a ray tracer than in pipeline-
based APIs. Contrasting the OpenGL lighting model with that of the ray tracer often
leads to a discussion on other rendering methods such as photon mapping.

4.6. Concept: Hidden Surface Removal

ACM category: Advanced Techniques
Hidden-surface removal is directly supported by most APIs, mostly in the form of
Z-buffers. However students effectively implement this technique in the ray tracer
project, by sorting all points of intersection along a ray from the camera to pick the
nearest object. Although other techniques for hidden surface removal like BSP trees
are no longer practically used for this operation, they find other applications in the ray
tracer. Including the ray tracer in our course provides a context to discuss the possible
role of BSP trees and other data structures to make it more efficient2. We feel going
through the hardships of implementing a ray tracer that inherently works slowly com-
pared to earlier programs underscores the need to think about other data structures
and algorithms.

5. INTEGRATION WITH CONCEPTS FROM OTHER COURSES

Our choice of the above topics and implementation details helped us to expose students
to small, but new concepts and tools.

XML is widely used in many applications, but is seldom part of a traditional pro-
gramming course. XML parsers (SAX and DOM) are common components in many
applications, and students in our course benefited from using XML in the context of
graphics. We observed a few instances of students, having taken the graphics course,
using similar XML parsers with Qt in other courses that we taught. We regard this as
small but preliminary evidence that the knowledge gained from the graphics course
proved useful elsewhere.

Constructing a scene graph using XML proves to be a worthwhile exercise in algo-
rithms. Students were asked to use provided hints and their understanding of trees
to implement this bottom-up construction themselves. The actual algorithm is very
similar to construction of expression trees [Weiss 2006], a common example used to il-
lustrate binary trees. Scene graphs also exemplify “n-way” trees, a topic that students
learn about but often do not actually implement in algorithms courses. Rendering and
destroying a scene graph amounting to a pre-order traversal was a revelation to many
students who had encountered this operation only in the context of search trees.

An indirect benefit of implementing a single application incrementally is that stu-
dents get a chance to observe many design issues specifically concerning graphics ap-
plications. In general it is a challenge to provide students with the experience of ana-
lyzing, designing, implementing and testing the same application with practical utility.
Most curricula start with programming followed by courses in software analysis and
design that involve partial or no implementation. A progressively built system in a
CG course represents a reverse approach: implementing and testing a system with a
provided design. We found the component-wise design to be especially beneficial when
augmenting the program with a ray tracer, making it possible to implement the ray
tracer over a period of 3− 4 weeks.

During every semester, we found that several students were simultaneously enrolled
in or had recently taken physics courses that included optics. These physics courses
and our graphics course seemed to nicely but unexpectedly reinforce each other with

2Students did not implement any data structures to make the ray tracer efficient; they were just discussed.
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Table II. Qualitative assessment of required tasks assigned to students, categorized into modeling(Rows 1-4), lighting and texturing(Rows 5-8)
and ray tracing(9-12). Grey columns highlight semesters with proposed assignments. Table outlines various common graphical effects and
details of whether they were assigned in one or more assignments in the five semesters. Later semesters included more sophisticated effects
(hierarchical modeling, moving lights, ray tracing scene graphs).

Effect/Task Fall 2008 Fall 2009 Fall 2010 Fall 2011 Fall 2012

Creating scenes from scratch Simple Simple Simple Hierarchical Hierarchical

Load models from files Code provided Code provided
Partly write
XML parser

Partly write
XML parser

Partly write
XML parser

Object animation/movement Whole No Whole Whole and part Whole and part

Camera movement No
Keyboard-
controlled

Pre-defined
path

No (equivalent
scene move-
ment)

Pre-defined
path

Placing lights Stationary Stationary
Stationary
and/or moving

Stationary
and/or moving

Stationary
and/or moving

Render pre-textured objects Yes Yes Yes Yes Yes

Determine texture coordinates Yes Yes Yes Yes Yes

Implement given lighting model Yes Yes Yes Yes Yes

Ray casting in 3D List of objects List of objects List of objects Scene graph Scene graph

Shadows Yes (ray tracer) Yes (ray tracer) Yes (ray tracer) Yes (ray tracer) Yes (ray tracer)

Reflections Yes (ray tracer) Yes (ray tracer) Yes (ray tracer) Yes (ray tracer) Yes (ray tracer)

Refraction
Optional (ray
tracer)

Optional (ray
tracer)

Optional (ray
tracer)

Optional (ray
tracer)

Optional (ray
tracer)

students learning about the theory in the former and actually implementing it in the
latter (usually in the ray tracer).

