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Abstract

Many casually taken “tourist” photographs comprise of architectural objects like houses, buildings, etc. Recon-
structing such 3D scenes captured in a single photograph is avery challenging problem. We propose a novel
approach to reconstruct such architectural scenes with minimal and simple user interaction, with the goal of
providing 3D navigational capability to an image rather than acquiring accurate geometric detail. Our system,
Peek-in-the-Pic, is based on a sketch-based geometry reconstruction paradigm. Given an image, the user simply
traces out objects from it. Our system regards these as perspective line drawings, automatically completes them
and reconstructs geometry from them. We make basic assumptions about the structure of traced objects and pro-
vide simple gestures for placing additional constraints. We also provide a simple sketching tool to progressively
complete parts of the reconstructed buildings that are not visible in the image and cannot be automatically com-
pleted. Finally, we fill holes created in the original image when reconstructed buildings are removed from it, by
automatic texture synthesis. Users can spend more time using interactive texture synthesis for further refining the
image. Thus, instead of looking at flat images, a user can fly through them after some simple processing. Minimal
manual work, ease of use and interactivity are the salient features of our approach.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Geometric Algorithms
and Systems

1. Introduction

In the current age of digital photography, people take many
casual photographs of places visited. Although these pho-
tographs serve as visual records, they do not create a sense
of “being there”. It would be much more exciting to expe-
rience the actual 3D scene by flying through it, rather than
looking at a flat image. This paper addresses this goal.

Extracting geometry from images is a very challenging
task. As a single method is unlikely to reconstruct various
entities contained in photographs like buildings, vegetation,
etc., most approaches concentrate on particular classes ofen-
tities (faces [LTM96], trees [RMMD04], etc.). We observe
that many photographs largely capture buildings and other
forms of architecture. Our system is designed to create ge-
ometry from such casually captured/created images.

† ashesh|baoquan@cs.umn.edu

Geometry captured in images can be acquired byinstanti-
ation (associating and aligning pre-defined building blocks
with the image), orreconstruction(actually reconstruct-
ing the captured geometry). Instantiation may work well in
many situations, but conceptually it offers a very technical
user interaction, unlikely to be intuitive for the typical user.
Reconstruction of geometry from images has been rigor-
ously studied. If multiple images are available, photogram-
metry and computational stereopsis [MB95, Sze94] can be
effective. This problem is much more challenging if only one
image for a scene is available (typical for the casual photog-
rapher). If very crude approximations of geometry suffice for
an application, automatic (Photo Pop-up [HEH05]) and in-
teractive methods (spidery-mesh interfaces [HiAA97]) can
be employed to quickly construct them. For more complete
geometry, ortho-rectification approaches based on homogra-
phies [LCZ99] can be useful. However these methods re-
quire significantly “technical” human intervention (specify-
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(a) (b) (c)

(d) (e) (f)

Figure 1: Partial geometry reconstruction of lower Manhattan, New York City from a single image. (a) the original image. (b)
all line drawings made by the user (figure shows all traced lines; actually, one building is traced and reconstructed at a time).
(c) eight reconstructed buildings, with the ground relief and the background. (d) the original image with holes to be synthesized.
(e) the synthesized image for background and ground geometry. (f) an alternate view of the city.

ing relationships between planes, understanding the concept
of vanishing points/lines, etc.) and in some cases may re-
quire carefully-planned photographs. We strive to devise a
method that requires minimaland simple user interaction.
Indeed, our system combines different disparate bodies of
research in sketch-based geometry reconstruction, vision-
based geometry reconstruction and image completion to pro-
vide a complete image-to-navigable-geometry tool. Many
operations of our pipeline are fully automatic, with interac-
tive alternatives to improve the automatic results.

In our system, user interaction is limited to simply trac-
ing out buildings with lines; we treat these traces as 2D
line drawings and reconstruct them. This unique treatment
of reconstructing geometry from an image finds some com-
mon ground with reconstructing geometry from freehand
sketches. But most of the work done in this area [LS96,
SC04] applies only to orthographic drawings.Peek-in-the-
Pic extends their approaches to perspective line drawings. It
is designed such that the image ends up being used only as
a guide to trace objects well. Without the context of image
navigation, it functions as a general tool to reconstruct ge-
ometry from perspective sketches. This increases its scope
of usage to many design-by-sketches applications.

