
[Lecture 1, part 3]
Kernel interaction with the hardware:
Interrupt:

Like input / output, user input, between kernel and device driver.
Devices call back by interrupts.
They are serviced immediately.
And they are user transparent.

 Implementation:
 Each device only has limited number of interrupt events.
 So we can define an interrupt table
 For each element, there is a pointer points to specific kernel code to handle this interrupt.

 Typical hardware:

like keyboard, mouse, and some other processors like GPU.

Memory Hierarchy:

Difficulties:

 Cache consistency

registers

Cache(L1L2L3)

RAM

Flash

Disk

tape

Cloud store

CPU

registers

Cache(L1L2L3)

CPU2

optional

The higher the faster,

But more expensive,

So typically smaller.

The lower the slower,

But cheaper,

So typically larger.

Pointer to specific kernel code

 Cache coherency (for multiple CPU)

Process:
 Program in RAM, Instance of a running program,
 To start a running process, just load the stuff into memory, start the first instruction.

CPU Scheduling:
 Divide CPU time to time slices to different processes.
 The longer the time-slices are, the less interactive.

But too short will make context switching overwhelming, lost performance.

 Implementation:
 Set up a timer, call interrupt handler, switch out the process running, load other process.

OS Services:
 Design Decision:
 Real time operating system: like telesurgery.
 Commodity operating system: easy to use, but less interactive, real-time is not as important.
 Mechanism: is about How to do things.
 Policy: is about What you want to do.
 Separation of the two:

Mechanism can be reused, kept when policy was canceled.
The separation of Mechanism and Policy gives you flexibility.

Structure of real word OS:

Application

Resident Systems

Device drivers

hardware

MS-DOS

users

UNIX

Shell commands

library

Signal,

file Systems ,

I/O

Device drivers

User space

unprivileged

System call

Kernel space

privileged

A B A C A B

Microkernel:
Push as much services as possible to user space.

Features of microkernel
Easy to swap out modules
Security, failed modules will not affect kernel.
Less code run in privilege mode, which makes it slower though.

users

Mac OS X

BSD emulator

Mac microkernel

service service service

