CS4700/CS5700
Fundamentals of Computer Networks

Lecture 11: Intra-domain routing

Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang
What is Routing?

• To ensure information is delivered to the correct destination at a reasonable level of performance

• Forwarding
 – Given a forwarding table, move information from input ports to output ports of a router
 – Local mechanical operations

• Routing
 – Acquires information in the forwarding tables
 – Requires knowledge of the network
 – Requires distributed coordination of routers
Viewing Routing as a Policy
Viewing Routing as a Policy

- Given multiple alternative paths, how to route information to destinations should be viewed as a policy decision.
Viewing Routing as a Policy

• Given multiple alternative paths, how to route information to destinations should be viewed as a policy decision
• What are some possible policies?
 – Shortest path (RIP, OSPF)
 – Most load-balanced
 – QoS routing (satisfies app requirements)
 – etc
Internet Routing

- Internet topology roughly organized as a two level hierarchy
- First lower level – autonomous systems (AS’s)
 - AS: region of network under a single administrative domain
- Each AS runs an intra-domain routing protocol
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
 - Possibly others
- Second level – inter-connected AS’s
- Between AS’s runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4
Example

AS-1

AS-2

AS-3

Interior router

BGP router
Why Need the Concept of AS or Domain?
Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal with the size of the entire Internet
Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal with the size of the entire Internet
• Different organizations may want different internal routing policies
Why Need the Concept of AS or Domain?

- Routing algorithms are not efficient enough to deal with the size of the entire Internet
- Different organizations may want different internal routing policies
- Allow organizations to hide their internal network configurations from outside
Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal with the size of the entire Internet
• Different organizations may want different internal routing policies
• Allow organizations to hide their internal network configurations from outside
• Allow organizations to choose how to route across multiple organizations (BGP)
Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal with the size of the entire Internet
• Different organizations may want different internal routing policies
• Allow organizations to hide their internal network configurations from outside
• Allow organizations to choose how to route across multiple organizations (BGP)
Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal with the size of the entire Internet
• Different organizations may want different internal routing policies
• Allow organizations to hide their internal network configurations from outside
• Allow organizations to choose how to route across multiple organizations (BGP)

• Basically, easier to compute routes, more flexibility, more autonomy/independence
Outline

- Two intra-domain routing protocols
 - Both try to achieve the “shortest path” routing policy
 - Quite commonly used

- OSPF: Based on Link-State routing algorithm
- RIP: Based on Distance-Vector routing algorithm

- In Project 2, you will get to implement and play around with these algorithms!
 - Distributed coordination in action
Intra-domain Routing Protocols

- Based on unreliable datagram delivery
- Distance vector
 - Routing Information Protocol (RIP), based on Bellman-Ford algorithm
 - Each neighbor periodically exchange reachability information to its neighbors
 - Minimal communication overhead, but it takes long to converge, i.e., in proportion to the maximum path length
- Link state
 - Open Shortest Path First (OSPF), based on Dijkstra’s algorithm
 - Each router periodically floods immediate reachability information to other routers
 - Fast convergence, but high communication and computation overhead
Routing on a Graph

• Goal: determine a “good” path through the network from source to destination
 – Good often means the shortest path
• Network modeled as a graph
 – Routers \rightarrow nodes
 – Link \rightarrow edges
 • Edge cost: delay, congestion level,…
Link State Routing (OSPF): Flooding

• Each node knows its connectivity and cost to a direct neighbor.
• Every node tells every other node this local connectivity/cost information
 – Via flooding
• In the end, every node learns the complete topology of the network
• E.g. A floods message

A connected to B cost 2
A connected to D cost 1
A connected to C cost 5
Flooding Details
Flooding Details

- Each node periodically generates Link State Packet (LSP) contains
 - ID of node created LSP
 - List of direct neighbors and costs
 - Sequence number (64 bit, assume to never wrap around)
 - Time to live
Flooding Details

- Each node periodically generates Link State Packet (LSP) contains
 - ID of node created LSP
 - List of direct neighbors and costs
 - Sequence number (64 bit, assume to never wrap around)
 - Time to live

- Flood is reliable
 - Use acknowledgement and retransmission
Flooding Details

- Each node periodically generates Link State Packet (LSP) contains
 - ID of node created LSP
 - List of direct neighbors and costs
 - Sequence number (64 bit, assume to never wrap around)
 - Time to live

