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\What Can a Basic Router do to Packets?

« Send it...
* Delay it...
 Dropit...

« How they are done impacts Quality of Service
— Best effort? Guaranteed delay? Guaranteed throughput?

« Many variations in policies with different behavior
* Rich body of research work to understand them

* Limited Internet deployment

— Many practical deployment barriers since Internet was best-
effort to begin with, adding new stuff is hard

— Some people just don’t believe in the need for QoS! Not
enough universal support
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Router Architecture Assumptions

« Assumes inputs just forward packets to outputs

— Switch core is N times faster than links in a NxN switch
— No contention at input, no head-of-line blocking
« Resource contention occurs only at the output interfaces
» Qutput interface has classifier, buffer/queue, scheduler components
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Internet Classifier

A “flow” is a sequence of packets that are related (e.g. from
the same application)

Flow in Internet can be identified by a subset of following
fields in the packet header

— source/destination IP address (32 bits)

— source/destination port number (16 bits)

— protocol type (8 bits)

— type of service (4 bits)
Examples:

— All TCP packets from Eugene’s web browser on machine A to
web server on machine B

— All packets from Rice
— All packets between Rice and CMU
— All UDP packets from Rice ECE department

Classifier takes a packet and decides which flow it belongs
to

Note: In ATM or MPLS, the classifier can become just a
label demultiplexer
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Buffer/Queue

« Buffer: memory where packets can be stored
temporarily
* Queue: using buffers to store packets in an ordered

sequence
— E.g. First-in-First-Out (FIFO) queue

Buffer Buffer
Packet \Packe}/
Head N
Packet Of Queue Pac}e)tK
AN / 7
Packet Packet ™ Packet 1 Packet
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Buffer/Queue

« When packets arrive at an output port faster than the output link
speed (perhaps only momentarily)

« Can drop all excess packets

— Resulting in terrible performance
« Or can hold excess packets in buffer/queue

— Resulting in some delay, but better performance
« Still have to drop packets when buffer is full

— For a FIFO queue, “drop tail” or “drop head” are common policies

— i.e. drop last packet to arrive vs drop first packet in queue to make
room

« Achance to be smart: Transmission of packets held in buffer/
queue can be *scheduled*

— Which stored packet goes out next? Which is more “important?
— Impacts quality of service
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Scheduler
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flows
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Scheduler

« Decides how the output link capacity is shared by
flows
— Which packet from which flow gets to go out next?

« E.g. FIFO schedule

— Simple schedule: whichever packet arrives first leaves first

— Agnostic of concept of flows, no need for classifier, no need
for a real “scheduler”, a FIFO queue is all you need
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Scheduler

« Decides how the output link capacity is shared by
flows
— Which packet from which flow gets to go out next?

« E.g. FIFO schedule

— Simple schedule: whichever packet arrives first leaves first

— Agnostic of concept of flows, no need for classifier, no need
for a real “scheduler”, a FIFO queue is all you need

 E.g. TDMA schedule

— Queue packets according to flows
» Need classifier and multiple FIFO queues
— Divide transmission times into slots, one slot per flow

— Transmit a packet from a flow during its time slot
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TDMA Example
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Internet Today

* FIFO queues are used at most routers
 No classifier, no scheduler, best-effort

« Sophisticated mechanisms tend to be more common

near the “edge” of the network
— E.g. At campus routers
— Use classifier to pick out Kazaa packets

— Use scheduler to limit bandwidth consumed by Kazaa traffic

J

Alan Mislove amislove at ccs.neu.edu

Northeas®ern University



Achieving QoS in Statistical Multiplexing

Network

« We want guaranteed QoS
« But we don’t want the inefficiency of TDMA

— Unused time slots are “wasted”

» Want to statistically share un-reserved capacity or
reserved but unused capacity

* One solution: Weighted Fair Queuing (WFQ)

— Guarantees a flow receives at least its allocated bit rate
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WFQ Architecture
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What is Weighted Fair Queueing?

