
GPU-generated “Parameterized” Trees

Amit Shesh∗

Illinois State University

(a) (b) (c) (d)

Figure 1: Trees as parameterized functions. We create trees by independently creating the canopy shape using several 2D functions and
then combining it with a pre-selected and pre-computed branch structure to create the tree model. (a) The canopy shape generated from 2D
functions. Each leaf is drawn as an oriented alpha-textured quad. (b) An example branch structure out of a pre-generated library of branch
structures. This particular example was constructed using an L-system. (c) The canopy and the branch structure are fitted together by clipping
the branches to form a complete tree. (d) Unsupported leaf locations which are a possibility in our technique are not apparent even up close,
making our technique suitable for many 3D applications. In this paper we concentrate on creating different tree canopies instead of branching
structures as canopies define the shape of large, mature trees.

Abstract

Incorporating different-looking trees in a single graphics applica-
tion involves either loading numerous polygonal/point models, or
generating them algorithmically. In any case, this increases the de-
mand of rendering resources both in terms of computing power and
memory to hold all models simultaneously. This paper presents a
novel method that produces different-looking trees from a common
domain starting from the same polygonal model. Since the shape of
the canopy decides the appearance of large trees, we focus on gen-
erating canopies automatically from the same polygonal model and
some parameters. Thus the generated canopies can be thought of
as functions of a parameterized domain. A branch structure created
separately then completes the tree model. Using this method, a pro-
gram can maintain a single copy of the polygonal model, and create
different tree models from it by merely changing these parameters.
Our method can be efficiently implemented on a GPU, thereby al-
lowing us to store only a few models directly in GPU memory and
creating different-looking tree models from them at runtime.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism;

Keywords: Trees, canopy design, trees on GPU

1 Introduction

Being able to render trees and vegetation has been a sought-after
goal in computer graphics for decades. Since trees are part of most

∗e-mail: ashesh@ilstu.edu

outdoor environments, they add realism to any computer-graphics-
generated outdoor scene. Technically they pose several challenges.
The external structure of vegetation, especially large trees, is fairly
diverse because of a large number of species. It is also affected by a
wide variety of natural phenomena such as its surroundings, wind,
weather, etc. Although the geometry may not be topologically com-
plex, tree models are usually large in size due to a large number of
leaves and branch structures needed to make them look realistic.
This places a great strain on available computing resources when
rendering many different-looking trees in a single graphics applica-
tion that demands real-time interaction, like games and simulations.
We envision that such an application would be able to simply “drop
in” tree models of various kinds interactively in a 3D scene without
affecting the speed of interaction adversely. Accordingly, this pa-
per proposes a technique that generates models of trees using a few
parameters and a few pre-cached geometric models with little to no
user interaction and is particularly suitable for a GPU implementa-
tion. This makes our technique applicable to real-time applications
that strive for a balance of realism and speed.

A remarkable observation about trees and plants is that their seem-
ingly complex geometric structure can be approximately using a set
of relatively simple recursive rules and algorithms. This has made
algorithmic generation of tree models a very popular and successful
technique in computer graphics. Grammar-based techniques like
L-systems [Lindenmayer 1968] have been able to produce stun-
ningly realistic models of many plants and small trees. From the
point of view of interactive generation, algorithmic techniques suf-
fer from a conceptual redundancy. Most of these techniques model
the growth process to create the final plant/tree model instead of di-
rectly modeling the final appearance. Modeling this growth process
requires computing power that makes it difficult to perform in real-
time. Moreover tweaking the growth process requires skilled user
interaction. Thus most tree models are generated algorithmically
off-line, and are loaded into an application as static mesh, point,
volume or hybrid models. Such models generated algorithmically
or by other means may be quite large in size, due to which it is dif-
ficult to fit several of them in video memory simultaneously. Thus
loading and rendering models of several trees of different appear-

Figure 2: Summary of our canopy generation technique. A canopy is generated by combining several 2D functions which are visualized
as images in the top row. Each 2D function modulates the radius of an ellipsoidal domain. The bottom row shows the resulting canopy. As
each layer is added, the shape of the canopy changes from a perfect ellipsoid to a composite “blob” structure that resembles the canopy of a
tree. The 2D functions are sampled at different frequencies and combined using Equation 1 (a persistence value of 0.7 has been used for all
examples in this paper). The result of this equation can be visualized by the rightmost image in the top row.