6. IMPACT ON STUDENT LEARNING AND PERFORMANCE

We believe that our proposed set of assignments and their objectives improve the over-
all design of a singleton graphics course. Specifically we claim the following: (1) stu-
dents who completed our proposed set of assignments achieved more sophisticated
results in the same time frame (2) students achieved this without negatively affecting
their performance in the course, and (3) students report a comparable or higher level
of satisfaction when our course offers the proposed assignments. We support these
claims by presenting an elementary analysis of student evaluations, student perfor-
mance and a qualitative assessment of student achievements. This analysis uses data
that is routinely available to instructors.

6.1. Qualitative Observation of Student Achievement

The primary way in which we assess the impact of our projects is to observe the com-
plexity of results achieved by students. In all semesters students were encouraged to
create their own models and render them in at least some of the assignments.

Our primary objective for qualitative observation was to observe which “practical”
graphical data structures, operations and effects our students able to implement (rea-
sonably) from scratch. Table II summarizes how assignments became more sophisti-
cated in later semesters, by enumerating a categorized list of required tasks/effects in
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various assignments and how (or whether) they were implemented by students. With
respect to modeling, Table II shows how Fall 2011-2012 included hierarchical modeling
using scene graphs, leading to more complicated models, and more advanced anima-
tion effects through either transformations or equivalent camera movements. This is
further supported by the table accompanying Figure 5(a) that compares the complex-
ity of models across semesters, and visually illustrated in Figures 2- 4. With respect to
lighting, Fall 2011-2012 included lights that were stationary or moved with objects).
Finally Fall 2011-2012 included ray casting with scene graphs, enabling students to
ray trace potentially more complicated 3D scenes.

Since students individually completed corresponding assignments each semester in
largely the same time(∼ 2 − 3 weeks), it implies that students could achieve better
graphical results due to being able to create more complex models and/or implement
more complicated effects like animation and moving lights in the same amount of time.

Average no. of primitives objects used in a scene created by students

Fall 2008 Fall 2009 Fall 2010 Fall 2011 Fall 2012

6 objects 57.4 objects 51.4 objects
32.3 objects,
7.7 groups

38.3 objects,
8.8 groups

(a) Create scenes from scratch as specified

(b) Move camera as specified (c) Move parts of objects as specified

(d) Place stationary lights as specified (e) Place moving lights as specified

(f) Implement OpenGL shading model (g) Texture-map objects with images

Fig. 5. Assessment of student work according to various required criteria. Please see Section 6.2 for details
on how these charts were produced. Charts show how student performance was either similar or improved
as the tasks become more complex with every semester. Blanks in each chart indicate that the task was
not assigned for that semester (either unnecessary or infeasible). (a) Task: create scenes from scratch as
specified. Table shows the average number of primitive objects (plane, sphere, cone, cylinder) per student
scene and the average number of groups (only for hierarchical models). (b) Task: move camera as specified.
Fall 2008 did not include this task, while Fall 2011 completed an equivalent task involving moving the scene.
(c) Task: move parts of objects as specified. Such animation was not feasible in the first three semesters as
models were not hierarchical. (d) Task: Place stationary lights as specified. The last two semesters did not
explicitly specify this task as stationary and moving lights can be handled in the same way. (e) Task: Place
moving lights as specified. This task entailed attaching lights to moving objects (e.g. headlights). (f) Task:
Implement the existing OpenGL shading model manually (in the context of the ray tracer). This task forces
students to understand the math behind OpenGL lighting. (g) Task: render objects that are texture-mapped.
This task also involved determining texture coordinates for some primitive objects in the ray tracer.
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(a)
Pairwise t-tests

Comparison Topic t Pr(T≤t) (2-tailed)

Fall 2008
vs.