Packet queues

£
e

- Each flow i given a weight (importance) w,

 WFQ guarantees a minimum service rate to flow |
—=R*w, /(w;+w,+ ... +w)

— Implies isolation among flows (one cannot mess up another)
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What is the Intuition? Fluid Flow
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What is the Intuition? Fluid Flow

water pipes &
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Fluid Flow System

* If flows can be served one bit at a time

 WFQ can be implemented using bit-by-bit weighted
round robin

— During each round from each flow that has data to send, send a
number of bits equal to the flow’s weight
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Fluid Flow System: Example 1
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Fluid Flow System: Example 1

Packet Packet inter-arrival Arrival
- 100 KbP§ Size (bits) time (ms) Rate
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Fluid Flow System: Example 1

Flow 1
(arrival traffic)

Packet Packet inter-arrival Arrival
Size (bits) time (ms) Rate
(Kbps)
1000 10 100
500 10 50
> time
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Fluid Flow System: Example 1
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Fluid Flow System: Example 1

Packet Packet inter-arrival Arrival

. 100 KbP% Size (bits) time (ms) Rate
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Fluid Flow System: Example 1

y 100 Kbp%
! J
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Flow 2
(arrival traffic)
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Flow 1 1 2
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Flow 2
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Fluid Flow System: Example 1

Packet Packet inter-arrival Arrival
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Fluid Flow System: Example 1
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Fluid Flow System: Example 1

Packet Packet inter-arrival Arrival
100 KbP% Size (bits) time (ms) Rate
( /| (Kbps)
) 1000 10 100
500 10 50
Flow 1 1 2 4 5
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Fluid Flow System: Example 1

Packet Packet inter-arrival Arrival
; 100 KbP% Size (bits) time (ms) Rate
/1 (Kbps)
) 1000 10 100
500 10 50
Flow 1 1 2 3 4 )
(arrival traffic) -
> time
_F|0W 2 _ 1 2 3 4 ) 6
(arrival traffic) > time
Service 1 2 3 4 5
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Fluid Flow System: Example 2

Red flow has packets link

backlogged between time O
and 10

— Backlogged flow - flow’s flows

queue not empty sights
wei
Other flows have packets s 5 1 1 1 1 1

continuously backlogged
All packets have the same size

>
0 2 4 6 8 10 15
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Implementation in Packet System

* Packet (Real) system: packet transmission cannot be
preempted. Why?
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Implementation in Packet System

* Packet (Real) system: packet transmission cannot be
preempted. Why?

» Solution: serve packets in the order in which they
would have finished being transmitted in the fluid flow

system
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Packet System: Example 1

Service
in fluid flow

system

>
0 2 4 6 8 10

« Select the first packet that finishes in the fluid flow system

Packet
system

0 2 4 6
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Packet System: Example 2

Service 1 2 3 4 5
in fluid flow 1

system

no
w
BN
&)
(0))

—~V

ime (ms)

« Select the first packet that finishes in the fluid flow system

Packet
system

time

\4
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Packet System: Example 2

Service 1 2 3 4 5
in fluid flow 1 2 3 4 5 6 .
system time (ms)
« Select the first packet that finishes in the fluid flow system
Packet 1
system > time
Y
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Packet System: Example 2
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Packet System: Example 2

Service 1 2 3 4 9
in fluid flow 1 2 3 4 5 6 .
system time (ms)
« Select the first packet that finishes in the fluid flow system
Packet 1 2 |11 3 |2]3]| 4
system > time
Y
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Packet System: Example 2
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Packet System: Example 2

Service 1 2 3 4 9
in fluid flow 1 2 3 4 5 6 .
system time (ms)
« Select the first packet that finishes in the fluid flow system
Packet 1 2 |11 3 |2]13| 4 |4]|5
system > time
Y
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Packet System: Example 2

Service 1 2 3 4 9
in fluid flow 1 2 3 4 5 6 .
system time (ms)
« Select the first packet that finishes in the fluid flow system
Packet 1 2 |11 3 |2]13| 4 |4]|5] 5
system > time
Y
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Packet System: Example 2

Service 1 2 3 4 9
in fluid flow 1 2 3 4 5 6 R
system time (ms)
« Select the first packet that finishes in the fluid flow system
Packet 1 2 |11 3 |2|13| 4 |4|5| 5 |6
system > time
Y
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Implementation Challenge

* Need to compute the finish time of a packet in the
fluid flow system...
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Implementation Challenge

* Need to compute the finish time of a packet in the
fluid flow system...

* ... but the finish time may change as new packets
arrive!
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Implementation Challenge

* Need to compute the finish time of a packet in the
fluid flow system...

* ... but the finish time may change as new packets
arrive!