ance at interactive rates is challenging. We take a hybrid approach
to alleviate this problem. We start from a few “template” polygo-
nal models and convert them into different tree models based on a
few parameters. This conversion process is in the form of geomet-
ric transformations. Thus we are able to cache a base polygonal
model and then use it to create tree models at run-time based on
parameters. A different set of parameters yields a tree of a differ-
ent appearance starting from the same cached model. As we do not
model growth or data acquired directly from trees, our trees are not
guaranteed to support all leaves through a path to the roots. How-
ever the effects of this deficiency are not visible in 3D navigation
except from very few and unique camera positions (e.g. zooming
in on a set of leaves from “inside” the tree, etc.). We rely on the
empirical observation that such views are typically not encountered
in 3D navigation. This preference of visual realism over structural
soundness allows us to efficiently create and render different, visu-
ally believable tree models suitable for many applications.

Most tree-generation techniques like L-systems create a branch
structure and then attach leaves, flowers and fruit models to them
(the growth model of L-systems grows branch structures). However
the overall shape of a matured tree is defined more by the shape of
the canopy than by the branching structure. Accordingly, our ap-
proach creates a tree model by modeling the shape of the canopy,
and then appending the branching structure. This allows us to di-
rectly influence the shape of the canopy and thereby, the overall ap-
pearance of the tree. Our technique is based on a hierarchical com-
bination of functions. Since these functions are two-dimensional,
they can be visualized and manipulated as images which makes tree
design simple. Lastly our tree generation algorithm is amenable to
a GPU implementation using a single base polygonal model kept in
video memory, making it fast.

2 Related Work

Trees are an important part of any outdoor scenery, and thus they
play an important role in adding realism to a computer-generated
3D scene. Therefore it is no surprise that creating and rendering

trees has been a sought-after research problem in computer graph-
ics. The problem of tree modeling has been approached from three
primary directions. One of the most popular way of creating tree
models is by using algorithmic models. The L-system by Linden-
meyer [Lindenmayer 1968] is based on creating trees by specify-
ing rules of biological development. The L-system is essentially a
growth model, i.e. it creates the model of a plant by simulating its
growth. L-systems have been extensively used to create very realis-
tic models of many plant species [Prusinkiewicz and Lindenmayer
1996], their biomechanics [Jirasek et al. 2000] and their interac-
tions with the environment [Měch and Prusinkiewicz 1996]. Given
the correct grammar L-systems are capable of working automati-
cally. However in general they tend to be less user-friendly, as a
skilled user with intimate understanding of the underlying gram-
mar is required to “steer” the L-system towards an intended result.
Although L-systems can even be tuned to replicate existing plants
and trees [Prusinkiewicz et al. 2001] they also require significant
user skill.

Images of trees can be used to render them in a 3D scene. The
simplest methods are billboard-based, which show one of several
perspectives of a tree depending on the view point [Ervin and Has-
brouck 2001]. Multiple photographs of a tree can be used to ap-
proximate a “visual hull” of its canopy. This approach is taken by
Shlyakhtar et al. [2001] to derive tree models by completing the vi-
sual hull with an L-system-based branch structure. Our approach
is similar to this, with two exceptions: we do not rely on existing
photographs of trees and we do not create unique branching struc-
tures for each tree model, gaining some efficiency in the process.
3D scanning devices have been used to scan existing trees and cre-
ating 3D models from the resulting point clouds [Xu et al. 2007].
These methods work well to replicate existing trees and are capable
of creating detailed models of trees. We contend that there are a lot
of applications where such accuracy or replication are not needed.
In such situations, some accuracy may be traded for benefits of ef-
ficiency in rendering and simplicity in user interaction, which are
the goals of this work.

Sketch-based tree creation has gained popularity in the last few
years. Chen et al. [2008] expand user-drawn sketches of prelim-
inary branching structures into 3D models by comparing the pro-

jections of a database of tree models with the drawn sketch. Okabe
et al. [2005] use rough sketches of branching structures to derive
3D models of small plants and trees. Ijiri et al. [2005] use hand-
drawn sketches to create models of leaves and flowers in plant mod-
els. Wither et al. [2009] use sketches to derive models of mature
trees. They address the problem by designing the tree canopy first
and then deriving a branching structure to complete the tree model.
This leads credence to our assumption that the appearance of trees
is determined by the shape of its canopy rather than its branching
structure. Instead of sketches, we rely on a more algorithmic ap-
proach to creating the tree canopy, in the form of 2D functions that
can be designed off-line. Our method is conceptually different from
theirs because while they target interactive design of trees, we target
efficient rendering of many different-looking trees in an application
with a secondary benefit of interactive design.

