(CSH600 Scribe notes

Ben Cordes
29 Sep 2010

1 Dining Philosophers

The dining philosophers problem is a classic synchronization problem. Picture
five philosophers sitting around a dinner table. There’s a large bowl of rice
and five chopsticks on the table. Philosophers can be in three states: thinking,
eating, and hungry. A philosopher can only eat if the chopstick to his left and
the chopstick to his right are both available.

In synchronization parlance, each chopstick is a semaphore and every philoso-
pher is trying to DOWN chopstick(¢) and (i + 1%5). But it’s easy to see how
all philosophers would get stuck in HUNGRY because they can only get one
semaphore and they’re stuck waiting for the other one. This is the concept of
deadlock.

2 Synchronization: Transactions

We would like to be able to run multiple transactions at a time. If you put a
mutex/lock around the transaction you can only have one at a time. But Trans-
action 1 could be modifying memory A while Transaction 2 modifies memory
B, and we’d like these to be able to run in parallel but with some ordering.

Serializablilty implies that the result looks like there was some ordering of the
transactions (1-2-3 or 1-3-2 or 2-3-1) as if they were atomic. Given n transactions
there are n! possible orderings assuming they are hitting the same memory
location.

TO: rd(A) wr(A) rd(B) wr(B)
T1: rd(A) wr(A) rd(B) wr(B)

That schedule is serializable because it looks like TO ran completely, then
T1 ran completely.

TO: rd(A) wr(A) rd(B) wr(B)
T1: rd(A) wr(A) rd(B) wr(B)

This schedule is also serializable; the result is the same as the previous
schedule so it LOOKS like the transactions were ordered 0-1.



For a formal definition of serializable, we need to define conflicting opera-
tions. Operations ¢ and j conflict if they are sequential (i.e. they follow each
other in the schedule), from different transactions, they access the same data
item, and at least one is a write. If two operations do not conflict, then we can
reverse their ordering without problem. So each of these steps is okay:

TO: rd(A) wr(A) rd(B) wr (B)
T1: rd(A) wr (A) rd(B) wr(B)
TO: rd(A) wr(A) rd(B) wr (B)
T1: rd(A) wr(A) rd(B) wr(B)

TO: rd(A) wr(A) rd(B) wr(B)
T1: rd(A) wr(A) rd(B) wr(B)

Thus the formal definition of serializable is that we can continually switch
non-conflicting operations until we arrive at a schedule that is actually serialzed
(i.e. the last schedule).

An example of a non-serializable schedule:

TO: rd(A) wr(A) rd(B) wr (A)
T1: wr(A) rd(B) wr(B)

The two writes to A can’t be swapped so this schedule is not serializable —
and that’s bad. This is not a valid interleaving of operations.

Implementing transactions requires two types of locks, shared and exclusive.
Every access to memory acquires a lock (reads use the shared lock, writes require
an exclusive lock). Many threads can hold a shared lock at the same time but
only one thread can hold an exclusive lock at once. But this isn’t sufficient to
guarantee serializability:

TO: rd(A) wr(A) rd(A) wr(A)
T1: rd(A) wr(h) rd(A) wr(h)

This isn’t serializable, but the locking mechanisms will work perfectly (if you
lock before the read and release after the write).

We add the additional restriction that you can acquire as many locks as
you like (the growing phase), but as soon as you release one lock you can never
acquire any more (the shrinking phase). This gurantees serializability but does
not prevent deadlock:

TO: rd(A) wr(A) rd(B) wr(B)
T1: rd(B) wr(B) rd(A) wr(A)