Fall 2011

Modeling 0.4862 0.6313

Lighting -0.4849 0.6317

Texturing 0.7159 0.48

Raytracing-1.1106 0.2759

Fall 2008
vs.

Fall 2012

Modeling -0.2 0.8426

Lighting -1.5075 0.1417

Texturing 0.0284 0.9775

Raytracing -1.039 0.3078

Analysis of Variance: 2-sided ANOVA

Criterion DfF value Pr (>F)

Topic 3 3.7969 0.0106

Semester 4 0.9997 0.407

Topic:Semester12 0.6010 0.841

(b) (c)

Pearson’s χ2 test

Comparison Df χ2 p-value

Fall 2008 vs Fall 2011 3 0.7559 0.86

Fall 2008 vs Fall 2012 4 2.6718 0.6142

(d) (e)

Fig. 6. Performance comparison across five semesters. (a) Average performance as a trend per deliverable
(topic/exam), with error (standard deviation). (b-c) Analysis of significance of average performance. (b) Pair-
wise t-tests on Fall 2008 and Fall 2011-2012 shows that the performance before and after the proposed
assignments did not vary significantly. (c) Results of the 2-sided ANOVA test on actual scores, showing that
the performance across the 5 semesters (row 2) did not vary significantly for any topic, nor was there any sig-
nificant correlation between the semester and deliverable on specific topics. (d) Percentage of letter grades
per semester. (e) Results of the χ2 test showing that the grade distributions are independent (p-value >

0.05) of the types of assignments offered (Fall 2008 vs. Fall 2011 and Fall 2012). Overall this shows that
student performance was not affected significantly as a result of adopting the proposed assignments.
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6.2. Student Performance

We assessed the possible impact of our assignments on student learning by observing
average student performance. In the five semesters in question (Fall 2008-2012) had 19,
12, 21, 12 and 23 students respectively, which is fairly representative of our class sizes.

Figure 5 shows student performance using various expected outcomes of a graphics
course as criteria. For each criterion, we mapped relevant parts of (possibly multi-
ple) assignments for each of the 5 semesters and calculated the average student per-
formance in those parts (using points pre-assigned by the instructor in the grading
rubrics) as a percentage. We then mapped this average to categories as follows: Fully
satisfactory (≥ 80%), Partly satisfactory (between 60% and 80%) and Unsatisfactory(
< 60%). Blank regions indicate that the criterion in question either could not be im-
plemented (e.g. animation of parts in earlier semesters) or were not explicitly required
(e.g. moving the camera in Fall 2011 was indirectly required by moving the scene in a
specific way).

Figure 6(a) shows the average performance of the class in exams and assign-
ments (actual units of graded course work) that broadly span the topics of modeling
and viewing, lighting, texturing and ray tracing. Table 6(b) shows, using pairwise t-
tests [Kutner et al. 2004], that there was no significant change in average performance
before and after the proposed assignments. Table 6(c) reports the results of the 2-sided
ANOVA test [Kutner et al. 2004] on the actual scores, showing that the average perfor-
mance did not vary significantly across semesters (row 2), and there was no significant
interaction between topics and semesters. Figure 6(c) shows the percentage of letter
grades awarded in each semester. Table 6(d) shows that according to the Pearson’s
χ2 test the grade distributions before and after adopting the assignments are inde-
pendent of each other (p-value greater than 0.05). Thus we conclude that assigning
increasingly complex tasks in later semesters varied slightly or retained the overall
average performance.