This paper expands on a short conference paper [SC05],
and discusses our approach, formulation and implementation
of the problem in detail. The paper is organized as follows:

Section2 provides an overview of related work in two con-
texts, image-based modeling and sketch-based reconstruc-
tion. Section3 provides an overview of our system. We in-
troduce a simple camera calibration step in Section4. Sec-
tion 5.1 explains how various constraints are placed on an
object to be reconstructed. Section5.2 first summarizes re-
construction of geometry by optimization, and then provides
details of how we re-formulate it for perspective line draw-
ings. Section6 explains how ground and background geom-
etry is added to complete the 3D scene. Section7 discusses
how textures are obtained for the reconstructed geometry
from the original image. We discuss results in Section8 and
conclude with a discussion in Section9.

2. Related Work

2.1. Image-based Modeling

Image-based modeling reconstructs a scene from multi-
ple photographs taken from various viewpoints by identi-
fying correspondences between points in different images.
If a sufficient number of photographs of a scene are avail-
able, reconstruction is a mathematically soluble, albeit semi-
automatic problem. ThePhotoModelerprogram† works on

† http://www.photomodeler.com
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multiple images and concentrates on getting precise archi-
tectural measurements. TheARBA3Dprogram‡ uses only
two images, but their absolute positions and correspondence
between them have to be manually specified. Software like
SilverEye§are limited to reconstructing geometry from satel-
lite images. TheCanoma∗∗ program works only on one im-
age, but is based oninstantiation, whose potential drawbacks
have been discussed earlier.

Hermanet al.’s work [HK87] attempts to reconstruct 3D
models of large scenes using multiple aerial images. De-
bevecet al. [DTM96] interactively build an approximate
model of the photographed scene that is then refined by lo-
cating image correspondences from multiple images. Re-
constructing 3D models from single images, being math-
ematically insoluble, usually involves making assumptions
about the apparent geometry in an image [Kan81], or at-
tempting to fit simple 3D objects (cubes, wedges, etc.) of
known topology to a line drawing obtained from the im-
age [Rob63]. Seminal work by Huffman [Huf71] on the
notion of labeling contours in an image to infer their geo-
metric nature forms the basis of many approaches to recon-
struct 3D geometry from 2D inputs [SG00, KH06, KC06].
Tour-Into-The-Picture [HiAA97] provides a spidery-mesh
interface for the user to manually locate vanishing points
of the image. Automatic Photo Pop-up [HEH05] automat-
ically creates billboards and “folds” from a single image
to create a “pop-up” effect. Both these approaches gener-
ate very crude approximations of geometry in the scene,
which limits the types of scenes they can navigate and
the freedom of navigation itself. Typical vision-based ap-
proaches [LCZ99, CDR99, CRZ00] perform reconstruction
of a single image by calculating camera parameters, using
vanishing lines and point correspondences on each plane.
Such a “reconstruct-plane-by-plane” interface may be ex-
cessive for our application where accurate geometry is not
desired. Also, such methods may not work correctly with-
out a lot of interaction for planes that do not contain paral-
lel edges from which vanishing lines can be computed (like
pyramids). Ohet al. [OCDD01] regard reconstruction as a
Photoshop-likeoperation termeddepth painting. They seg-
ment the photograph into layers and assign depth coordi-
nates to every pixel of every layer to produce convincing
depth images, but at the cost of heavy and time-consuming
user interaction.Peek-in-the-Picworks at the object level in-
stead of the pixel level.

2.2. Reconstruction of Line Drawings

Reconstruction of geometry from freehand 2D sketches is
another related area of research and is related to model-
ing from images in many ways. Although many sketching