Resource Type

E> Instances

Process 2 has been

Process 1 requests a]IcI(t)r(]:a;ced one instance
a resource of that resource

/000

- 7

Processes

Figure 1: Deadlock graphs

2.1 Deadlock

More formally, deadlock is a set of processes, each holding a resource and each
waiting to acquire a resource held by another process in the set. Given a set
of processes {P;...P,} and a set of resources {R;...R,} which may have
multiple instances which are identical (meaning that any instance of a resource
is equivalent from the process’s perspective, e.g. any empty page in memory).
In order to have deadlock in this model, four things must be true:

e mutual exclusion, meaning that only a single process can use each instance
of a resource

e non-preemption, meaning that there is no way to force a process to give
up a resource

e hold and wait, meaning that there must a process holding one instance
and waiting for another at the same time

e circular wait, meaning that there is a cycle of processes such that one
process is waiting a resource held by the next

This model implies that we can visualize deadlock as a graph (see Figure 1). A
graph G consists of vertices and edges (V, E), with processes P,, resource types
R, and instances (W,,),, as above. We then draw boxes of resource types with
dots within for instances, and circles of processes. If a process needs a resource,
we draw a request edge from the process P to the box for the resource type R.
An assignment edge is drawn from an instance dot W to a process circle P. If
you can find a cycle in this graph, there is deadlock.

Proof that a cycle is necessary: Assume that there can be a deadlock with
no cycle. Pick one process. What resources is that process waiting on, and what



processes are the instances of those resource assigned to? Because there is no
cycle, you can never end up at the process you started at, and wherever you
end up, at least that process can make progress.

Proof that a cycle is not sufficient: If there are multiple instances of a
resource and one of them is assigned to a process outside the cycle, it is possible
for that thread to make progress and release the instance, at which case you
can break the cycle. So having a cycle is sufficient if there is only one instance
of each resource, but given multiple instances it is not sufficient. (If there are
multiple instances of a resource, then deadlock exists if every process that has
an instance of that resource is in a cycle.)

How do we ensure that deadlocks never happen? If we can design a system
such that one of the four principles can never be true, then we’ll never have
deadlock.

e A system without mutual exclusion doesn’t really work.

e A system without hold and wait implies that while waiting, you can’t hold
any resources. So you have to request all of your resources at once, and
they’re all granted at once and held for the entire time. This isn’t great
because maybe you only need one lock for a very short part of your critical
period. It also potentially leads to starvation.

A system with pre-emptable resources implies that the OS can take away
your lock in the middle of your critical section, which is no good.

The only thing we're left with is preventing circular wait. But searching
the graph for a cycle is expensive. One implementation is to only allow
threads to request resources in increasing priority. The proof says that if
you have a cycle of processes that are waiting on resources in a loop, then
you have a cycle of resources where each must have a higher priority than
the next, which is impossible. This has a similar problem to the no-hold-
and-wait case, plus you need to know the priorities in advance and make
requests in the right order.

Deadlock prevention is not widely implemented because all of these methods are
very cumbersome. So instead we implement deadlock avoidance. In general, the
OS asks for extra information up front and only allows the process to proceed
if doing so probably won’t cause deadlock. For example, if we have 100 pages
of memory and two processes that want to run request a maximum of 60 pages
each, then we can’t run both of them at the same time because we might cause
deadlock.

More formally, we ask each process P for the maximum number of each
resource R that it will need. Then we define that a state is a safe state if
I can order all of the processes such that for each process P;, its remaining
requests can be satisfied by a combination of free resources and resources held
by Py ...P;_1. That means that Py’s requests can be satisified by free resources
only, which means that P, can run to completion because it’s not waiting for
anybody else. Then P;’s requests can either be satisfied immediately by free



resources, or by waiting until Py completes, and thus P; is guaranteed to be
able to complete.

Safe states can not lead to deadlock. Unsafe states might lead to deadlock.
Deadlocks are always unsafe states.

Given 12 available instances and three processes: Py needs 10 and has 5,
P; needs 4 and has 2, and P, needs 9 and has 2. So 9 instances are currently
used. But the ordering Py, Py, P> is a safe state. Now let’s say we're considering
giving P2 a third resource. But if we do so, we reach an unsafe state because
although P; can still satisfy its requests with free resources, no one can after
that.