* Need to update the finish times of all packets that are
in service in the fluid flow system when a new packet

arrives

— But this is very expensive; a high speed router may need to
handle hundred of thousands of flows!
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Example

« Four flows, each with weight 1

Flow 1 .
> {ime
Flow 2
> time
Flow 3
. > time
Flow 4 |
. > time

— &

J

Alan Mislove amislove at ccs.neu.edu

Northea&ttrn University



Example

« Four flows, each with weight 1

Flow 1 .
> {ime

Flow 2 _
> time

Flow 3 .
. > {ime

Flow 4 | :
S . > time

| Finish times computed at time 0

T T > time
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Example

« Four flows, each with weight 1

Flow 1 .
> {ime

Flow 2 _
> time

Flow 3 .
. > {ime

Flow 4 | :
S . > time

| Finish times computed at time 0

T T > time

Finish times re-computed at time ¢

.l > time

0 1 2 3 4
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Solution: Virtual Time
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Solution: Virtual Time

« Key Observation: while the finish times of packets may
change when a new packet arrives, the order in which

packets finish doesn’t!
— Only the order is important for scheduling
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Solution: Virtual Time

« Key Observation: while the finish times of packets may
change when a new packet arrives, the order in which
packets finish doesn’t!

— Only the order is important for scheduling

« Solution: instead of the packet finish time maintain the
when a packet finishes ( )
— Virtual finishing time doesn’t change when a packet arrives
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« Key Observation: while the finish times of packets may
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packets finish doesn’t!

— Only the order is important for scheduling

« Solution: instead of the packet finish time maintain the
when a packet finishes ( )
— Virtual finishing time doesn’t change when a packet arrives
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Solution: Virtual Time

« Key Observation: while the finish times of packets may
change when a new packet arrives, the order in which
packets finish doesn’t!

— Only the order is important for scheduling

« Solution: instead of the packet finish time maintain the
when a packet finishes ( )
— Virtual finishing time doesn’t change when a packet arrives

« System virtual time V(t) — index of the round in the bit-
by-bit round robin scheme
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Example
Flow 1 :
> time
Flow 2 _
> time
Flow 3 :
. > time
Flow 4 | :
z > time
— &
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Example
Flow 1 .
> {ime
Flow 2
> time
Flow 3
. > time
Flow 4 |
L > time

« Suppose each packet is 1000 bits, so takes 1000

rounds to finish
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Example
Flow 1 .
> {ime
Flow 2
> time
Flow 3
. > time
Flow 4 |
. > time

——¢

« Suppose each packet is 1000 bits, so takes 1000

rounds to finish

 So, gackets of F1, F2, F3 finishes at virtual time

100
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Example
Flow 1 .
> {ime
Flow 2
> time
Flow 3
. > time
Flow 4 |
. > time

—l— ¢

« Suppose each packet is 1000 bits, so takes 1000
rounds to finish

. 1S(())(,)gackets of F1, F2, F3 finishes at virtual time

 When packet F4 arrives at virtual time 1 (after one
round), the virtual finish time of packet F4 is 1001
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Example

Flow 1 .
> {ime
Flow 2
> time
Flow 3
. > time
Flow 4 |
. > time

—l— ¢

« Suppose each packet is 1000 bits, so takes 1000
rounds to finish

. 1S(())(,)gackets of F1, F2, F3 finishes at virtual time

 When packet F4 arrives at virtual time 1 (after one
round), the virtual finish time of packet F4 is 1001

« But the virtual finish time of packet F1,2,3 remains
1000
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Example

Flow 1 .
> {ime

Flow 2 _
> time

Flow 3 .
. > {ime

Flow 4 | :
o c > fime

« Suppose each packet is 1000 bits, so takes 1000
rounds to finish

. gackets of F1, F2, F3 finishes at virtual time
100

 When packet F4 arrives at virtual time 1 (after one
round), the virtual finish time of packet F4 is 1001

« But the virtual finish time of packet F1,2,3 remains
1000

* Finishing order is preserved
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System Virtual Time (Round #): V(t)

« V/(t) increases inversely proportionally to the sum of the
weights of the backlogged flows

Flow 1 (w1 =1)

> time

Flow 2 (w2 = 1)

> time

>

v
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Fair Queueing Implementation

« Define
— F* virtual finishing time of packet & of flow i
— al.’f arrival time of packet & of flow i
— L’if— length of packet & of flow i

— w, —weight of flow i

* The finishing time of packet k+1 of flow i is

F/' = max(V (af ™), ) + LY w,

« Smallest finishing time first scheduling policy
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Properties of WFQ

« Guarantee that any packet is transmitted within
packet length/link capacity of its transmission time in
the fluid flow system

— Can be used to provide guaranteed services

 Achieve fair allocation

— Can be used to protect well-behaved flows against malicious
flows
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