- Flood is reliable
 - Use acknowledgement and retransmission

- Sequence number used to identify *newer* LSP
 - An older LSP is discarded
 - What if a router crash and sequence number reset to 0?
Flooding Details

- Each node periodically generates Link State Packet (LSP) contains:
 - ID of node created LSP
 - List of direct neighbors and costs
 - Sequence number (64 bit, assume to never wrap around)
 - Time to live

- Flood is reliable:
 - Use acknowledgement and retransmission

- Sequence number used to identify *newer* LSP:
 - An older LSP is discarded
 - What if a router crash and sequence number reset to 0?

- Receiving node flood LSP to all its neighbors except the neighbor where the LSP came from
Flooding Details

• Each node periodically generates Link State Packet (LSP) contains
 – ID of node created LSP
 – List of direct neighbors and costs
 – Sequence number (64 bit, assume to never wrap around)
 – Time to live
• Flood is reliable
 – Use acknowledgement and retransmission
• Sequence number used to identify *newer* LSP
 – An older LSP is discarded
 – What if a router crash and sequence number reset to 0?
• Receiving node flood LSP to all its neighbors except the neighbor where the LSP came from
• LSP is also generated when a link’s state changes (failed or restored)
Link State Flooding Example
Link State Flooding Example
Link State Flooding Example
Link State Flooding Example
A Link State Routing Algorithm

Dijkstra’s algorithm

- Net topology, link costs known to all nodes
 - Accomplished via “link state flooding”
 - All nodes have same info
- Compute least cost paths from one node (‘source”) to all other nodes
- Repeat for all sources

Notations

- \(c(i,j) \): link cost from node \(i \) to \(j \); cost infinite if not direct neighbors
- \(D(v) \): current value of cost of path from source to node \(v \)
- \(p(v) \): predecessor node along path from source to \(v \), that is next to \(v \)
- \(S \): set of nodes whose least cost path definitively known
Dijkstra’s Algorithm (A “Greedy” Algorithm)

1 **Initialization:**
2 \[S = \{A\} \]
3 for all nodes \(v \)
4 \[\text{if } v \text{ adjacent to } A \]
5 \[\text{then } D(v) = c(A,v); \]
6 \[\text{else } D(v) = \infty; \]
7
8 **Loop**
9 find \(w \) not in \(S \) such that \(D(w) \) is a minimum;
10 add \(w \) to \(S \);
11 update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(S \):
12 \[D(v) = \min(D(v), D(w) + c(w,v)); \]
13 \[// \text{new cost to } v \text{ is either old cost to } v \text{ or known} \]
14 \[// \text{shortest path cost to } w \text{ plus cost from } w \text{ to } v \]
15 until all nodes in \(S \);
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B), p(B)</th>
<th>D(C), p(C)</th>
<th>D(D), p(D)</th>
<th>D(E), p(E)</th>
<th>D(F), p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2, A</td>
<td>5, A</td>
<td>1, A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initialization:
1. Initialize:
2. \(S = \{A\}; \)
3. for all nodes \(v \)
4. if \(v \) adjacent to \(A \)
5. then \(D(v) = c(A,v) \)
6. else \(D(v) = \infty \)

\[... \]
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td></td>
<td>2,D</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... Loop
8 find w not in S s.t. D(w) is a minimum;
9 add w to S;
10 update D(v) for all v adjacent to w and not in S:
11 D(v) = min(D(v), D(w) + c(w,v));
12 until all nodes in S;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td></td>
<td>2,D</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td></td>
<td></td>
<td></td>
<td>4,E</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop

8. **Loop**
9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S:
12. \[D(v) = \min(D(v), D(w) + c(w,v)) ; \]
13. **until all nodes in S**;

...
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>2,D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td></td>
<td></td>
<td>4,E</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop

8. **Loop**
9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S:
12. \[D(v) = \min(D(v), D(w) + c(w,v)); \]
13. **until all nodes in S**;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td>5,A</td>
<td>2,D</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td></td>
<td></td>
<td>4,E</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... Loop

