Data Link Layer

- **Function:**
 - Send blocks of data (frames) between physical devices
 - Regulate access to the physical media
- **Key challenge:**
 - How to delineate frames?
 - How to detect errors?
 - How to perform media access control (MAC)?
 - How to recover from and avoid collisions?
Outline

Media Access Control

- 802.3 Ethernet
- 802.11 Wifi
What is Media Access?

- Ethernet and Wifi are both multi-access technologies
 - Broadcast medium, shared by many hosts
 - Simultaneous transmissions cause collisions
 - This destroys the data
What is Media Access?

- Ethernet and Wifi are both multi-access technologies
 - Broadcast medium, shared by many hosts
 - Simultaneous transmissions cause collisions
 - This destroys the data
- Media Access Control (MAC) protocols are required
 - Rules on how to share the medium
 - Strategies for detecting, avoiding, and recovering from collisions
Strategies for Media Access

- Channel partitioning
 - Divide the resource into small pieces
 - Allocate each piece to one host
 - Example: Time Division Multi-Access (TDMA) cellular
 - Example: Frequency Division Multi-Access (FDMA) cellular
Strategies for Media Access

- **Channel partitioning**
 - Divide the resource into small pieces
 - Allocate each piece to one host
 - Example: Time Division Multi-Access (TDMA) cellular
 - Example: Frequency Division Multi-Access (FDMA) cellular

- **Taking turns**
 - Tightly coordinate shared access to avoid collisions
 - Example: Token ring networks
Strategies for Media Access

- **Channel partitioning**
 - Divide the resource into small pieces
 - Allocate each piece to one host
 - Example: Time Division Multi-Access (TDMA) cellular
 - Example: Frequency Division Multi-Access (FDMA) cellular

- **Taking turns**
 - Tightly coordinate shared access to avoid collisions
 - Example: Token ring networks

- **Contention**
 - Allow collisions, but use strategies to recover
 - Examples: Ethernet, Wifi
Strategies for Media Access

- **Channel partitioning**
 - Divide the resource into small pieces
 - Allocate each piece to one host
 - Example: Time Division Multi-Access (TDMA) cellular
 - Example: Frequency Division Multi-Access (FDMA) cellular

- **Taking turns**
 - Tightly coordinate shared access to avoid collisions
 - Example: Token ring networks

- **Contention**
 - Allow collisions, but use strategies to recover
 - Examples: Ethernet, Wifi
Contestation MAC Goals

- Share the medium
 - Two hosts sending at the same time collide, thus causing interference
 - If no host sends, channel is idle
 - Thus, want one user sending at any given time
Contestion MAC Goals

- Share the medium
 - Two hosts sending at the same time collide, thus causing interference
 - If no host sends, channel is idle
 - Thus, want one user sending at any given time

- High utilization
 - TDMA is low utilization
 - Just like a circuit switched network
Contestion MAC Goals

- Share the medium
 - Two hosts sending at the same time collide, thus causing interference
 - If no host sends, channel is idle
 - Thus, want one user sending at any given time

- High utilization
 - TDMA is low utilization
 - Just like a circuit switched network

- Simple, distributed algorithm
 - Multiple hosts that cannot directly coordinate
 - No fancy (complicated) token-passing schemes
Contention Protocol Evolution

- ALOHA
 - Developed in the 70’s for packet radio networks
Contention Protocol Evolution

- ALOHA
 - Developed in the 70’s for packet radio networks
- Slotted ALOHA
 - Start transmissions only at fixed time slots
 - Significantly fewer collisions than ALOHA
Contention Protocol Evolution

- **ALOHA**
 - Developed in the 70’s for packet radio networks

- **Slotted ALOHA**
 - Start transmissions only at fixed time slots
 - Significantly fewer collisions than ALOHA

- **Carrier Sense Multiple Access (CSMA)**
 - Start transmission only if the channel is idle
Contestion Protocol Evolution

- ALOHA
 - Developed in the 70’s for packet radio networks

- Slotted ALOHA
 - Start transmissions only at fixed time slots
 - Significantly fewer collisions than ALOHA

- Carrier Sense Multiple Access (CSMA)
 - Start transmission only if the channel is idle

- CSMA / Collision Detection (CSMA/CD)
 - Stop ongoing transmission if collision is detected
ALOHA

- **Topology**: radio broadcast with multiple stations
- **Protocol**:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - No ACK = collision, wait a random time then retransmit
ALOHA

- **Topology:** radio broadcast with multiple stations
- **Protocol:**
 - Stations transmit data immediately
 - Receivers ACK all packets
 - No ACK = collision, wait a random time then retransmit
ALOHA