3 Tree Creation and Rendering

3.1 Parameterized domain

We begin by regarding every tree as a union of two geometric en-
tities: canopy and branch structure. In contrast with growth-based
systems, we treat the two as independent from each other. This
gives us greater flexibility in designing each one individually. Thus,
a tree can be represented mathematically as T (C ,B) where C is a
function that represents the 3D geometry of the canopy, and B rep-
resents that of the branch structure. Section 3.2 discusses the design
of C and Section 3.4 discusses the design of B and how the two
functions are combined into a single tree model.

3.2 Creation of Tree Canopy

The canopy is fully described by the 3D positions of all its con-
stituent leaves. The “overall” shape of a tree canopy is often easier
to express. For example, it is ellipsoidal for many deciduous trees,
conical for pine trees, etc. Benes et al. [2009] follow a similar ap-
proach by defining the overall shape of a canopy using surfaces of
revolution. We mathematically express the “surface” shape of the
canopy using one of two conventional domains: ellipsoidal or con-
ical. Specifically for an ellipsoidal canopy, we express the canopy
function C motivated above as C (rx,ry,rz,φ ,θ) where (rx,ry,rz)
are the radii and (φ ,θ) are the polar angles. Further, we restrict

the relative values of radii as
[

rxryrz

]T
=

[

kxkykz

]T
f (φ ,θ), where

k = {kx,ky,kz} are constants and f (φ ,θ) is a 1-D scalar function
for each value of (φ ,θ). This formulation allows us to express dif-
ferent canopy shapes. For example, keeping k = {1,1,1} creates
a canopy of spherical shape, keeping kx,kz < ky creates an oblong
canopy, and so on.

The scalar function f (φ ,θ) determines the variations of the canopy
shape. Our formulation of this function is based on visual obser-
vations of many tree canopies. Tree canopies are made of “blobs”,
i.e. locally spherical or ellipsoidal characteristics. Trees are of-
ten sketched using blobbed outlines and such a description of their
shape has been used for their modeling [Wither et al. 2009]. The
surface of a tree canopy has self-similarity properties. There is an
overall shape of the canopy that is modulated with large blobs that
are related to the main branches directly connected to the trunk.
These blobs are in turn modulated by smaller blobs, giving the
canopy its overall appearance. It may be noted that this hierarchical
blob structure of the canopy is intimately related to the hierarchi-
cal self-similar nature of its branching structure that is the basis
of grammar-based tree modeling. Instead of expressing the branch

structure hierarchically we offer the same treatment to the surface
shape of the canopy by designing f (φ ,θ) suitably.

We model f (φ ,θ) as a combination of several 2D functions similar
to generation of 2D Perlin noise:

f (φ ,θ) =
n

∑
i=0

pigi(2
iφ ,2iθ) (1)

Thus we start from several 2D functions (gi(.)) whose domain is
governed by (φ ,θ) as the parameters for the canopy generation pro-
cess, and then combine them to create the function that modulates
the radii of the canopy in the ellipsoidal domain. Each 2D function
is sampled at a certain frequency: specifically gi(.) is sampled at
twice the frequency as gi−1(.). The term p is a scalar and is referred
to as persistence in fractal literature. It controls the contributions of
the various frequencies towards f . A value of p between 0 and
1 decreases the contributions of higher frequencies. The function
g0(.) is the “base” layer and is a constant function. The remaining
functions {gi(.), i > 0} are in general noise functions. In the case of
trees, they represents blobs of differing extents (see Figure 2). As
we choose a persistence value in the range (0 ≤ p ≤ 1), g0(.) de-
fines the overall shape of the canopy in the chosen canopy domain,
while the remaining functions {gi(.), i > 0} define modulations of
decreasing amplitudes over the basic shape. Visually the process
may be imagined as starting from a perfectly ellipsoidal canopy
and then modulating the surface bumpiness progressively by pro-
viding additional 2D functions (see Figure 2). In practice we also
perturb the values of φ and θ by a small amount using a white noise
function before sampling the functions to increase randomness.

Finally, we attach one of several leaf structures to each leaf position
generated by C using the above technique. Every leaf is modeled
as a simple quad with an alpha-texture created from photographs of
actual leaves. The orientation of the quad is computed randomly.
Alternatively one can specify the position of the sun to modulate
this random assignment so that all leaves face the approximate di-
rection of the sun.