‡ http://www.arba3d.com
§ http://www.geotango.com/products/silvereye.htm
∗∗ http://www.canoma.com

metaphors exist (Teddy [IMT99] for making rotund objects,
SKETCH [ZHH96] for design by extrusion), approaches
that use actual 2D projections to infer 3D geometry are
more relevant to our work. Reconstruction of 3D models
from line drawings is a very old research problem (Barrow
et al. [BT81], Marill [ Mar91], Leclerc et al. [LF92], Var-
ley [Var03] are excellent examples). Lipsonet al. [LS96]
and Sheshet al. [SC04] formulate reconstruction as an op-
timization problem by evaluating the 2D input for various
2D image regularities like parallelism and orthogonality of
lines and replicating their corresponding 3D properties in
the geometry. Moreover while both reconstruct wire frame
drawings (with hidden parts drawn), we reconstruct “line
drawings” (with hidden parts unavailable). Most image reg-
ularities in many of these approaches are robust only if
the underlying sketch is orthographic. We extend the opti-
mization formulation to support perspective images and use
gestures to provide geometric regularities that could other-
wise be obtained implicitly from orthographic images. Af-
ter the user “traces” out a building, we use this formulation
to reconstruct its 3D geometry. Several other interesting ap-
proaches use a minimal set of lines (for example, only sil-
houettes and creases) to produce a plausible set of 3D curved
surface models from them using simple mathematical con-
straints [PF06]. Kaplan et al. [KC06] propose an iterative
user interaction process to progressively refine the constraint
space and make the overall problem tractable.

3. Algorithm Overview

The general theme ofPeek-in-the-Picis “trace and recon-
struct”. Figure1 illustrates our pipeline. An object is con-
verted into a line drawing by tracing out its edges (Fig-
ure 1(b) shows all such tracings). Note that only the visi-
ble parts of an object can be drawn this way. They are con-
solidated to form a 2D graph and loops representing the
faces of the object are determined. The graph is then ana-
lyzed to infer structural constraints on the object to be re-
constructed. The user can also specify constraints via sim-
ple gestures (Section5.1). The object is then reconstructed
by solving an optimization problem (Section5.2) that con-
siders various structural constraints placed on it and camera
parameters obtained in Section4. Hidden parts of the ob-
ject can be completed automatically or by interactive sketch-
ing (Section5.3). The ground geometry is obtained after all
desired objects have been reconstructed (Section6, recon-
structed geometry shown in Figure1(c)). Holes in the image
resulting from construction (Figure1(d)) are filled automat-
ically and can be refined using a simple interface(Section7,
Figure1(e)). Finally, textures are mapped on all constructed
geometry using the original and the synthesized images for
navigation.

4. Camera Calibration

Camera parameters like focal lengthf of the lens and princi-
pal pointp0 are required to correct the perspective distortion
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in the image before it is reconstructed. Camera calibration
by planting a known object in the scene [WT91] cannot be
performed in our case as the photographs we strive to recon-
struct are unplanned and casually taken. There are several
existing methods to estimate camera parameters from a sin-
gle image. We use the method by Cipollaet al. [CDR99]
to calculate camera parameters assuming a simple camera.
This method requires knowledge of the vanishing points of
an image.

Automatic detection of vanishing points in an image
has been a subject of research in computer vision [Rot00,
MA84, EMJK94]. A common approach is to detect lines
in the image and determine points in the image domain
where large number of such lines intersect. Intersections
can be determined by considering the domain to be the in-
finite image plane [Rot00] or projecting them as great cir-
cles onto a Gaussian sphere and clustering their intersec-
tions [EMJK94]. We follow the former approach and use a
RANSAC algorithm [FB81] to determine likely vanishing
points.

We begin by finding all edges in the image using a Canny
edge filter [Can86] and linking them to find line segments
in the image. We find the three vanishing points using the
RANSAC algorithm as follows: we randomly choose two
lines and determine their point of intersectionv. We then
count the number of lines in the remaining set that this point
is close to (we set the threshold subtended byv and one of
the end points of the line onto the other end point to be 5◦).
If this count is greater than that in the previous iteration,we
selectv as a candidate vanishing point. In the next iteration,
we randomly pick another pair of lines and proceed simi-
larly. After a sufficient number of iterations (one-third ofthe
total number of detected lines in our implementation) we
record the resulting point as a vanishing point and remove
all lines that pass through or near this point from the set of
lines. We repeat the algorithm twice to retrieve the remaining
two vanishing points. If the randomly selected pair of linesis
parallel to each other, the point is at infinity and we use their
common direction to test the point against all remaining line
segments. The figure below shows the lines used to get the
three vanishing points in three different colors.