6.3. Student Perception

All courses in our school are evaluated by students using IDEA evaluations [ide 2012],
that report statistics based on questions that aim to assess progress towards course
objectives, performance of the instructor and student perception of the course. Ta-
ble III summarizes student responses to six questions related to (a) completion of
stated course objectives, (b) course work expected from students and (c) an overall
rating of the course. This table compares student responses from Fall 2008 (separate
assignments, no scene graphs), Fall 2011 and Fall 2012 (both semesters with proposed
set of assignments and scene graphs). Although student perception is traditionally not
considered as the most reliable tool to assess curriculum and course effectiveness, we
observe that students rated the latest forms of this course higher than the first one.
The lower table in Table III presents the results of the Welch t-test [Kutner et al. 2004]
on the response data before (Fall 2008) and after (combined data from Fall 2011 and
Fall 2012) adopting our proposed assignments to determine if the difference in student
evaluations is significant. These results show that the differences are significant for
4 out of the 6 above questions. These student perceptions combined with inferences
from earlier qualitative assessments provide some evidence that our latest set of as-
signments achieved more positive outcomes.

We have found it difficult to reliably assess how our assignments have affected stu-
dents’ holistic understanding of computer science concepts. This is primarily because
of two reasons. First, it is difficult to map these benefits to actual material in courses
students take subsequently, thereby hindering a cause-effect assessment. Secondly as
stated earlier many students graduate soon after taking the CG course. Nevertheless
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Table III. Student perceptions of our course from IDEA evaluations when taught in Fall 2008 (no progressive
assignments, no scene graphs) and combined data from Fall 2011-2012 (early-scenegraphs, progressive
assignments). Top table: raw scores given by students. All scores are on a 5-point scale, 5 being the highest
rating. Bottom table: statistical significance of the difference between the two sets of student evaluations (Fall
2008 and combination of Fall 2011-2012) using Welch t-test. These results show that the differences are
significant (P (T <= t) <= 0.05 and ‖tcritical‖ <= ‖t∗‖, shown in bold) for Questions 1, 2, 3 and 6.

Question

Fall 2008
(before changes)

Fall 2011
(after all changes)

Fall 2012
(after all changes)

Number of
responses

Avg.

Number of
responses

Avg.

Number of
responses

Avg.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1. (Progress on) Gaining factual
knowledge (terminology, classifica-
tions, methods, trends)

0 1 3 6 6 4.1 0 0 0 4 7 4.6 1 0 0 4 13 4.6

2. (Progress on) Learning fundamen-
tal principles, generalizations or the-
ories

0 1 4 5 6 4.0 0 0 0 5 6 4.6 1 0 0 5 12 4.5

3. (Progress on) Learning to apply
course material (to improve think-
ing, problem solving and decisions)

1 0 4 7 4 3.8 0 0 0 4 7 4.6 1 0 3 5 9 4.2

4. (The instructor) gave tests,
projects, etc. that covered the most
important points of the course

0 2 0 7 7 4.2 0 1 1 2 7 4.4 1 0 2 6 9 4.2

5. (The instructor) gave projects,
tests or assignments that required
original or creative thinking

0 1 4 3 8 4.1 0 0 0 3 8 4.7 1 1 0 5 11 4.3

6. Overall I rate this course as excel-
lent

1 0 3 9 3 3.8 0 0 0 4 7 4.6 1 0 1 4 12 4.4

Question 1 2 3 4 5 6

t∗ -1.8831 -1.806 -1.6942 -0.2839 -1.1504 -2.3987

P (T <= t) (one-tail) 0.0351 0.041 0.0506 0.3891 0.1297 0.012

we have observed some anecdotal evidence of its impact. From our discussions, it is
apparent that many of our students who have dabbled in writing games found knowl-
edge of XML processing and scene graphs very helpful. We have found some instances
of students using the XML processing learned here in other courses.

7. SUGGESTIONS FOR CUSTOMIZATION

Our evolving blueprint that includes scene graphs, progressive assignments and ray
tracing can be customized in several ways to offer courses with a different or specific
focus and targeting different audiences.

