CS4700/CS5700 Fundamentals of Computer Networks

Lecture 12: Inter-domain routing

Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang

Autonomous Systems (AS)

- Internet is not a single network!
- The Internet is a collection of networks, each controlled by different administrations
- An autonomous system (AS) is a network under a single administrative control

AS Numbers (ASNs)

ASNs are 16 bit values. 64512 through 65535 are "private" Currently over 11,000 in use.

- Genuity: 1
- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...

Implications

- ASs want to choose own local routing algorithm
 - AS takes care of getting packets to/from their own hosts
 - Intradomain routing: RIP, OSPF, etc
- ASs want to choose own non-local routing policy
 - Interdomain routing must accommodate this
 - BGP is the current interdomain routing protocol
 - BGP: Border Gateway Protocol

amislove at ccs.neu.edu

amislove at ccs.neu.edu

• Global connectivity is at stake

- Global connectivity is at stake
- Inevitably leads to one single protocol that everyone must speak
 - Unlike many choices in intra-domain routing

- Global connectivity is at stake
- Inevitably leads to one single protocol that everyone must speak
 - Unlike many choices in intra-domain routing
- What are the requirements?

- Global connectivity is at stake
- Inevitably leads to one single protocol that everyone must speak
 - Unlike many choices in intra-domain routing
- What are the requirements?
- Scalability

- Global connectivity is at stake
- Inevitably leads to one single protocol that everyone must speak
 - Unlike many choices in intra-domain routing
- What are the requirements?
- Scalability
- Flexibility in choosing routes

- Global connectivity is at stake
- Inevitably leads to one single protocol that everyone must speak
 - Unlike many choices in intra-domain routing
- What are the requirements?
- Scalability
- Flexibility in choosing routes
- If you were to choose, link state based or distance vector based?

- Global connectivity is at stake
- Inevitably leads to one single protocol that everyone must speak
 - Unlike many choices in intra-domain routing
- What are the requirements?
- Scalability
- Flexibility in choosing routes
- If you were to choose, link state based or distance vector based?

- Global connectivity is at stake
- Inevitably leads to one single protocol that everyone must speak
 - Unlike many choices in intra-domain routing
- What are the requirements?
- Scalability
- Flexibility in choosing routes
- If you were to choose, link state based or distance vector based?
- BGP is sort of a hybrid: Path vector protocol

Border Gateway Protocol Part I: E-BGP

- Two types of routers
 - Border router (Edge), Internal router (Core)

amislove at ccs.neu.edu

amislove at ccs.neu.edu

Share connectivity information across ASes

amislove at ccs.neu.edu

amislove at ccs.neu.edu

amislove at ccs.neu.edu

I-BGP

I-BGP neighbors do not announce routes received via I-BGP to other I-BGP neighbors.

- Problem: Injecting external routes into IGP (e.g. OSPF) does not scale and causes BGP policy information to be lost
- I-BGP can be used to disseminate BGP routes to <u>all</u> routers in AS
- BGP route + IGP route suffice to create forwarding table

Alan Mislove

Join I-BGP with IGP to Create Forwarding Table

Join I-BGP with IGP to Create Forwarding Table

Join I-BGP with IGP to Create Forwarding Table

Routing between ISPs

- Routing protocol (BGP) contains reachability information (no metrics)
 - Not about optimizing anything
 - All about policy (business and politics)
- Why?
 - Metrics optimize for a particular criteria
 - AT&T's idea of a good route is not the same as UUnet's
 - Scale
- What a BGP speaker announces or not announces to a peer determines what routes may get used by whom

Most transit networks transit in a selective manner...

Alan Mislove

amislove at ccs.neu.edu

Customers Don't Always Need BGP

Static routing is the most common way of connecting an autonomous routing domain to the Internet.

This helps explain why BGP is a mystery to many ...

Alan Mislove

amislove at ccs.neu.edu

amislove at ccs.neu.edu

BGP: Path Vector Protocol

- Distance vector algorithm with extra information
 - For each route, store the complete path (ASs)
 - No extra computation, just extra storage
- Advantages:
 - can make policy choices based on set of ASs in path
 - can easily avoid loops

Four Types of BGP Messages

- **Open** : Establish a peering session.
- **Keep Alive** : Handshake at regular intervals.
- **Notification** : Shuts down a peering session.
- Update : <u>Announcing</u> new routes or <u>withdrawing</u> previously announced routes.

Announcement = prefix + <u>attributes values</u>

Attributes are Used to Select Best Routes

Given multiple routes to the same prefix, a BGP speaker must pick at most <u>one</u> best route

(Note: it could reject them all!)

Shorter Doesn't Always Mean Shorter

Implementing Customer/Provider and Peer/ Peer relationships

- What you announce determines what route can be used by whom
- Enforce transit relationships
 - Outbound route filtering
- Enforce order of route preference
 - provider < peer < customer</p>

How Can Routes be Colored? BGP Communities!

Used for signaling within and between ASes

Very powerful BECAUSE it has no predefined meaning

Community Attribute = a list of community values. (So one route can belong to multiple communities)

The <u>subgraph</u> showing all ASes that have more than 100 neighbors in full graph of 11,158 nodes. July 6, 2001. Point of view: AT&T route-server

Does not reflect true topology

Alan Mislove

BGP Issues

- BGP designed for policy not performance
- Susceptible to router misconfiguration
 - Blackholes: announce a route you cannot reach
- Incompatible policies
 - Solutions to limit the set of allowable policies

More Issues

- Scaling the I-BGP mesh
 - Confederations
 - Route Reflectors
- BGP Table Growth
 - 140K prefixes and growing
 - Address aggregation (CIDR)
 - Address allocation
- AS number allocation and use
- Dynamics of BGP
 - Inherent vs. accidental oscillation
 - Rate limiting and route flap dampening
 - Lots and lots of redundant info
 - Slow convergence time