Previous work and our experiments indicate that this algo-
rithm is prone to failures and errors in some cases: spurious
edges, Canny thresholds and vanishing points approaching
infinity leading to precision errors. When this occurs, we
revert to a manual approach: the user select three pairs of
parallel lines that are mutually perpendicular to each other.
These pairs give the three vanishing points.

The three vanishing points constitute a triangleT whose
sides are the vanishing lines. Then,p0 is the orthocenter of
T, while f is a function ofλ1

2,λ2
2,λ3

2, where theλi ’s are the
areas of triangles subdivided byp0 in T. A perspective ma-
trix P is constructed from these two parameters, that is then
used during optimization. We refer the reader to [CDR99]
for further details.

5. Reconstruction of Object Geometry From
Perspective Line Drawings

The user now traces the visible edges of a building to be re-
constructed from the image, forming a perspective line draw-
ing (since photographs are perspective by nature)††. All lines
are consolidated into a 2D graphG of vertices and edges.
Clustering [SL97] is used for this consolidation. (Visible)
faces of the object are then determined using the modified
Dijkstra algorithm proposed by Sheshet al. [SC04]. All ver-
tices of the graph that are on the ground are determined by
starting at the lowest vertex of the graph (obviously on the
ground). A breadth-first search of the graph is initiated from
this vertex. Any edge from the current vertex that makes a
small enough angle (sayΘ) with the horizontal is assumed
to lie on the ground. In our current implementation, we use
Θ = 35◦. In case the program does not select these vertices
correctly, the user can manually specify them.

5.1. Constraint Specification

Once a 2D graph representing the traced object is compiled,
constraints are imposed on its 3D structure that are used
during optimization. Although similar constraints have been
used to refine crudely approximated 3D geometry from pho-
tographs [CFD02], the aim of our constraints is to approx-
imate 3D geometry from 2D inputs. Techniques explained
in [LS96, SC04] cannot be directly applied to perspective
images because these images cannot provide the same im-
age regularity cues. For example, two parallel 3D lines are
almost never parallel in perspective projection. We assume
some constraintsimplicitly and also allow the user to explic-
itly specify them.

Some general observations can be made about architec-
tural objects: they are attached to the ground, the walls
touching the groundmost likely rise vertically upwards,
many edges tend to be parallel or perpendicular to each
other, etc. These observations can beimplicitly used as con-
straints on the geometry of the object. As the line drawing
is in perspective projection, only a few constraints can be
obtained from image regularities. The user can specify more

†† Our experiments indicated that detectingonly the visible edges
of a building is much more difficult to achieve through automatic
edge detection than detecting all straight-line edges, as was needed
to automatically infer the vanishing points. This is largely because
of a large number of “spurious” edges produced by textures.
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constraintsexplicitly through gestures. The three vanishing
points (and hence the vanishing lines) obtained during cam-
era calibration are used to derive more parallel lines. In any
face, if two edges intersect at or near a vanishing line, they
are assumed to be parallel to each other. It is also assumed
that all edges that have exactly one vertex on the ground are
perpendicular to the edges on the ground. This observation is
not true for all objects–a notable example being a pyramid.
But as these constraints are used as penalties in our opti-
mization, they are not hard constraints. In fact, Figure5(d-f)
show the construction of the pyramidal head of a tower.

Making two edges parallel to
each other

Making two edges perpendic-
ular to each other

Making two edges congruent
to each other

Making two faces perpendic-
ular to each other

Additional geometric constraints can be specified by the
use of gestures. We currently support four types of con-
straints. These constraints can also be specifiedafter the ob-
ject has been reconstructed; the reconstruction algorithmis
rerun in this case. Constraints assumed implicitly or imposed
by the user are used to derive other constraints. For example,
(e1‖e2)∧ (e2‖e3) ⇒ (e1‖e3).

5.2. Optimization for Geometry Reconstruction

Given a 2D graphG of the traced object and structural con-
straints, we reconstruct 3D geometry that represents the ob-
ject’s projection in the photograph. Specifically, we “inflate”
G by assigning suitable depth to each vertex.