- **Topology:** radio broadcast with multiple stations
- **Protocol:**
 - Stations transmit data immediately
 - Receivers ACK all packets
 - No ACK = collision, wait a random time then retransmit
ALOHA

- **Topology:** radio broadcast with multiple stations
- **Protocol:**
 - Stations transmit data immediately
 - Receivers ACK all packets
 - No ACK = collision, wait a random time then retransmit
ALOHA

- **Topology**: radio broadcast with multiple stations
- **Protocol**:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - No ACK = collision, wait a random time then retransmit
ALOHA

- Topology: radio broadcast with multiple stations
- Protocol:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - No ACK = collision, wait a random time then retransmit
ALOHA

- Topology: radio broadcast with multiple stations
- Protocol:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - No ACK = collision, wait a random time then retransmit

- Simple, but radical concept
- Previous attempts all divided the channel
 - TDMA, FDMA, etc.
- Optimized for the common case: few senders
Tradeoffs vs. TDMA

- In TDMA, each host must wait for its turn
 - Delay is proportional to number of hosts
- In Aloha, each host sends immediately
 - Much lower delay
 - But, much lower utilization
Tradeoffs vs. TDMA

- In TDMA, each host must wait for its turn
 - Delay is proportional to number of hosts
- In Aloha, each host sends immediately
 - Much lower delay
 - But, much lower utilization
Tradeoffs vs. TDMA

- In TDMA, each host must wait for its turn
 - Delay is proportional to number of hosts
- In Aloha, each host sends immediately
 - Much lower delay
 - But, much lower utilization

\[2\times\text{Frame Width}\]

Sender A

Sender B

Time

ALOHA Frame

ALOHA Frame
Tradeoffs vs. TDMA

- In TDMA, each host must wait for its turn
 - Delay is proportional to number of hosts
- In Aloha, each host sends immediately
 - Much lower delay
 - But, much lower utilization

Maximum throughput is \(\sim 18\% \) of channel capacity
Tradeoffs vs. TDMA

- In TDMA, each host must wait for its turn.
 - Delay is proportional to the number of hosts.

- In Aloha, each host sends immediately.
 - Much lower delay.
 - But, much lower utilization.

![Graph showing tradeoffs between TDMA and Aloha.](image)

- Maximum throughput is approximately 18% of channel capacity.
Slotted ALOHA

- Protocol
 - Same as ALOHA, except time is divided into slots
 - Hosts may only transmit at the beginning of a slot
 - Thus, frames either collide completely, or not at all
 - 37% throughput vs. 18% for ALOHA
 - But, hosts must have synchronized clocks
Slotted ALOHA

- Protocol
 - Same as ALOHA, except time is divided into slots
 - Hosts may only transmit at the beginning of a slot
 - Thus, frames either collide completely, or not at all
 - 37% throughput vs. 18% for ALOHA
- But, hosts must have synchronized clocks
802.3 Ethernet

<table>
<thead>
<tr>
<th>Bytes</th>
<th>7</th>
<th>1</th>
<th>6</th>
<th>6</th>
<th>2</th>
<th>0-1500</th>
<th>0-46</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Preamble</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Source</td>
<td>Dest.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Length</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data</td>
<td>Pad</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Checksum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
802.3 Ethernet

- Preamble is 7 bytes of 10101010. Why?
802.3 Ethernet

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011
802.3 Ethernet

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011
- Source and destination are MAC addresses
 - E.g. 00:45:A5:F3:25:0C
802.3 Ethernet

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011
- Source and destination are MAC addresses
 - E.g. 00:45:A5:F3:25:0C
802.3 Ethernet

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011
- Source and destination are MAC addresses
 - E.g. 00:45:A5:F3:25:0C
- Minimum packet length of 64 bytes, hence the pad
802.3 Ethernet

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011
- Source and destination are MAC addresses
 - E.g. 00:45:A5:F3:25:0C
- Minimum packet length of 64 bytes, hence the pad
Originally, Ethernet was a broadcast technology.

- Terminator
- Tee Connector
- 10Base2
- Hub
- Repeater
Originally, Ethernet was a broadcast technology.
Originally, Ethernet was a broadcast technology.
Originally, Ethernet was a broadcast technology.

Hubs and repeaters are layer-1 devices, i.e. physical only.
Originally, Ethernet was a broadcast technology.