7.1. Scene graphs: Implement or Use?

Many modern game engines (e.g. Unreal [unr 2011]) and libraries (e.g. Open Scene
Graph [ope 2011]) include scene graphs with support for multiple programming lan-
guages. This course can be designed to concentrate on the use of scene graphs rather
than their construction. While we feel asking students to implement a scene graph
data structure has significant learning benefits, adopting an existing implementa-
tion will allow more room to concentrate on other relevant topics, such as view-
frustum culling and collision detection using bounding volume hierarchies for use in
games [Eberly 2001].
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7.2. Focus on specific applications

Many small and medium-sized colleges offer specific courses that use computer graph-
ics for applications, such as art and design or computer games. Scene graphs support a
wide variety of operations concerning modeling, animation or rendering. A course may
be customized to focus on any technique while retaining our overall blueprint. For ex-
ample a course may emphasize on creating an interactive modeling package where the
scene graph representation can be used to facilitate user interactions for various op-
erations. Alternatively an animation-based package may be progressively constructed
that uses scene graphs to allow interactive user input for animating scenes. The ray-
tracing component may either be used to create a “demo picture” or used for object-
picking within the application rather than actual rendering.

7.3. Shader Programming

Shader programming using GLSL or Cg is an increasingly popular topic in under-
graduate graphics courses. Availability of inexpensive GPUs and the ubiquitous use
of shaders in graphics programming are compelling reasons to integrate shader pro-
gramming in a singleton graphics course. Including shader programming simply as a
separate module (like ray tracing) especially in a singleton course such as ours has
several difficulties. First, it is difficult to include both shader programming and ray
tracing in a semester without compromising on other content due to lack of time. Sec-
ondly, shader programming uses a different programming model (Single Instruction
Multiple Data or SIMD) with a different set of development and debugging tools and
techniques than what students are normally exposed to, making it difficult to do justice
to this topic in a short span of time. Finally, as Angel et al. [Angel and Shreiner 2011]
report, the modern OpenGL standard has deprecated much of the traditional pipeline
and many standard mathematical functionality. Although they suggest how instruc-
tors can use this to their advantage, it may add to the “startup” time of a singleton
course (i.e. the amount of new concepts and programming that students must be fa-
miliarized with before they implement something meaningful and substantial).

Our primary reason for choosing ray tracing was that it better reinforces all the
basic mathematical and graphical concepts by essentially re-implementing the graph-
ics pipeline. A minor secondary reason was that although our department offers lab-
oratories equipped with modern GPUs, many students did not have access to them
off-campus where they chose to complete most course work.

There have been some recent advances in introducing shaders early in the graph-
ics course, such as the new edition of the popular textbook by Angel [Angel 2011]. We
believe their approach of integrating shaders with traditional graphics programming
throughout the course rather than as a separate module can be combined with our
proposed blueprint. As such we plan to adopt this approach as a “shaders-first,early-
scenegraphs” introductory graphics course that would retain ray-tracing. In such a
version, we envision that shaders would be considered as an integral and mandatory
part of any initial source code given to students. Throughout the course, students can
then be asked to modify/add shaders that produce certain effects, similar to how they
currently add parts to existing programs. For example, students can be asked to im-
plement the same effect two ways (traditional vs. shader-based) to highlight the power
and potential of shaders. Since most students taking our course have no prior experi-
ence in graphics programming in particular, we believe there is a viable way of inte-
grating shader programming without sacrificing much content, in the way illustrated
by Angel [Angel 2011].
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Table IV. Image credits

Images Name of student

Figure 2(c) Christopher Olson

Figure 3(b,c,d) Benjamin Ritter

Figure 3(e) Clint Riley

Figure 3(g,h,i) Sarah Steffen

Figure 3(j) Christopher Murphy

Figure 4(a,b) Geoffrey Godwin

Figure 4(c) Thomas Mazzotti

Figure 4(d,e,f) Matthew Jones

8. CONCLUSION

We have discussed the evolution of an introductory CG course over five semesters,
culminating in a progressively built scene-graph-based application that uses XML
for input and includes a ray tracer. We believe this content and related projects ef-
fectively reinforce graphics concepts and provide students with ample experience in
graphics implementation in a single course, preparing them for further study of com-
puter graphics or pursuing projects such as games.
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Online Appendix to:
Towards a Singleton Undergraduate Computer Graphics Course in
Small and Medium-sized Colleges

AMIT SHESH, Illinois State University

A. PROPOSED ASSIGNMENTS

The following is an abridged description of the proposed assignments, as they were
assigned in Fall 2012. During the course students were provided with source code in
C++ with many of the assignments. This appendix does not include the source code but
refers to it.