This problem finds some common ground with that of
reconstructing 3D geometry from 2D sketches. Sketch re-
construction by inflation was used earlier by Leclercet
al. [LF92] and subsequently by Lipsonet al. [LS96] and
Sheshet al. [PMC03,SC04]. Various constraints like paral-
lelism and perpendicularity of edges and faces are set up by
evaluating 2D image regularities in the sketched image and
Z-coordinates are given to each vertex of the graph to satisfy
these constraints. However, all these methods assume ortho-
graphic drawings with image regularities that provide most
of the constraints used by their optimization process. Mostof

the assumed image regularities do not exist for perspective
line drawings. We extend their work by following a similar
framework to reconstructperspectiveline drawings through
constraints explained in the previous section. All geometric
constraints are incorporated into the compliance functionas
penalties.

It must be noted that inflation of the graphG by assign-
ing a Z-coordinate to each vertex does not result in the ac-
tual correct geometry, asG originally represents a distorted
projection of the object. Therefore, we use the perspective
matrix P (Section4) to undistort a candidate 3D graphbe-
fore evaluating all characteristics. The resulting 3D graph
projects onto the region occupied by it in the image.

The compliance function that the optimization attempts to
minimize is of the form:

f = wi ∗ fi

wherew = [wi] is a weighting factor andfi are various
terms calculated as below. In practice, we use a weighting
vector of ( 1

3 , 2
3) which was obtained empirically. The fol-

lowing notation is used henceforth:

vi : ith vertex of the graph G
fi : ith face in the graph G
~vi : 3D vector representing edgeei

v̂i : Normalized 3D vector representing edgeei
‖~vi‖ : Magnitude of vector~vi
n̂i : Unit normal vector of facefi
n(G) : Number of vertices in the graphG
e(G) : Number of edges in the graphG
f (G) : Number of faces in the graphG

The various termsfi used are as follows:

1. Face Planarity
This constraint ensures that all faces of the objects are
planar. A plane is fit on all vertices on each facefi and
the sum of distances of each vertex from its fit plane com-
prises this term.

f1 = ∑ f (G)
i=1 ∑v j∈ f ace Fi

∣

∣ai ∗x j +bi ∗y j +ci ∗zj +di
∣

∣

2. Geometry Constraints
This set of terms is used to evaluate all the geometric con-
straints compiled earlier.

a. Parallelism of edges
For all pairsei andej of edges (totalnparallel) that are
supposed to be parallel to each other,

t1 =
∑ei‖ej

(1−|v̂i·v̂ j |)

nparallel

b. Perpendicularity of edges
For all pairsei andej of edges (totalnperp) that are
supposed to be perpendicular to each other,

t2 =
∑ei⊥ej

|v̂i ·v̂ j |

nperp
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c. Congruence of edges
For all pairsei andej of edges (totalncong) that are
supposed to be equal in length to each other,

t3 =
∑ei =ej

abs(‖~vi‖−‖~vj‖)

max(‖~vi‖,‖~vj‖)

ncong

d. Perpendicularity of faces
For all pairs fi and f j of faces (totalnf perp) that are
supposed to be perpendicular to each other,

t4 =
∑ fi⊥ f j

|n̂i·n̂j |

nf perp

e. Edge-face perpendicularity
For all pairsei and f j (total ne f perp)of such that edge
ei is perpendicular to facef j ,

t5 =
∑ei‖ f j

|v̂i·n̂j |

ne f perp

f2 = 0.2∗∑5
i=1 ti

We use Brent’s minimization [PTVF02] to solve the above
optimization problem, as it offers a good tradeoff between
speed and accuracy. We use the layered method of Sheshet
al. [SC04] for a good initial guess: all vertices on the silhou-
ette form a middle layer, visible vertices not on the silhouette
form the front layer and hidden vertices not on the silhouette
form the back layer. Although this initial guess works well
for closed objects, it tends to fail in case of incomplete ob-
jects composed of facades, like Figure5(j-l). In that case we
resort to the trivial initial guess (all vertices with the same
Z-coordinate) and rely more on implied and gestured hints
to reconstruct the 3D model.

5.3. Completing Object Geometry

The user can trace only those parts of the objects that are vis-
ible in the image. In order to complete the building geometry,
hidden edges must be estimated. In general, this is a difficult
problem because there can theoretically be an infinite num-
ber of configurations for hidden geometry. However, in case
of architectural buildings, a reasonable hidden topology can
be estimated automatically.