- 10BaseT and 100BaseT
- T stands for Twisted Pair

Hubs and repeaters are layer-1 devices, i.e., physical only.
CSMA/CD

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
CSMA/CD

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
- Algorithm
 1. Sense for carrier
CSMA/CD

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
- Algorithm
 1. Sense for carrier
 2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time
Carrier sense multiple access with collision detection

Key insight: wired protocol allows us to sense the medium

Algorithm
1. Sense for carrier
2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time
3. Send a frame and sense for collision
CSMA/CD

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium

Algorithm
1. Sense for carrier
2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time
3. Send a frame and sense for collision
4. If no collision, then frame has been delivered
CSMA/CD

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium

Algorithm
1. Sense for carrier
2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time
3. Send a frame and sense for collision
4. If no collision, then frame has been delivered
5. If collision, abort immediately
 - Why keep sending if the frame is already corrupted?
CSMA/CD

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium

Algorithm
1. Sense for carrier
2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time
3. Send a frame and sense for collision
4. If no collision, then frame has been delivered
5. If collision, abort immediately
 - Why keep sending if the frame is already corrupted?
6. Perform exponential backoff then retransmit
CSMA/CD Collisions

- Collisions can occur

Spatial Layout of Hosts

A B C D

Time
CSMA/CD Collisions

- Collisions can occur
Collisions can occur
CSMA/CD Collisions

- Collisions can occur
- Collisions are quickly detected and aborted
CSMA/CD Collisions

- Collisions can occur
- Collisions are quickly detected and aborted
- Note the role of distance, propagation delay, and frame length

Spatial Layout of Hosts

Detect Collision and Abort
Exponential Backoff

- When a sender detects a collision, send “jam signal”
 - Make sure all hosts are aware of collision
 - Jam signal is 32 bits long (plus header overhead)
- Exponential backoff operates in multiples of 512 bits
 - Select $k \in [0, 2^n - 1]$, where $n =$ number of collisions
 - Wait $k \times 51.2\mu s$ before retransmission
 - n is capped at 10, frame dropped after 16 collisions
- Backoff time is divided into contention slots
Exponential Backoff

- When a sender detects a collision, send “jam signal”
 - Make sure all hosts are aware of collision
 - Jam signal is 32 bits long (plus header overhead)
- Exponential backoff operates in multiples of 512 bits
 - Select $k \in [0, 2^n - 1]$, where $n =$ number of collisions
 - Wait $k \times 51.2\mu s$ before retransmission
 - n is capped at 10, frame dropped after 16 collisions
- Backoff time is divided into contention slots

Remember this number
Minimum Packet Sizes
Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?

![Diagram showing the relationship between A and B with Propagation Delay (d).]
Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?

1. Time t: Host A starts transmitting
Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions

- What is the relationship between packet size and cable length?

1. Time \(t \): Host A starts transmitting
Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?
 1. Time t: Host A starts transmitting
 2. Time $t + d$: Host B starts transmitting
Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions

- What is the relationship between packet size and cable length?

1. Time t: Host A starts transmitting
2. Time $t + d$: Host B starts transmitting

![Diagram of network with two hosts A and B connected by cable with propagation delay d.]
Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?

1. Time t: Host A starts transmitting
2. Time $t + d$: Host B starts transmitting
3. Time $t + 2d$: collision detected
Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?

1. Time \(t \): Host A starts transmitting
2. Time \(t + d \): Host B starts transmitting
3. Time \(t + 2d \): collision detected

\[
\text{min_frame_size} \times \text{light_speed} / (2 \times \text{bandwidth}) = \text{max_cable_length}
\]

\[
(64\text{B} \times 8) \times (2.5 \times 10^8 \text{mps}) / (2 \times 10^7 \text{bps}) = 6400 \text{ meters}
\]
Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions

- What is the relationship between packet size and cable length?

1. Time \(t \): Host A stops transmitting
2. Time \(t + d \): Host B starts transmitting
3. Time \(t + 2d \): collision detected

\[
\text{min_frame_size} \times \frac{\text{light_speed}}{2 \times \text{bandwidth}} = \text{max_cable_length}
\]

- 10 Mbps Ethernet
- Packet and cable lengths change for faster Ethernet standards

\[
(64B \times 8) \times \frac{2.5 \times 10^8 \text{mps}}{2 \times 10^7 \text{bps}} = 6400 \text{ meters}
\]
Cable Length Examples

\[
\text{min_frame_size} \times \text{light_speed} / (2 \times \text{bandwidth}) = \text{max_cable_length}
\]
\[
(64B \times 8) \times (2.5 \times 10^8 \text{mps}) / (2 \times 10 \text{Mbps}) = 6400 \text{ meters}
\]