9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 \[D(v) = \min(D(v), D(w) + c(w,v)) \];
13 until all nodes in S;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td></td>
<td>2,D</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td></td>
<td></td>
<td>4,E</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADEBCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... Loop
8 find w not in S s.t. D(w) is a minimum;
9 add w to S;
10 update D(v) for all v adjacent to w and not in S:
11 D(v) = min(D(v), D(w) + c(w,v));
13 until all nodes in S;
Distance Vector Routing (RIP)

- What is a distance vector?
 - Current best known cost to get to a destination
- Idea: Exchange distance vectors among neighbors to learn about lowest cost paths

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cos</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
</tr>
</tbody>
</table>

Note no vector entry for C itself

At the beginning, distance vector only has information about directly attached neighbors, all other dests have cost ∞

Eventually the vector is filled
Distance Vector Routing Algorithm

• Iterative: continues until no nodes exchange info
• Asynchronous: nodes need *not* exchange info/iterate in lock steps
• Distributed: each node communicates *only* with directly-attached neighbors
• Each router maintains
 – Row for each possible destination
 – Column for each directly-attached neighbor to node
 – Entry in row Y and column Z of node X \(\Rightarrow\) best known distance from X to Y, via Z as next hop
• *Note*: for simplicity in this lecture examples we show only the shortest distances to each destination
Distance Vector Routing

- Each local iteration caused by:
 - Local link cost change
 - Message from neighbor: its least cost path change from neighbor to destination
- Each node notifies neighbors only when its least cost path to any destination changes
 - Neighbors then notify their neighbors if necessary

Each node:
- \textit{wait} for (change in local link cost or msg from neighbor)
- \textit{recompute} distance table
- if least cost path to any dest has changed, \textit{notify} neighbors
Distance Vector Algorithm (cont’d)

1 Initialization:
2 for all nodes V do
3 if V adjacent to A
4 D(A, V, V) = c(A, V); /* Distance from A to V via neighbor V */
5 else
6 D(A, V, *) = ∞;

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (c(A, V) changes by d)
11 for all destinations Y through V do
12 D(A, Y, V) = D(A, Y, V) + d
13 else if (update D(V, Y) received from V)
14 /* shortest path from V to some Y has changed */
15 D(A, Y, V) = c(A, V) + D(V, Y);
16 if (there is a new minimum for destination Y)
17 send D(A, Y) to all neighbors /* D(A, Y) denotes the min D(A, Y,*) */
18 forever
1 *Initialization*:
2 for all nodes \(V \) do
3 if \(V \text{ adjacent to } A \)
4 \(D(A, V, V) = c(A, V) \);
5 else
6 \(D(A, V, \ast) = \infty \);
7 ...
Example: 1st Iteration (C → A)

Node A

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>C</td>
</tr>
</tbody>
</table>

Node B

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>D</td>
</tr>
</tbody>
</table>

Node C

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>

Node D

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>∞</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

D(A, D, C) = c(A, C) + D(C, D) = 7 + 1 = 8

(D(C, A), D(C, B), D(C, D))
Example: 1st Iteration (B→A, C→A)

Node A

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>B</td>
</tr>
</tbody>
</table>

Node B

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>D</td>
</tr>
</tbody>
</table>

Node C

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>

Node D

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>∞</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

\[
D(A,D,B) = c(A,B) + D(B,D) = 2 + 3 = 5 \\
D(A,C,B) = c(A,B) + D(B,C) = 2 + 1 = 3
\]

7 \textit{loop}:

...

13 \textit{else if} (update D(V, Y) received from V)
14 \quad D(A,Y,V) = c(A,V) + D(V, Y)
15 \textit{if} (there is a new min. for destination Y)
16 \quad \textit{send} D(A, Y) to all neighbors
17 \textit{forever}
Example: End of 1st Iteration

Node A

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>B</td>
</tr>
</tbody>
</table>

Node B

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>C</td>
</tr>
</tbody>
</table>

Node C

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>

Node D

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

7 loop:

...

13 else if (update D(V, Y) received from V)
14 \[D(A, Y, V) = c(A, V) + D(V, Y); \]
15 if (there is a new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever
Example: End of 2nd Iteration

7 loop:
...