If we assume that all buildings are trihedral, this prob-
lem can be solved automatically. Our solution is similar to
that offered by Varleyet al. [VM00], but for perspective line
drawings. We first detect vertices that have degree two (i.e
they have an edge missing). Then, we estimate the direction
of the missing edge by pairing the visible edges at these ver-
tices with the known vanishing points. Then, we iteratively
select two incomplete vertices, and determine the intersec-
tion of the two rays along their respective hidden edge direc-
tions. In order to prune incorrect pairs of vertices, we con-
strain all these intersections to lie within the convex hullof
the building (implicitly sketched by the user). Thus we keep
eliminating vertices, until we are left with only two vertices
(that we simply connect to each other). Below, the figures in
the top row show the input sketched by the user (in blue) and
the automatically completed line drawing (in green).

(a) (b) (c) (d)

Figure 2: Geometry completion. First row: automatic geom-
etry completion. If the objects are assumed to be trihedral,
the simplest hidden geometry can be automatically estimated
using a variant of the technique by Varleyet al.[VM00]. Sec-
ond row: interactive geometry completion. (a) an incomplete
building in its original position in the scene. (b) it is rotated
and a missing face is drawn. (c) as the face is completed, it
is reconstructed. (d) the augmented object can be rotated to
complete other missing faces similarly.

In case the trihedral assumption does not hold for a build-
ing, the user can resort to completing its geometry manu-
ally. In this case, although the user could “guess” the invis-
ible edges while tracing an object, our initial experiments
indicated that such guesses can affect the overall geome-
try reconstruction adversely. This is mainly because invis-
ible edges also define vertices on the ground, and so guess-
ing them can adversely affect the resulting ground geometry.
Also, it is difficult to draw accurately in perspective and it
may be easier to specify these edges from a different view.

The figures in the bottom row above provide an example
of the L-shaped building in Figure1(c). The object is rotated
and completed progressively. The user sketches strokes for
missing edges. When the program detects a new face formed
by them, it reconstructs its 3D geometry. The user can then
rotate the partially completed object and continue sketching.

It may be observed that this functionality of progressively
constructing an object can be used independently as a de-
sign tool. In fact, the input image is used only as a guide
for setting up the camera (Section4), tracing out buildings
(Section5) and texturing the reconstructed buildings (Sec-
tion 7). Thus, geometry can be progressively reconstructed
from perspective sketches once a perspective camera is set
up. This is an extension of the work done in [SC04, LS96]
and can be used as a tool for reconstruction of sketches.

c© The Eurographics Association and Blackwell Publishing 2008.
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(a)

(b) (c)

Figure 3: Determination of ground and background geome-
try. (a) the image with reconstructed objects in wireframe;
the vertices marked in red lie on the ground. (b) a least-
squares plane is constructed from these vertices as shown in
grey. As it is an approximate plane, it passes through some
objects (shown in light blue). A horizon curve is sketched by
the user. (c) points on the horizon line are projected on the
plane and are used with the red vertices to get the ground
geometry shown as an orange mesh. The background relief
is raised from the horizon curve as shown in Figure1(c).

6. Ground and Background Geometry

Once all the buildings have been constructed, the ground ge-
ometry must be determined to complete the environment.
All the edges of the buildings that should be on the ground
are heuristically determined as discussed in Section5. Fig-
ure3(a) shows these vertices in red. Let the set of such ver-
tices be denoted byS. A least-squares plane P (shown in grey
in Figure3(b)) is fit through points inS. It can be seen that
P may pass through some objects.

The user then sketches out a pseudo-horizon curve (inter-
section of the ground and the background, see Figure3(b)).
This curve should be drawn just under the buildings in the
background, so that the image does not “fold” in the mid-
dle of a building. The curve is then projected onP to obtain
its 3D coordinates. These projected points are added toS,
along with two points on the bottom corners of the screen.
All points in Sare triangulated inP. These form the ground
relief (shown in orange in Figure3(c)). Points of the pseudo-
horizon curve are raised up to form the background, as seen
in Figure1(c). This completes the geometry of the 3D scene.

7. Image Completion

As a building is constructed, it has to be removed from
the original image, creating a hole (Figure1(d)). Such
textures are usually filled manually by cloning (such as
in [OCDD01]), a user-intensive and cumbersome process.