- What is the max cable length if min packet size were changed to 1024 bytes?
Cable Length Examples

\[
\text{min_frame_size*light_speed/(2*bandwidth)} = \text{max_cable_length} \\
(64\text{B}*8)*(2.5*10^8\text{mps})/(2*10\text{Mbps}) = 6400 \text{ meters}
\]

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers
Cable Length Examples

\[
\text{min_frame_size*light_speed/(2*bandwidth) = max_cable_length} \\
(64B*8)*(2.5*10^8\text{mps})/(2*10\text{Mbps}) = 6400 \text{ meters}
\]

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers

- What is max cable length if bandwidth were changed to 1 Gbps?
Cable Length Examples

\[
\text{min_frame_size} \times \text{light_speed} / (2 \times \text{bandwidth}) = \text{max_cable_length}
\]

\[
(64B \times 8) \times (2.5 \times 10^8 \text{mps}) / (2 \times 10\text{Mbps}) = 6400 \text{ meters}
\]

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers

- What is max cable length if bandwidth were changed to 1 Gbps?
 - 64 meters
Cable Length Examples

\[
\text{min_frame_size} \times \text{light_speed} / (2\times\text{bandwidth}) = \text{max_cable_length}
\]

\[
(64B\times8) \times (2.5\times10^8 \text{mps}) / (2\times10\text{Mbps}) = 6400 \text{ meters}
\]

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers

- What is max cable length if bandwidth were changed to 1 Gbps ?
 - 64 meters

- What if you changed min packet size to 1024 bytes and bandwidth to 1 Gbps?

Cable Length Examples

\[\text{min_frame_size \times light_speed} / (2 \times \text{bandwidth}) = \text{max_cable_length} \]

\[(64\text{B} \times 8) \times (2.5 \times 10^8 \text{mps}) / (2 \times 10\text{Mbps}) = 6400 \text{ meters} \]

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers

- What is max cable length if bandwidth were changed to 1 Gbps?
 - 64 meters

- What if you changed min packet size to 1024 bytes and bandwidth to 1 Gbps?
 - 1024 meters
Exponential Backoff, Revisited

- Remember the 512 bit backoff timer?
- Minimum Ethernet packet size is also 512 bits
 - 64 bytes * 8 = 512 bits
- Coincidence? Of course not.
 - If the backoff time was < 512 bits, a sender who waits and another who sends immediately can still collide
Maximum Packet Size

- **Maximum Transmission Unit (MTU):** 1500 bytes

- **Pros:**
 - Bit errors in long packets incur significant recovery penalty

- **Cons:**
 - More bytes wasted on header information
 - Higher per packet processing overhead

- Datacenters shifting towards Jumbo Frames
 - 9000 bytes per packet
Long Live Ethernet

- Today’s Ethernet is switched
 - More on this later

- 1Gbit and 10Gbit Ethernet now common
 - 100Gbit on the way
 - Uses same old packet header
 - Full duplex (send and receive at the same time)
 - Auto negotiating (backwards compatibility)
 - Can also carry power
Outline

- Framing
- Error Checking and Reliability
- Media Access Control
 - 802.3 Ethernet
 - 802.11 Wifi
802.3 vs. Wireless

- Ethernet has one shared collision domain
 - All hosts on a LAN can observe all transmissions
- Wireless radios have small range compared to overall system
 - Collisions are local
 - Collision are at the receiver, not the sender
 - Carrier sense (CS in CSMA) plays a different role
- 802.11 uses CSMA/CA not CSMA/CD
 - Collision avoidance, rather than collision detection
Hidden Terminal Problem

- Radios on the same network cannot always hear each other
Hidden Terminal Problem

- Radios on the same network cannot always hear each other.
Hidden Terminal Problem

- Radios on the same network cannot always hear each other

Diagram:
- Three nodes: A, B, C
- Node B transmitting to node A
- Node C receiving node A's transmission
- Collision indicated by red speech bubble
Hidden Terminal Problem

- Radios on the same network cannot always hear each other.

A cannot hear C

Collision!

C cannot hear A
Hidden Terminal Problem

- Radios on the same network cannot always hear each other

- Hidden terminals mean that sender-side collision detection is useless
Exposed Terminal Problem

- Carrier sensing is problematic in wireless
Exposed Terminal Problem

- Carrier sensing is problematic in wireless
Exposed Terminal Problem

- Carrier sensing is problematic in wireless

A
B
C
D

No collision

No collision
Exposed Terminal Problem

- Carrier sensing is problematic in wireless
Exposed Terminal Problem

- Carrier sensing is problematic in wireless networks.