13 else if (update D(V, Y) received from V)
14 D(A, Y, V) = c(A, V) + D(V, Y);
15 if (there is a new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever
Example: End of 3rd Iteration

\begin{align*}
 & Node A \\
 & \begin{array}{|c|c|c|}
 \hline
 \text{Dest.} & \text{Cost} & \text{NextHop} \\
 \hline
 B & 2 & B \\
 C & 3 & B \\
 D & 4 & B \\
 \hline
 \end{array} \\
 & Node B \\
 & \begin{array}{|c|c|c|}
 \hline
 \text{Dest.} & \text{Cost} & \text{NextHop} \\
 \hline
 A & 2 & A \\
 C & 1 & C \\
 D & 2 & C \\
 \hline
 \end{array} \\
 & Node C \\
 & \begin{array}{|c|c|c|}
 \hline
 \text{Dest.} & \text{Cost} & \text{NextHop} \\
 \hline
 A & 3 & B \\
 B & 1 & B \\
 D & 1 & D \\
 \hline
 \end{array} \\
 & Node D \\
 & \begin{array}{|c|c|c|}
 \hline
 \text{Dest.} & \text{Cost} & \text{NextHop} \\
 \hline
 A & 4 & C \\
 B & 2 & C \\
 C & 1 & C \\
 \hline
 \end{array} \\
\end{align*}

7 \textbf{loop:}

\begin{align*}
 & 13 \ \textbf{else if} \ (\text{update } D(V, Y) \text{ received from } V) \\
 & 14 \ \ \ D(A, Y, V) = c(A, V) + D(V, Y); \\
 & 15 \ \textbf{if} \ (\text{there is a new min. for destination } Y) \\
 & 16 \ \ \ \textbf{send} \ D(A, Y) \text{ to all neighbors} \\
 & 17 \ \ \ \textbf{forever}
\end{align*}

Nothing changes \rightarrow algorithm terminates
Distance Vector: Link Cost Changes

7 \textit{loop:}
8 \textbf{wait} (until A sees a link cost change to neighbor V
9 \quad or until A receives update from neighbor V)
10 \textbf{if} (c(A,V) changes by \(d\))
11 \textbf{for all} destinations Y through V \textbf{do}
12 \quad D(A,Y,V) = D(A,Y,V) + d
13 \textbf{else if} (update D(V, Y) received from V)
14 \quad D(A,Y,V) = c(A,V) + D(V, Y);
15 \textbf{if} (there is a new minimum for destination Y)
16 \quad \textbf{send} D(A, Y) to all neighbors
17 \textbf{forever}

```
<table>
<thead>
<tr>
<th></th>
<th>Node B</th>
<th>C</th>
<th>N</th>
<th></th>
<th>Node C</th>
<th>C</th>
<th>N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>A</td>
<td></td>
<td>4</td>
<td>A</td>
<td>5</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>B</td>
<td></td>
<td>1</td>
<td>B</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>A</td>
<td></td>
<td>1</td>
<td>A</td>
<td>2</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>B</td>
<td></td>
<td>1</td>
<td>B</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

“good news travels fast”

Link cost changes here

Algorithm terminates

Alan Mislove
amislove at ccs.neu.edu
Northeastern University
Distance Vector: Count to Infinity Problem

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (c(A, V) changes by d)
11 for all destinations Y through V do
12 D(A, Y, V) = D(A, Y, V) + d;
13 else if (update D(V, Y) received from V)
14 D(A, Y, V) = c(A, V) + D(V, Y);
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors
17 forever

Node B

Node C

Link cost changes here; recall that B also maintains shortest distance to A through C, which is 6. Thus D(B, A) becomes 6!
Distance Vector: Poisoned Reverse

- If C routes through B to get to A:
 - C tells B its (C’s) distance to A is infinite (so B won’t route to A via C)
 - Will this completely solve count to infinity problem?

Node B

Node C

Link cost changes here; B updates $D(B, A) = 60$ as C has advertised $D(C, A) = \infty$

Algorithm terminates
Link State vs. Distance Vector

Per node message complexity
- LS: \(O(n \times d)\) messages; \(n\) – number of nodes; \(d\) – degree of node
- DV: \(O(d)\) messages; where \(d\) is node’s degree

Complexity
- LS: \(O(n^2)\) with \(O(n \times d)\) messages (with naïve priority queue)
- DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?
- LS:
 - node can advertise incorrect link cost
 - each node computes only its own table
- DV:
 - node can advertise incorrect path cost
 - each node’s table used by others; error propagate through network