3.3 GPU Implementation of Tree Canopy Genera-

tion

The above formulation leads to an efficient GPU implementation.
The functions gi(.) can be modeled using 2D images parameterized
by the angles θ and φ that are designed off-line (they are illustrated
in the top row of Figure 2). Since they represent a 1D scalar func-
tion at every pixel, four functions can be packed in a single texture.
Moreover if Equation 1 is pre-computed for a given set of functions,
the canopy can be generated using only one texture (see rightmost
figure in the top row of Figure 2). Every leaf of the tree canopy
starts as a canonical quad of unit size centered at the origin. Each
vertex of this quad gets two sets of texture coordinates. The first
texture coordinate is the corresponding value of (φ ,θ) for the leaf,
and is common to all vertices of the quad. The second texture co-
ordinate is used to paste the leaf texture on the quad. In a vertex
shader, the 2D textures representing gi(.) are used to calculate the
function f (φ ,θ) using Equation 1 to determine the 3D position of
the sample (i.e. leaf location). This position and the normal di-
rection are used to transform vertices of the quad and finally it is
texture-mapped using the leaf texture. Thus the “canonical” tree
canopy (consisting of numerous leaf quads centered at the origin
with randomized normals) can be pre-generated and cached using a
display list to avoid being sent to GPU memory for every tree.

(a) (b)

(c) (d)

Figure 3: Creation of tree branches. (a) the original branch struc-
ture. This example was constructed using an L-system. Such
canonical branch structures are clipped to fit a generated canopy.
(b) illustration of the clipping process. The branches shown in red
are clipped. This process is done at runtime in GPU shaders. (c)
the clipped branches from the model in (a) for a particular canopy.
(d) the final tree model with the canopy and the clipped branches.

3.3.1 Designing 2D functions

Images for the 2D functions gi(.) can be designed using any im-
age program. Since gi(.) modulate the radius of an ellipsoidal
domain, ellipsoidal “blobs” can be produced by creating constant-
color rectangles in the corresponding images (a rectangle in gi in-
creases the radii of points in a particular range of φ and θ by a con-
stant amount). If constant-color ellipses are drawn in the images,
they produce involute blobs on the tree canopy (a circle would pro-
duce a 3D Archimedes’ spiral, illustrated in the second column of
Figure 2) which we have found by visual observation to produce
better-looking tree canopies. Functions sampled at higher frequen-
cies can also be white noise textures, adding greater randomness
to the canopy. Instead of constant-color shapes, smoothly varying
colors can also be used to get greater and gradual variation in the
contours of the tree canopy (the examples in Figure 2 were gener-
ated by centering gaussians at random positions in the image). In
general gradual variations can be produced by ensuring that there
are no sharp edges in the images.

3.4 Creation of Tree Branches

We now complete the tree model by appending the branch structure
to the canopy. In actual trees branches serve as pathways for mois-
ture and nutrients from the roots of the tree to every leaf, flower
and fruit. Thus every leaf is connected via a single path to the root.
Furthermore there are allometric constraints on the branching an-
gles, branch thickness, etc. In order for an artificially generated tree
model to be perfectly realistic (structurally), it must obey all these
conditions. However if trees are viewed from a distance as they of-
ten are, all these structural properties are not readily visible. In fact

1http://en.wikipedia.org/wiki/File:Maple leaf Fcb981.JPG

the thickness of the canopy hides many of the tree’s structural as-
pects, especially those in its crown. Similarly, if a tree model is not
viewed at very specific, close angles in a graphics application, the
burden of achieving and maintaining a structurally accurate model
is lessened. In other words, a branch model that looks realistic
enough from reasonable camera distances and angles suffices for
many applications.

This assumption allows us to treat branch generation as indepen-
dent from canopy generation. This separation, although theoreti-
cally flawed and even unnecessary, provides distinct implementa-
tion benefits. First, we can leverage the vast amount of prior work
and literature devoted to generating realistic-looking trees using a
variety of methods. As a proof of concept, we use a simple L-
system to create branch structures. This method itself is capable of
generating very diverse branch structures using grammar and can be
constrained with conditions based in allometry. All the examples of
branches in this paper have been created using a simple L-system
that obeys Murray’s rule [Murray 1927]. Secondly, instead of stor-
ing many branching structures and selecting the appropriate one for
a given canopy, we store only a few “template” branching struc-
tures. Then we fit one of them to a given canopy during run-time to
create a complete tree model. Thus different tree canopies that are
generated using different input images can be used to render trees in
the same scene using one or a few branching structures. Figure 3 il-
lustrates the process. We select a pre-generated branching structure
that “outgrows” a generated canopy. Then, we clip it against the
surface of the canopy to create a branching structure that fits within
it. The clipped branching structure is then rendered with the canopy
to create the final tree model. In order to complete this process in
real-time, we propose a fast but approximate clipping procedure on
the GPU. Although this clipping process creates a model that repre-
sents a “pruned” branching structure instead of a naturally shaped
one, it satisfies our goal of creating an overall visually realistic tree
model. If more structural realism is desired, a separate algorithm
may be employed to evolve a custom branching structure for each
generated canopy similar to Shlyakhtar et al. [2001] or Benes et
al. [2009].