A.1. 1. 2D Graphics

Description: Turtle graphics is based on the notion of a turtle moving on screen,
drawing as it moves. The turtle’s “state” is described by a position (x,y) and a direction
in which it is pointing, in the form of a unit vector (vx,vy). Through standard com-
mands, you can make the turtle simply walk, walk and draw, and change its direction.
What to do: Implement a program that accepts a set of turtle commands from a file
and correspondingly moves the turtle and makes it draw. The starting state for the
turtle is at the origin pointing in the +X direction. The following are the turtle com-
mands that your program must implement: turn θ that turns the turtle to its left by
angle θ in degrees, trace r that moves the turtle in the direction it is facing by distance
r and draw its path as a line, move r that moves the turtle in the direction it is facing
by distance r but does not draw, push that saves the current state of the turtle in a
stack, and pop that retrieves the state of the turtle from the stack.
What is provided: Example text files with turtle commands, a short description of
their format and the expected picture for one simple input file.

A.2. Modeling

Description: In this assignment you will implement a program that reads and draws
simple 3D objects constructed from simple primitives. The provided C++ classes rep-
resent and draw simple primitives (bounded XY plane, sphere, cylinder). Please refer
to documentation in these files to know more about their default sizes and positions.
Create a new project with the provided source files and verify that the pictures shown
below (in the actual assignment) are rendered for the corresponding files shown.

The XML file describes an object composed of the above primitives. The XML file
represents each primitive, its transformations and color as XML tags. The provided
XML parser reads the input XML file and if valid, creates an array of objects that are
drawn by the main rendering function.
What to do: Create two new primitives (a) a cone with its circular face of unit radius
centered at the origin and on the X-Z plane, and height 1 along +Y axis (b) a box of unit
side centered at the origin (you may use several planes to create the box or create it
from scratch. Verify that these primitives work correctly by trying the provided input
files that contain them.

Model a locomotive using the above 5 primitives. You are free to design its structure,
so long as it obeys 4 constraints: (1) The locomotive must have 4 wheels (2) Each wheel
must have at least four spokes (3) The locomotive must have a body (i.e. not just four

c© 2012 ACM 1946-6226/2012/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39, Publication date: March 2012.



App–2 A.Shesh

wheels and axles) (4) The locomotive must have at least one propeller with at least 2

blades.
What is provided: C++ source code that creates and draws planes, spheres and
cylinders in a canonical position, example input XML files, XML parser that parses
provided input files into a list of primitive objects, an image of an example locomotive.

A.3. Hierarchical modeling and animation

Description: A scene graph is a hierarchical representation of a model. It contains
two types of nodes: leaf nodes that represent an actual primitive and group nodes that
group several sub-groups or primitives and transform them together. Each node has its
coordinate system and stores a transformation that transforms it into its parent node’s
coordinate system. In this assignment you will extend your Assignment 2 program to
process, render and animate objects represented as a scene graph.
What to do: Start with your own code for Assignment 2 or use the provided solution.

1. Read the provided input files to see how a hierarchical model can be represented
in XML. Your XML parser should be able to parse these files.

2. Create classes that represent scene graph nodes (Basic node that contains the
node’s name and a transformation, two subclasses: group node that contains a list of
basic nodes as children and leaf node that is one of the primitives from Assignment 2).
Write functions in each type of node that will draw itself and delegate drawing to its
children if any.

3. Change the XML parser from Assignment 2 so that it supports additional tags for
groups and leaves and assembles a scene graph as it parses a provided valid input XML
file. Modify the main rendering function so that it renders this scene graph instead of
the earlier list of objects.

4. For the provided XML file that shows a “Jack-in-the-box” face, write an animator
function that will make the face nod “yes”. You can do this by suitably naming various
nodes in the XML files, identifying them in your program and transforming them with
time. You may find it useful to maintain a map of node names and node pointers.

