
EUROGRAPHICS 2013/ E. Cerezo, J.-J. Bourdin, S. Cunningham Education Paper

Scene Graph Creation And Management For Undergraduates

Matthew Jones and Amit Shesh†1

1Illinois State University, USA

(a) (b)

Figure 1: Results produced by a student. (a) Hierarchical model created using implicit objects using XML input. Each object is

given a separate decal color as lighting and texturing were not yet supported. (b) Scene using previous model with lighting and

texturing. The model was given a headlight and was animated to move on a circular track (please see accompanying video).

This was accomplished by the student (first author) over 3 assignments spanning 6−7 weeks.

Abstract

This paper describes the context and results of a student project related to scene graphs spanning several assign-

ments in an undergraduate computer graphics course. The project progressively built an application that created

a list of objects from an XML specification, modified it into a scene graph, implemented part-by-part animation

and added point lights and textures. Students were encouraged to build creative models using implicit shapes. It

was completed individually by 21 undergraduate students in three stages spanning 6− 7 weeks. This project was

further extended in the last two assignments by incorporating a ray tracer within it.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computer and Information Science Education]:

Computer Science Education—

1. Background and Context

The scene graph project is part of the only computer graphics

course offered for computer science undergraduates at our

university. Students taking this course have prior program-

ming experience in C++, data structures and algorithms, but

have no experience in OpenGL programming. Our course

does not require taking a prior course in linear algebra.

It covers traditional topics recommended in the ACM cur-

riculum [ACM08] such as modeling and transformations,

lighting and texture mapping using the OpenGL rendering

pipeline in C++, culminating in a ray tracer.

† {mdjones | ashesh}@ilstu.edu

Lectures include a revision of linear algebra (vectors, ma-

trices, coordinate geometry). Transformations are taught us-

ing both their mathematical foundations as well as code ex-

amples developed in class. Hierarchical transformations and

scene graphs are discussed in class, but no code for scene

graphs is shown or provided to students. The OpenGL shad-

ing model is discussed in detail and illustrated in code ex-

amples, as is texture mapping.

2. Scene graph Project: Instructor’s perspective

Much work on CG education recommends that scene graphs

be a part of traditional CG courses [CB01, Wol00, Bou02].

c© The Eurographics Association 2013.

DOI: 10.2312/conf/EG2013/education/011-012

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2013/education/011-012


M. Jones & A. Shesh / Scene graphs for undergraduates

We adopt this recommendation by emphasizing on scene

graphs for pipeline-based and raytracing graphics.

This is not motivated as a “project” per-se to students,

but can be regarded as one because students progressively

build a single application over the course of 3 assignments.

To help struggling students keep up, solutions to earlier as-

signments are provided so that students may use them to start

the next assignment. However many students continue using

their own code after correcting earlier problems.

The first of these assignments provided students with an

XML parser that parses a scene made of implicit objects

(planes, spheres, cylinders and cones) and represents them

as a list. Students are expected to create two new implicit

objects (cone and box) and render a scene containing them.

They are also expected to create the model of a locomo-

tive using these implicit objects that must have (1) at least

4 wheels with at least 4 spokes each (2) a body and (3) at

least one propeller with at least 2 fan blades.

The second assignment asks students to implement a

scene graph (construction and rendering). They modify the

XML parser so that instead of compiling a list of objects, it

compiles a scene graph. Finally they write “animator” func-

tions that transform specific nodes of the scene graph over

time to produce a desired animation. Specifically they write

functions to move the above locomotive at a constant speed

along a circular track on the X-Z plane.

The third assignment asks students to attach lights and

textures (including texture transformations) to scene graph

nodes and manage them correctly during rendering. They

use an existing class that imports images as OpenGL tex-

tures. The XML parser is again suitably modified to sup-

port lighting and textures. Using this modified infrastructure,

they are asked to enhance their earlier locomotive animation

by adding (1) a circular road-textured track (geometry) (2) at

least one headlight to their locomotive that moves correctly

with it (3) at least 2 stationary light sources in the scene (4)

textures on at least one part of the locomotive.

Student creativity is fostered by giving them freedom to

decide the exact appearance of the locomotive. In many

cases students exceed the minimum requirements to create

more complex models. Most students who create complex

models in the first assignment manage to correctly animate

it in the next assignment without compromising on its struc-

ture. They are also encouraged to find and use appropri-

ate images for textures from the web, and cite their source

in their code. As the examples in this paper show, the stu-

dent went above and beyond the requirements of almost all

the assignments and created a well-textured animated scene.

Please see the supplementary material for the model file cre-

ated by the student.

In Fall 2012, all 21 students completed the above assign-

ments. The median scores (out of 100) on the assignments

were 95, 94 and 81 respectively.

3. Scene graph Project: Student’s perspective

The scene graph assignments introduced an interesting ap-

plication of the tree data structure. Though the first assign-

ment did not use a scene graph, it definitely showed us its

value. The concept was simple: given an XML file, read in

and draw each of the objects. Although implementing this

part was simple, arranging the objects to complete the loco-

motive was a cumbersome process because every object had

to be specifically and uniquely transformed.

The second assignment introduced the scene graph.

Though the programming was more challenging, arranging

the objects was far simpler. For example, instead of having

four wheels each having completely different sets of trans-

formations for its constituent parts, you could make a single

wheel group and transform it.

Finally, we added textures and lighting. For lighting, the

most complicated part was correctly calculating the normals

at each vertex for each object. This, like some of the other

parts of the assignment, was easier than it seemed. Calcu-

lations for the base objects were simple math, but stretched

and other interestingly transformed objects seemed like they

needed recalculation. It turned out that each normal was be-

ing transformed with its associated vertex automatically, but

needed to be re-normalized. Obtaining the texture coordi-

nates for objects created by us was the most challenging part

of texture mapping. Thinking of texture mapping as wrap-

ping the object in a blanket (the texture) made the under-

standing a bit easier.

All of these changes required changes to the XML reader.

The main challenge here was to conceptually connect the

structure of the parser with the incremental construction of

the scene graph. We handled nested groups with a stack.

These updates were the cause of a fair number of program-

ming errors, especially with certain operations specific to

only leaf nodes.

The completion of this series of assignments taught us the

fundamentals of 3D computer graphics. It was particularly

effective to have us first create models without the scene

graph to truly show how beneficial they are.

References

[ACM08] ACM CS curriculum, 2008. http://

www.acm.org/education/curricula/

ComputerScience2008.pdf. 1

[Bou02] BOUVIER D. J.: From pixels to scene graphs in intro-
ductory computer graphics courses. Computers & Graphics 26,
4 (2002), 603–608. 1

[CB01] CUNNINGHAM S., BAILEY M. J.: Lessons from scene
graphs: using scene graphs to teach hierarchical modeling. Com-

puters & Graphics 25, 4 (2001), 703–711. 1

[Wol00] WOLFE R.: Bringing the introductory computer graphics
course into the 21st century. Computers & Graphics 24, 1 (2000),
151–155. 1

c© The Eurographics Association 2013.

12

http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf

