
Alan Mislove amislove at ccs.neu.edu Northeastern University1

CS4700/CS5700
Fundamentals of Computer Networks

Lecture 14: TCP

Slides used with permissions from Edward W. Knightly,
T. S. Eugene Ng, Ion Stoica, Hui Zhang

Alan Mislove amislove at ccs.neu.edu Northeastern University2

What Layers are Needed in a Basic Telephone
Network?

• Supports a single
application: Telephone

• An end host is a
telephone

• Each telephone makes
only one voice stream
– Even with call-waiting and

3-way calling

Application
Layer

Network
Layer

(Data) Link
Layer

Telephone

Telephone
numbering,
signaling, routing

TDMA

Alan Mislove amislove at ccs.neu.edu Northeastern University3

Is this Enough for a Datagram Computer
Network?

• Supports many applications
• Each end host is usually a general

purpose computer

• Each end host can be generating
many data streams simultaneously

• In theory, each data stream can be
identified as a different “Protocol” in
the IP header for demultiplexing
– At most 256 streams

• Insert Transport Layer to create an
interface for different applications
– Provide (de)multiplexing

– Provide value-added functions

Application
Layer

Transport
Layer

Network
Layer

(Data) Link
Layer

telnet, ftp, email

TCP, UDP

IP

802.3, 802.11

Alan Mislove amislove at ccs.neu.edu Northeastern University4

E.g. Using Transport Layer Port Number to (De)
multiplex traffic

IP

TCP Transport

A B C

p1 p2 p1 p2 p3 p1 p2

ports
Application

HTTP ssh
telnet

In TCP, a data stream is identified by a set of numbers:
(Source Address, Destination Address, Source Port, Destination Port)

Alan Mislove amislove at ccs.neu.edu Northeastern University5

Transport Layer in Internet

• Purpose 1: (De)multiplexing of data streams to
different application processes

• Purpose 2: Provide value-added services that many
applications want
– Recall network layer in Internet provides a “Best-effort”

service only, transport layer can add value to that
• Application may want reliability, etc

– No need to reinvent the wheel each time you write a new
application

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Transport Protocols Concern only End Hosts,
not Routers

•Lowest level end-to-end
protocol.

– Header generated by
sender is interpreted
only by the destination

– Routers view transport
header as part of the
payload

•Adds functionality to the
best-effort packet delivery
IP service.

– Make up for the
shortcomings of the
core network

55

Transport

IP

Datalink

Physical

Transport

IP

Datalink

Physical

IP

router

2 2

1 1

Alan Mislove amislove at ccs.neu.edu Northeastern University7

(Possible) Transport Protocol Functions

Alan Mislove amislove at ccs.neu.edu Northeastern University7

(Possible) Transport Protocol Functions

• Multiplexing/demultiplexing for multiple applications.
– Port abstraction

Alan Mislove amislove at ccs.neu.edu Northeastern University7

(Possible) Transport Protocol Functions

• Multiplexing/demultiplexing for multiple applications.
– Port abstraction

• Connection establishment.
– Logical end-to-end connection

– Connection state to optimize performance

Alan Mislove amislove at ccs.neu.edu Northeastern University7

(Possible) Transport Protocol Functions

• Multiplexing/demultiplexing for multiple applications.
– Port abstraction

• Connection establishment.
– Logical end-to-end connection

– Connection state to optimize performance

• Error control.
– Hide unreliability of the network layer from applications
– Many types of errors: corruption, loss, duplication, reordering.

Alan Mislove amislove at ccs.neu.edu Northeastern University7

(Possible) Transport Protocol Functions

• Multiplexing/demultiplexing for multiple applications.
– Port abstraction

• Connection establishment.
– Logical end-to-end connection

– Connection state to optimize performance

• Error control.
– Hide unreliability of the network layer from applications
– Many types of errors: corruption, loss, duplication, reordering.

• End-to-end flow control.
– Avoid flooding the receiver

Alan Mislove amislove at ccs.neu.edu Northeastern University7

(Possible) Transport Protocol Functions

• Multiplexing/demultiplexing for multiple applications.
– Port abstraction

• Connection establishment.
– Logical end-to-end connection

– Connection state to optimize performance

• Error control.
– Hide unreliability of the network layer from applications
– Many types of errors: corruption, loss, duplication, reordering.

• End-to-end flow control.
– Avoid flooding the receiver

• Congestion control.
– Avoid flooding the network

Alan Mislove amislove at ccs.neu.edu Northeastern University7

(Possible) Transport Protocol Functions

• Multiplexing/demultiplexing for multiple applications.
– Port abstraction

• Connection establishment.
– Logical end-to-end connection

– Connection state to optimize performance

• Error control.
– Hide unreliability of the network layer from applications
– Many types of errors: corruption, loss, duplication, reordering.

• End-to-end flow control.
– Avoid flooding the receiver

• Congestion control.
– Avoid flooding the network

• More….

Alan Mislove amislove at ccs.neu.edu Northeastern University8

User Datagram Protocol (UDP)

• Connectionless datagram
– Socket: SOCK_DGRAM

• Port number used for (de)multiplexing
– port numbers = connection/application endpoint

• Adds end-to-end reliability through optional
checksum
– protects against data corruption errors between source and

destination (links, switches/routers, bus)
– does not protect against packet loss, duplication or

reordering

Source Port Dest. Port

Length Checksum

0 16 32

Alan Mislove amislove at ccs.neu.edu Northeastern University9

Using UDP

• Custom protocols/applications can be implemented
on top of UDP
– use the port addressing provided by UDP
– implement own reliability, flow control, ordering, congestion

control as it sees fit

• Examples:
– remote procedure call
– Multimedia streaming (real time protocol)
– distributed computing communication libraries

Alan Mislove amislove at ccs.neu.edu Northeastern University10

Transmission Control Protocol (TCP)

Source Port Dest. Port

Sequence Number

Acknowledgment Number

HL/Flags Advertised Win.

Checksum Urgent Pointer

Options..

0 16 32

Alan Mislove amislove at ccs.neu.edu Northeastern University10

Transmission Control Protocol (TCP)

• Reliable bidirectional in-order byte
stream
– Socket: SOCK_STREAM

Source Port Dest. Port

Sequence Number

Acknowledgment Number

HL/Flags Advertised Win.

Checksum Urgent Pointer

Options..

0 16 32

Alan Mislove amislove at ccs.neu.edu Northeastern University10

Transmission Control Protocol (TCP)

• Reliable bidirectional in-order byte
stream
– Socket: SOCK_STREAM

• Connections established & torn down
Source Port Dest. Port

Sequence Number

Acknowledgment Number

HL/Flags Advertised Win.

Checksum Urgent Pointer

Options..

0 16 32

Alan Mislove amislove at ccs.neu.edu Northeastern University10

Transmission Control Protocol (TCP)

• Reliable bidirectional in-order byte
stream
– Socket: SOCK_STREAM

• Connections established & torn down

• Multiplexing/ demultiplexing
– Ports at both ends

Source Port Dest. Port

Sequence Number

Acknowledgment Number

HL/Flags Advertised Win.

Checksum Urgent Pointer

Options..

0 16 32

Alan Mislove amislove at ccs.neu.edu Northeastern University10

Transmission Control Protocol (TCP)

• Reliable bidirectional in-order byte
stream
– Socket: SOCK_STREAM

• Connections established & torn down

• Multiplexing/ demultiplexing
– Ports at both ends

• Error control
– Users see correct, ordered byte

sequences

Source Port Dest. Port

Sequence Number

Acknowledgment Number

HL/Flags Advertised Win.

Checksum Urgent Pointer

Options..

0 16 32

Alan Mislove amislove at ccs.neu.edu Northeastern University10

Transmission Control Protocol (TCP)

• Reliable bidirectional in-order byte
stream
– Socket: SOCK_STREAM

• Connections established & torn down

• Multiplexing/ demultiplexing
– Ports at both ends

• Error control
– Users see correct, ordered byte

sequences

• End-end flow control
– Avoid overwhelming machines at each

end

Source Port Dest. Port

Sequence Number

Acknowledgment Number

HL/Flags Advertised Win.

Checksum Urgent Pointer

Options..

0 16 32

Alan Mislove amislove at ccs.neu.edu Northeastern University10

Transmission Control Protocol (TCP)

• Reliable bidirectional in-order byte
stream
– Socket: SOCK_STREAM

• Connections established & torn down

• Multiplexing/ demultiplexing
– Ports at both ends

• Error control
– Users see correct, ordered byte

sequences

• End-end flow control
– Avoid overwhelming machines at each

end

• Congestion avoidance
– Avoid creating traffic jams within

network

Source Port Dest. Port

Sequence Number

Acknowledgment Number

HL/Flags Advertised Win.

Checksum Urgent Pointer

Options..

0 16 32

Alan Mislove amislove at ccs.neu.edu Northeastern University11

High Level TCP Features

• Sliding window protocol
– Use sequence numbers

• Bi-directional
– Each host can be a receiver and a sender simultaneously

– For clarity, we will usually discuss only one direction

Alan Mislove amislove at ccs.neu.edu Northeastern University12

Connection Setup

• Why need connection setup?

• Mainly to agree on starting sequence numbers
– Starting sequence number is randomly chosen
– Reason, to reduce the chance that sequence numbers of old

and new connections from overlapping

Alan Mislove amislove at ccs.neu.edu Northeastern University13

Important TCP Flags

• SYN: Synchronize
– Used when setting up connection

• FIN: Finish
– Used when tearing down connection

• ACK
– Acknowledging received data

Alan Mislove amislove at ccs.neu.edu Northeastern University14

Establishing Connection

• Three-Way Handshake
– Each side notifies other of starting sequence number it will

use for sending
– Each side acknowledges other’s sequence number

• SYN-ACK: Acknowledge sequence number + 1

– Can combine second SYN with first ACK

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server

Alan Mislove amislove at ccs.neu.edu Northeastern University15

TCP State Diagram: Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
Snd SYN

passive OPEN CLOSE

delete TCB

CLOSE

snd SYN

SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK

Rcv SYN, ACK

rcv SYN

snd ACK

Alan Mislove amislove at ccs.neu.edu Northeastern University15

TCP State Diagram: Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
Snd SYN

passive OPEN CLOSE

delete TCB

CLOSE

snd SYN

SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK

Rcv SYN, ACK

rcv SYN

snd ACK

Client

Alan Mislove amislove at ccs.neu.edu Northeastern University15

TCP State Diagram: Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
Snd SYN

passive OPEN CLOSE

delete TCB

CLOSE

snd SYN

SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK

Rcv SYN, ACK

rcv SYN

snd ACK

Client

Server

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Tearing Down Connection
• Either Side Can Initiate Tear

Down
– Send FIN signal
– “I’m not going to send any more

data”

• Other Side Can Continue
Sending Data
– Half open connection
– Must continue to acknowledge

• Acknowledging FIN
– Acknowledge last sequence

number + 1

A B

FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB

Alan Mislove amislove at ccs.neu.edu Northeastern University17

State Diagram: Connection Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN

CLOSE

send FIN

CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK

rcv FIN Timeout=2 MSL

send FIN

CLOSE

send ACK

rcv FIN

snd ACK

rcv FIN

rcv ACK of FIN

snd ACK

rcv FIN+ACK

ACK

Alan Mislove amislove at ccs.neu.edu Northeastern University17

State Diagram: Connection Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN

CLOSE

send FIN

CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK

rcv FIN Timeout=2 MSL

send FIN

CLOSE

send ACK

rcv FIN

snd ACK

rcv FIN

rcv ACK of FIN

snd ACK

rcv FIN+ACK

ACK

Active Close

Alan Mislove amislove at ccs.neu.edu Northeastern University17

State Diagram: Connection Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN

CLOSE

send FIN

CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK

rcv FIN Timeout=2 MSL

send FIN

CLOSE

send ACK

rcv FIN

snd ACK

rcv FIN

rcv ACK of FIN

snd ACK

rcv FIN+ACK

ACK

Active Close

Passive Close

Alan Mislove amislove at ccs.neu.edu Northeastern University18

Sequence Number Space

• Each byte in byte stream is numbered.
– 32 bit value
– Wraps around
– Initial values selected at start up time

• TCP breaks up the byte stream in packets
(“segments”)
– Packet size is limited to the Maximum Segment Size
– Set to prevent packet fragmentation

• Each segment has a sequence number.
– Indicates where it fits in the byte stream

segment 8 segment 9 segment 10

13450 14950 16050 17550

Alan Mislove amislove at ccs.neu.edu Northeastern University19

Sequence Numbers

• 32 Bits, Unsigned

• Why So Big?
– For sliding window, must have

 |Sequence Space| > 2* |Sending Window|
• 2^32 > 2 * 2^16. No problem

– Also, want to guard against stray packets
• With IP, assume packets have maximum segment lifetime (MSL) of

120s
– i.e. can linger in network for upto 120s

• Sequence number would wrap around in this time at 286Mbps

Alan Mislove amislove at ccs.neu.edu Northeastern University20

Error Control

Alan Mislove amislove at ccs.neu.edu Northeastern University20

Error Control
• Checksum (mostly) guarantees end-end data

integrity.

Alan Mislove amislove at ccs.neu.edu Northeastern University20

Error Control
• Checksum (mostly) guarantees end-end data

integrity.

• Sequence numbers detect packet sequencing
problems:
– Duplicate: ignore
– Reordered: reorder or drop
– Lost: retransmit

Alan Mislove amislove at ccs.neu.edu Northeastern University20

Error Control
• Checksum (mostly) guarantees end-end data

integrity.

• Sequence numbers detect packet sequencing
problems:
– Duplicate: ignore
– Reordered: reorder or drop
– Lost: retransmit

• Lost segments detected by sender.
– Use time out to detect lack of acknowledgment
– Need estimate of the roundtrip time to set timeout

Alan Mislove amislove at ccs.neu.edu Northeastern University20

Error Control
• Checksum (mostly) guarantees end-end data

integrity.

• Sequence numbers detect packet sequencing
problems:
– Duplicate: ignore
– Reordered: reorder or drop
– Lost: retransmit

• Lost segments detected by sender.
– Use time out to detect lack of acknowledgment
– Need estimate of the roundtrip time to set timeout

• Retransmission requires that sender keep copy of
the data.

Alan Mislove amislove at ccs.neu.edu Northeastern University21

Bidirectional Communication

• Each Side of Connection can Send and Receive

• What this Means
– Maintain different sequence numbers for each direction
– Single segment can contain new data for one direction, plus

acknowledgement for other
• But some contain only data & others only acknowledgement

Send seq 2000

Ack seq 2001
Send seq 42000

Ack seq 42001

Alan Mislove amislove at ccs.neu.edu Northeastern University22

TCP Flow Control

• Sliding window protocol
– For window size n, can send up to n bytes without receiving

an acknowledgement
– When the data are acknowledged then the window slides

forward

• Window size determines
– How much unacknowledged data can the sender sends

• But there is more detail

Alan Mislove amislove at ccs.neu.edu Northeastern University23

Complication!

• TCP receiver can delete acknowledged data only
after the data has been delivered to the application

• So, depending on how fast the application is reading
the data, the receiver’s window size may change!!!

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Solution

• Receiver tells sender what is the current window size
in every packet it transmits to the sender

• Sender uses this current window size instead of a
fixed value

• Window size (also called Advertised window) is
continuously changing

• Can go to zero!
– Sender not allowed to send anything!

Alan Mislove amislove at ccs.neu.edu Northeastern University25

Acked but not
delivered to user

Not yet
acked

Receive buffer

window

Window Flow Control: Receive Side

Alan Mislove amislove at ccs.neu.edu Northeastern University26

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked

Alan Mislove amislove at ccs.neu.edu Northeastern University26

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked

Must retain for possible retransmission

Alan Mislove amislove at ccs.neu.edu Northeastern University27

acknowledged sent to be sent outside window

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options..

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options..

Packet Sent Packet Received

App write

Window Flow Control: Send Side

Alan Mislove amislove at ccs.neu.edu Northeastern University28

Ongoing Communication
• Bidirectional Communication

– Each side acts as sender & receiver
– Every message contains acknowledgement of received sequence

• Even if no new data have been received

– Every message advertises window size
• Size of its receiving window

– Every message contains sent sequence number
• Even if no new data being sent

• When Does Sender Actually Send Message?
– When sending buffer contains at least max. segment size (-

header sizes) bytes
– When application tells it

• Set PUSH flag for last segment sent

– When timer expires

Alan Mislove amislove at ccs.neu.edu Northeastern University29

TCP Must Operates Over Any Internet Path

• Retransmission time-out should be set based on
round-trip delay

• But round-trip delay different for each path!
• Must estimate RTT dynamically

Alan Mislove amislove at ccs.neu.edu Northeastern University30

Setting Retransmission Timeout (RTO)

– Time between sending & resending segment

• Challenge
– Too long: Add latency to communication when packets

dropped
– Too short: Send too many duplicate packets
– General principle: Must be > 1 Round Trip Time (RTT)

Initial Send

Retry

Ack

RTO
Initial Send

Retry
Ack

RTO

Detect dropped packet RTO too short

Alan Mislove amislove at ccs.neu.edu Northeastern University31

Round-trip Time Estimation

• Every Data/Ack pair gives new RTT estimate
Data

AckSample

Alan Mislove amislove at ccs.neu.edu Northeastern University32

Original TCP Round-trip Estimator

• Round trip times estimated as a moving average:
– New RTT = α (old RTT) + (1 - α) (new sample)

– Recommended value for α: 0.8 - 0.9
• 0.875 for most TCP’s

• Retransmit timer set to β RTT, where β = 2
– Want to be somewhat conservative about retransmitting

Alan Mislove amislove at ccs.neu.edu Northeastern University33

RTT Sample Ambiguity

• Ignore sample for segment that has been
retransmitted

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO
X

Alan Mislove amislove at ccs.neu.edu Northeastern University33

RTT Sample Ambiguity

• Ignore sample for segment that has been
retransmitted

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B

Original transmission

retransmission
Sample
RTT

ACKRTO
X

Alan Mislove amislove at ccs.neu.edu Northeastern University34

What is Congestion?

• The load placed on the network is higher than the
capacity of the network
– Not surprising: independent senders place load on network

• Results in packet loss: routers have no choice
– Can only buffer finite amount of data
– End-to-end protocol will typically react, e.g. TCP

Alan Mislove amislove at ccs.neu.edu Northeastern University35

Why is Congestion Bad?

• Wasted bandwidth: retransmission of dropped packets
• Poor user service : unpredictable delay, low user goodput

• Increased load can even result in lower network goodput
– Switched nets: packet losses create lots of retransmissions

– Broadcast Ethernet: high demand -> many collisions

Load

Goodput

“congestion
collapse”

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

• Suppose A uses a sliding window protocol to transmit a large
data file to B

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

• Suppose A uses a sliding window protocol to transmit a large
data file to B

• Window size = 64KB

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

• Suppose A uses a sliding window protocol to transmit a large
data file to B

• Window size = 64KB

• Network round-trip delay is 1 second

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

• Suppose A uses a sliding window protocol to transmit a large
data file to B

• Window size = 64KB

• Network round-trip delay is 1 second

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

• Suppose A uses a sliding window protocol to transmit a large
data file to B

• Window size = 64KB

• Network round-trip delay is 1 second

• What’s the expected sending rate?

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

• Suppose A uses a sliding window protocol to transmit a large
data file to B

• Window size = 64KB

• Network round-trip delay is 1 second

• What’s the expected sending rate?

• 64KB/second

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

• Suppose A uses a sliding window protocol to transmit a large
data file to B

• Window size = 64KB

• Network round-trip delay is 1 second

• What’s the expected sending rate?

• 64KB/second

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

• Suppose A uses a sliding window protocol to transmit a large
data file to B

• Window size = 64KB

• Network round-trip delay is 1 second

• What’s the expected sending rate?

• 64KB/second

• What if a network link is only 64KB/second but there are 1000
people who are transferring files over that link using the sliding
window protocol?

Alan Mislove amislove at ccs.neu.edu Northeastern University36

Sending Rate of Sliding Window Protocol

• Suppose A uses a sliding window protocol to transmit a large
data file to B

• Window size = 64KB

• Network round-trip delay is 1 second

• What’s the expected sending rate?

• 64KB/second

• What if a network link is only 64KB/second but there are 1000
people who are transferring files over that link using the sliding
window protocol?

• Packet losses, timeouts, retransmissions, more packet losses…
nothing useful gets through, congestion collapse!

Alan Mislove amislove at ccs.neu.edu Northeastern University37

acknowledged sent to be sent outside window

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options..

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options..

Packet Sent Packet Received

App write

TCP Window Flow Control

Alan Mislove amislove at ccs.neu.edu Northeastern University38

TCP Flow Control Alone Is Not Enough

• We have talked about how TCP’s advertised window
is used for flow control
– To keep sender sending faster than the receiver can handle

• If the receiver is sufficiently fast, then the advertised
window will be maximized at all time

• But clearly, this will lead to congestion collapse as the
previous example if there are too many senders or
network is too slow

• Key 1: Window size determines sending rate
• Key 2: Window size must be dynamically adjusted to

prevent congestion collapse

Alan Mislove amislove at ccs.neu.edu Northeastern University39

How Fast to Send? What’s at Stake?

• Send too slow: link sits idle
– wastes time

• Send too fast: link is kept busy but....
– queue builds up in router buffer (delay)
– overflow buffers in routers (loss)
– Many retransmissions, many losses
– Network goodput goes down Load

Goodput
safe operating point

Alan Mislove amislove at ccs.neu.edu Northeastern University40

Abstract View

• We ignore internal structure of network and model it
as having a single bottleneck link

Sending Host
Buffer in bottleneck Router

Receiving Host

A B

Alan Mislove amislove at ccs.neu.edu Northeastern University41

Three Congestion Control Problems

• Adjusting to bottleneck bandwidth

• Adjusting to variations in bandwidth

• Sharing bandwidth between flows