(a) (b)

(c) (d) (e)

Figure 4: Hole-filling by texture synthesis. Top row: auto-
matic texture synthesis (a) when a building is sketched by
the user, its outline is used as the region for synthesis. The
bounding box of this region is scaled up and used as the
source region for the texture synthesis. (b) Holes from Fig-
ure 1(d) filled using this method. Note that although this im-
age looks patchy, the reconstructed buildings overlap these
regions for most view points. Row 2: interactive texture syn-
thesis (c) the source and target regions are specified in green
and red respectively. (d) the synthesized output for (a). (e)
Holes from Figure1(d) filled using this interactive method.

Many image completion methods exist in computer graph-
ics and vision literature. Many texture synthesis algorithms
exist that complete a given “target region” of an image from
source regions contained within the same or different im-
ages. Recent research has even led to real-time [LLX ∗01]
and controllable [LH05] texture synthesis. However, texture
synthesis primarily works well for amorphous images (flow-
ers, stones, fuzzy background scenery, etc.) and its match-
ing techniques tend to break down when synthesizing well-
defined geometric structures like buildings. Image inpaint-
ing [BSCB00] works well for filling small holes in images,
but it is not as effective on large missing regions. Although
automatic, both texture synthesis and image inpainting are
too slow for the size of images in this paper, mitigating most
advantages of the automation.

From our initial experiments with cloning, we observed
that buildings tend to be filled up using regions immedi-
ately surrounding them, not from distant image regions. In-
tuitively a building must be replaced by the background it
occludes, which can be approximated from the image re-
gions adjacent to the building. We use this observation to
define the source region for a given hole. We calculate the
bounding box of the hole to be filled, and scale it by 25%.
We use the region in this scaled bounding box (minus the
hole) as the source for the texture synthesis process. We use
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the texture synthesis algorithm proposed in [EL99,LLX ∗01].
As the hole is automatically derived from the user’s sketch,
the synthesis is done with no extra input. Row 1 of Figure4
shows how this method produces a synthesized image. Each
hole was filled in less than 30 seconds.

Although the image in Row 1 contains very obvious
patches and discontinuities, the reconstructed buildingsoc-
clude large parts of these patches from most view points, and
thus they are not as disturbing. However, because of the lim-
itations of texture synthesis discussed earlier, the results pro-
duced may sometimes be too disturbing. In these cases, the
user can resort to an interactive process. We take inspiration
from the paint-by-numbers interface [Hae90] by augmenting
this process with a simple interface to interactively synthe-
size these holes (see Row 2 of Figure4). The user marks the
source and target regions in the image with poly-lines to start
texture synthesis. As the user marks small regions at a time,
this synthesis is fast.

8. Implementation and Results

All results in this paper were produced on a desktop system
with a 2.6 GHz Pentium Xeon processor and 1 GB RAM,
with an external tablet device (Wacom Cintiq PL-550).

Figure5(c) shows a part of Manhattan, New York recon-
structed using Figure5(a)‡‡ as input. Figure5(b) shows how
the constructed 3D environment looks from a distant view
point. Eight buildings have been reconstructed in this exam-
ple. The total time from (a) to (c) took about 15 minutes
(including interaction), while the image completion took an-
other 10 minutes. The actual optimization time is 2-3 sec-
onds per building.

Figure 5(d) shows a drawing of Foshay Tower in Min-
neapolis, MN (USA)§§ from the 1930s. Figure5(f) shows an
alternate view obtained by reconstruction (note the correctly
reconstructed pyramidal top of the tower). Three buildings
were reconstructed in this view. The total time taken for ge-
ometry reconstruction was 5 minutes (including interaction),
while the actual optimization time is 2-3 seconds per object.

Figure5(g) shows a drawing of the 1305 Church of Aston-
Cantlow, Warwickshire, England¶¶. Figure 5(i) shows a
zoom and change of angle towards the church. The image
synthesis in this case was done by cloning, as the back-
ground is fairly homogeneous. Please see the accompanying
video for a visual illustration of our pipeline and fly-throughs
of these reconstructed scenes.

Figure 5(j) shows a photograph from Liebowitzet
al. [LCZ99] (used with permission from the authors). This

‡‡ Source:http://www.pilotlist.org/balades/manhattan/manhattan.html
§§ Source:http://www.minneapolishistory.com/marriott3.htm
¶¶ Source:http://www.holoweb.net/ liam/pictures/oldbooks/OldEngland/
pages/1305-Church-of-Aston-Cantlow/

photograph is challenging because of some radial camera
distortion and because it breaks the layered initial guess as-
sumption of Sheshet al. [SC04] (the corner between the
walls and ground is further away from the viewer than the
vertices on the silhouette, instead of being nearer to it). The
models in (k) and (l) were produced in two steps: first recon-
structing the two walls and then reconstructing the roof and
ground (1 second each).

9. Discussion and Future Work

Peek-in-the-Piccreates “navigable” 3D models from a sin-
gle image by amalgamating camera calibration techniques
and work done in the area of sketch reconstruction. Since it
takes mostly “tracing” operations from the user and works
on general photographs taken casually, it is suitable for non-
technical users as well.Peek-in-the-Picworks best for mod-
ern architectural buildings that have polyhedral shapes. Re-
constructing more involved architecture like buildings with
ancient carvings is more difficult. However, as the final ge-
ometry is textured, artifacts are not noticeable even if a
building with details is approximated by simpler geometry,
unless one zooms in closely near a building.

In many ways,Peek-in-the-Piccan be seen as proof that
by compromising on the accuracy of the acquired 3D model,
one can create a system that works with a much simpler user
interface that expects a lower degree of expertise from the
user. Thus it lies in the middle of the spectrum of image-
based modeling techniques, ranging from the completely au-
tomatic but often unsuccessful [HEH05] to the more accu-
rate but also user-intensive [LCZ99], both in terms of the
quality and extent of the user interaction and the quality of
the resulting 3D models. Although working towards com-
mon goals, it is difficult to quantitatively compare the user
interactions involved in such systems andPeek-in-the-Pic
because the nature of user interactions tends to be very dif-
ferent.

As our method is based on inflation-based reconstruction,
it shares some of its limitations. As the traced line draw-
ing becomes more complex, the probability of convergence
to a visually incorrect local minimum increases. In many
cases this can be remedied by specifying constraints after
reconstruction, but we acknowledge that this approach may
not always succeed. The user may also successfully con-
struct a building part-by-part (Figure5(j-l)), as is common in
case of inflation-based sketch reconstruction like SMART-
PAPER [SC04]. However such an approach often follows
an earlier failed attempt to construct the whole building at
once and thus represents a limitation in the context ofPeek-
in-the-Pic. We believe an interesting extension would be
to devise implicit gestures built into the tracing process it-
self, that may aid the reconstruction process (specificallyin
the initial guess estimation that affects the optimizationthe
most). For example, users could provide hints about con-
cavity/convexity of an edge of the building by tracing it us-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Results. (a) photograph of Manhattan, NY (b) view from a distant point. (c) a unique view of the reconstructed 3D
scene. (d) painting of 1930s downtown Minneapolis, MN. (e) view from a distant point. (f) a unique view of the reconstructed
3D scene. (g) painting of 1305 church (h) view from a distant point. (i) a unique view of the reconstructed 3D scene. (j) the
original photograph of Merton College, Oxford, taken from [LCZ99]. (k) view from a distant point. (l) a unique close-up view
of the 3D reconstructed scene.

ing a different line style. As lines are being traced using a
simple clicking interface, we believe such gestures would
be more tolerable than having to sketch different line styles
as in SMARTPAPER. Alternatively such hints may be built
as post-process gestures. However a more formal user study
would be needed to ascertain which gestures, if any, are ac-
ceptable and meaningful to the general user so as to not

disturb the intuitiveness of the user interface that we have
strived to maintain.

Our optimization framework currently uses no domain-
based knowledge about the geometry that it attempts to re-
construct. We believe our approach can be combined with
learning-based approaches [LS02, HEH05] to learn local
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characteristics of typical buildings and their projections in
images that will aid in the reconstruction process, and also
to fix parameters likeΘ. However some user interaction is
unavoidable for any method to work for general cases.

Finally, although tracing out buildings is simple and easy,
it is still the most time-consuming task inPeek-in-the-Pic.
Automating this process by devising smart edge-detection
methods fails because of strong edges produced by textures.
Extending methods likeLazy snapping[LSTS04] to segment
buildings automatically is worthy of further study.
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