3.5 GPU Implementation of Tree Branches

The template branch structures are modeled using a series of points
and lines and therefore easily fit in memory. At run-time cylinders
are rendered for every branch. The length and orientation of every
branch is associated with every vertex of its corresponding cylin-
der. In a vertex shader, each cylinder is transformed to align with
the corresponding branch. The shader computes the polar angles φ
and θ for each end point of the branch. Then it re-computes the
leaf location for these angles in the canopy. If the cylinder extends
beyond the leaf location, it is made fully transparent. It may be
noted that this is an approximation of true surface-based clipping.
Ideally one must determine where the branch would intersect the
canopy surface to clip it. However our approximation produces vi-
sually correct results in most cases. A threshold for clipping can
be changed to manually remove protruding branches. This simple
technique results in a visual clipping of protruding branches. A cor-
responding pixel shader then applies a bark texture to the branch to
give it a realistic appearance.

Thus, the overall technique can be summarized as follows:

1. Design overall shape of the tree canopy by creating image for
g0 and choosing a domain.

2. Design images for other gi.

3. During rendering:

(a) (b) (c) (d)

(d)

Figure 4: More results. Insets in (a)-(c) show the leaf texture used for each image. (a) A tree with small leaves (leaf texture taken from Xu
et al.[2007]). This tree uses a transformed version of the same branching structure as that in Figure 1(c). (b) A conical pine tree. This tree
was generated by parameterizing the tree in the conical domain. A different branch structure was created by the same L-system and used for
this example. (c) A maple tree (leaf texture taken from WikiMedia Commons1 and the color was altered). Instead of using a constant base
layer function (as shown in Figure 2, top left) the function illustrated in the lower inset was used. This layer biases the overall canopy on one
side. Maple leaves of two colors were used to illustrate the effect of fall colors. (d) A zoomed view of the same maple tree. (e) A scene with
multiple trees and a terrain generated using a noise texture (terrain texture taken from http://www.spiralgraphics.biz). This scene contains 16
trees and is rendered at 20 fps.

(a) Determine position of every leaf using the gi functions
and the appropriate ellipsoidal/conical domain.

(b) For every branch position, determine whether it pro-
trudes the surface of the canopy. If so, clip it by making
it transparent.

(c) Apply textures to leaf and branch quads to render final
tree model.

4 Results

All results shown in this paper have been created on a Dell XPS
M1530 computer equipped with an NVidia GeForce 8600M GT
graphics card. The application is written in C++ and OpenGL and
uses GLSL for its GPU shaders. Each tree shown in this paper has
10000 leaves and a total of 146500 quads.

Figures 1 and 4 show some results as a proof of concept. Fig-
ure 4(a) was rendered using a branch of 5 leaves at every leaf lo-
cation in the canopy (see accompanying inset). Figure 4(b) shows
how our technique can be used to create conical tree models as well.
This result was generated by simply parameterizing the canopy in
the conical domain instead of an ellipsoidal domain, and using a dif-
ferent branching structure. Figure 4(c) shows a maple tree. This re-
sult illustrates the effect of a customized base layer function (shown

in the lower inset). The vertical white line in the function cor-
responds a longitudinal slice in the ellipsoidal domain. Thus the
function has the effect of increasing the canopy girth at a particu-
lar longitude and smoothly spreading it over the entire ellipsoidal
domain, visually making the canopy “lopsided” and denser on one
side. Two different leaf textures were used to simulate the effect of
fall. The fragment shader chooses the appropriate texture for a par-
ticular leaf location based on its coordinate (φ ,θ) in the ellipsoidal
domain and a random noise function. Figure 4(d) shows a zoomed
view of this maple tree. Although our method can potentially create
unsupported leaves, they are not apparent even when zoomed into
the tree. Thus our method works well even for many view points
inside trees, thereby making its compromised structure less visually
relevant (Figure 1(d) provides another example). Figure 4(e) shows
a scene with 16 tree models and a textured terrain created by dis-
placement mapping. Preliminary performance results are tabulated
in Table 1. These performance results represent an “unoptimized”
implementation of our algorithm. Specifically, Equation 1 is imple-
mented in a vertex shader instead of using a single image as shown
in Figure 2 and inbuilt trigonometric functions in GLSL are used
instead of relying on faster lookup tables.