5. Animate the locomotive model from Assignment 2 so that it moves along a circular
track at constant speed. The wheels of the locomotive should roll convincingly (i.e. they
should neither skid nor move too slowly relative to the speed of the locomotive).
What is provided: Solution to Assignment 2, input files representing hierarchical
objects with the expected picture for a simple input.

A.4. Lighting and Texture Mapping

Description: In this assignment you will extend the program from Assignment 3 by
adding support for point lights and textures. You will use these features to enhance
the animated scene that you set up in Assignment 3.
What to do: Start with your own code for Assignment 3 or use the provided solution.
Use the provided C++ classes that represent a light, a material and a texture.

1. Modify the node classes so that any type of node can contain a list of lights. Add
functions to add a light source to an existing node.

2. Modify the leaf nodes so that instead of color, they have material. Modify the draw
functions so that they use materials.

3. Write functions in the node classes that enable and disable lights attached to
them. This way all the lights can be “ switched on” before rendering and “switched off”
thereafter.

4. Modify the leaf node classes so that they may contain one texture and its associ-
ated transformation. Incorporate this texture in the drawing functions.
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4. Modify the XML parser to support the additional tags for lights and textures
(see provided input files for an example). The provided texture class uses Qt classes
discussed during lectures, so that you can specify textures in standard image formats.

5. Modify the main rendering function so that it renders the scene graph using light-
ing and textures.

6. Modify the locomotive scene set up in Assignment 3 so that (a) the locomotive
runs on a circular track (use a thin cylinder for the track) (b) the track looks more
convincing (use provided “road” texture or your own for the track) (c) the locomotive
has at least one headlight (d) the scene contains at least two stationary lights (e) the
locomotive has at least one texture.
What is provided: C++ classes for light, material and texture, and sample input files.

A.5. Ray tracing

Description: In this assignment (divided in two parts) you will extend your program
from Assignment 4 with a ray tracer that renders a 3D scene made from planes and
spheres with lighting and texturing.
What to do (Part 1):
1. Write classes that represent a 3D ray and a hit record that stores (a) time ’t’ on
the ray where it intersects an object (b) the point of intersection in world coordinates
(c) the normal at the point of intersection (d) material properties. You may use the
provided Point3D and Vector3D classes.

2. Write a function raytrace that iterates through each pixel on screen, creates a 3D
ray in world coordinates and uses the raycast function below to obtain a color for that
pixel.

3. Write a function raycast that takes a ray in world coordinates as input, checks
its intersection with the scene graph and returns the appropriate color (returns back-
ground color if the ray does not hit any object).

4. Write intersect functions in each of the node classes that accept a ray in its parent’s
coordinate system and check for intersection with itself. If a group node, it computes
the nearest valid intersection of the ray with its children. Make sure that if an inter-
section occurs, the returned hit record is populated correctly and fully.

5. Write a function shade that takes the point of intersection, the normal at that
point, material, light and texture properties and returns the color. This function should
implement the provided OpenGL shading model and should support point, directional
and spot lights. Use the provided texture class to determine the texture color at the
provided location.

6. (Extra credit) Create an XML model that showcases the capability of your ray
tracer. The model must contain at least 10 objects.
What to do (Part 2):
1. In the shade function, spawn a shadow ray per light source and test if it hits any
other objects. If it does, skip this light source. This will effectively implement shadows.

2. Change the material class and the XML parser so that a material can be reflective
and/or transparent. Look at the provided input files for an example.

3. In the raycast function, if the hit object is reflective, spawn a reflection ray (us-
ing the math discussed in class) and use raycast recursively to determine its color.
Incorporate this color into the final color as discussed in class.

4. (Extra credit) In the raycast function, if the hit object is reflective, spawn a reflec-
tion ray (using the math discussed in class) and use raycast recursively to determine
its color. Incorporate this color into the final color as discussed in class.

5. (Extra credit) Support cylinders and cones in your ray tracer.
What was provided: C++ classes for points and vectors, input files, example images
created by students from previous years.
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