quads/tree # leaves/tree # trees rendered Frame rate (fps)

146500 10000
5 55

10 28

142900 6400
5 55

10 30

139000 2500
5 60

10 34

Table 1: Performance. Performance tests were run on
GLSL shaders. The function f (φ ,θ) was calculated using
Equation 1 in the vertex shader.

5 Future Work

The idea of using functions as parameters to draw trees can be ex-
tended in several ways. More intuitive interaction techniques that
are more directly related to tree generation can be devised to design
the various 2D functions. Sketch-based design is a good alternative
that we wish to try in the future, where a 2D sketch would modulate
one or more of these 2D functions to create a tree model that obeys
the sketched hints.

Secondly since our technique is independent of how the branch
structure is created, branches structures obtained from other sources
like 3D scans can be incorporated into our framework. In addition,
it is possible to use the self-similarity of the generated canopy to
create its corresponding branch structure. A challenge in this pro-
cess is the mismatch between the number of functions that create
the canopy and the number of branching levels: typically only 3-4
functions are required to create a canopy, while a branching struc-
ture has many more levels. Lastly since the branches are gener-
ated independently, they may be modified to match the structure
and shape of the canopy more closely by taking a growth-based
approach, similar to Streit et al. [2005].

References

BENES, B., ANDRYSCO, N., AND STAVA, O. 2009. Interactive
modeling of virtual ecosystems. In Proc. Eurographics Work-
shop on Natural Phenomena, 9–16.

CHEN, X., NEUBERT, B., XU, Y.-Q., DEUSSEN, O., AND KANG,
S. B. 2008. Sketch-based tree modeling using markov random
field. ACM Trans. Graph. 27, 5, 1–9.

ERVIN, S., AND HASBROUCK, H. 2001. Landscape Modeling:
Digital Techniques for Landscape Visualization. McGraw-Hill
Professional Publishing.

IJIRI, T., OWADA, S., OKABE, M., AND IGARASHI, T. 2005.
Floral diagrams and inflorescences: interactive flower modeling
using botanical structural constraints. In Proc. SIGGRAPH, 720–
726.

JIRASEK, C., PRUSINKIEWICZ, P., AND MOULIA, B. 2000.
Integrating biomechanics into developmental plant models ex-
pressed using l-systems. In Proc. Plant Biomechanics, 615–624.

LINDENMAYER, A. 1968. Mathematical models for cellular in-
teraction in development: Parts i and ii. Journal of Theoretical
Biology 18, 280–315.

MURRAY, C. 1927. A relationship between circumference and
weight in trees and its bearing on branching angles. J. Gene.
Physiology 10, 725–729.

MĚCH, R., AND PRUSINKIEWICZ, P. 1996. Visual models of
plants interacting with their environment. In Proc. SIGGRAPH,
397–410.

OKABE, M., OWADA, S., AND IGARASHI, T. 2005. Interactive
design of botanical trees using freehand sketches and example-
based editing. In Proc. Eurographics, 487–496.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1996. The algo-
rithmic beauty of plants.

PRUSINKIEWICZ, P., MÜNDERMANN, L., KARWOWSKI, R., AND

LANE, B. 2001. The use of positional information in the mod-
eling of plants. In Proc. SIGGRAPH, 289–300.

SHLYAKHTER, I., ROZENOER, M., DORSEY, J., AND TELLER,
S. 2001. Reconstructing 3d tree models from instrumented pho-
tographs. IEEE Comput. Graph. Appl. 21, 3, 53–61.

STREIT, L., FEDERL, P., SOUSA, M. C., STREIT, L., FEDERL,
P., AND SOUSA, M. C. 2005. Modelling plant variation through
growth. In Proc. Eurographics, 497–506.

WITHER, J., BOUDON, F., CANI, M.-P., AND GODIN, C. 2009.
Structure from silhouettes: a new paradigm for fast sketch-based
design of trees. In Proc. Eurographics, 541–550.

XU, H., GOSSETT, N., AND CHEN, B. 2007. Knowledge and
heuristic-based modeling of laser-scanned trees. ACM Trans.
Graph. 26, 4, 19.