Carrier sense detects a busy channel

A B C D
Exposed Terminal Problem

- Carrier sensing is problematic in wireless carrier sense detects a busy channel

- Carrier sense can erroneously reduce utilization
Reachability in Wireless

- High level problem:
 - Reachability in wireless is not transitive
 - Just because A can reach B, and B can reach C, doesn’t mean A can reach C
MACA

- **Multiple Access with Collision Avoidance**
- Developed in 1990

Diagram:

- Host in Sender’s Range
- Sender
- Receiver
- Host in Receiver’s Range
MACA

- **Multiple Access with Collision Avoidance**
 - Developed in 1990

Host in Sender's Range

Sense the channel

Host in Receiver's Range
MACA

- **Multiple Access with Collision Avoidance**
- Developed in 1990

Diagram:
- Host in Sender’s Range
- Sender
- Receiver
- Host in Receiver’s Range

- Sense the channel
- Soft-reserve the channel

Routing:
- RTS

MACA

- **Multiple Access with Collision Avoidance**
 - Developed in 1990

Diagram:
- Host in Sender's Range
- Host in Receiver's Range
- Sender
- Receiver
- RTS
- CTS

- **Sender**
 - Sense the channel

- **Receiver**
 - The receiver is busy

- Soft-reserve the channel
Multiple Access with Collision Avoidance

- Developed in 1990

- Soft-reserve the channel
- RTS but no CTS = clear to send

- Sense the channel
- The receiver is busy
MACA

- **Multiple Access with Collision Avoidance**
- Developed in 1990

![Diagram of MACA protocol](chart.png)
Collisions in MACA

What if sender does not receive CTS or ACK?
- Assume collision
- Enter exponential backoff mode
802.11b

- 802.11
 - Uses CSMA/CA, not MACA
- 802.11b
 - Introduced in 1999
 - Uses the unlicensed 2.4 Ghz band
 - Same band as cordless phones, microwave ovens
 - Complementary code keying (CCK) modulation scheme
 - 5.5 and 11 Mbps data rates
 - Practical throughput with TCP is only 5.9 Mbps
 - 11 channels (in the US). Only 1, 6, and 11 are orthogonal
802.11b

- 802.11
 - Uses CSMA/CA, not MACA

- 802.11b
 - Introduced in 1999
 - Uses the unlicensed 2.4 Ghz band

- 11 channels (in the US).
 - Only 1, 6, and 11 are orthogonal
802.11a/g

- **802.11a**
 - Uses the 5 Ghz band
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbps
 - Switches from CCK to Orthogonal Frequency Division Multiplexing (OFDM)
 - Each frequency is orthogonal

- **802.11g**
 - Introduced in 2003
 - Uses OFDM to improve performance (54 Mbps)
 - Backwards compatible with 802.11b
 - Warning: b devices cause g networks to fall back to CCK
802.11n/ac

- **802.11n**
 - Introduced in 2009
 - Multiple Input Multiple Output (MIMO)
 - Multiple send and receive antennas per device (up to four)
 - Data stream is multiplexed across all antennas
 - Maximum 600 Mbps transfer rate (in a 4x4 configuration)
 - 300 Mbps is more common (2x2 configuration)

- **802.11ac**
 - Final approval in Feb 2014
 - 8x8 MIMO in the 5 GHz band, 500 Mbps – 1 GBps rates
MACA-style RTS/CTS is optional

Distributed Coordination Function (DCF) based on...

- Inter Frame Spacing (IFS)
 - DIFS – low priority, normal data packets
 - PIFS – medium priority, used with Point Coordination Function (PCF)
 - SIFS – high priority, control packets (RTS, CTS, ACK, etc.)

- Contention interval: random wait time
MACA-style RTS/CTS is optional

Distributed Coordination Function (DCF) based on...

- Inter Frame Spacing (IFS)
 - DIFS – low priority, normal data packets
 - PIFS – medium priority, used with Point Coordination Function (PCF)
 - SIFS – high priority, control packets (RTS, CTS, ACK, etc.)

- Contention interval: random wait time
802.11 Media Access

- MACA-style RTS/CTS is optional
- Distributed Coordination Function (DCF) based on...
 - Inter Frame Spacing (IFS)
 - DIFS – low priority, normal data packets
 - PIFS – medium priority, used with Point Coordination Function (PCF)
 - SIFS – high priority, control packets (RTS, CTS, ACK, etc.)
 - Contention interval: random wait time

Sense the channel

Sender

Channel Busy

Time
MACA-style RTS/CTS is optional

Distributed Coordination Function (DCF) based on...

- Inter Frame Spacing (IFS)
 - DIFS – low priority, normal data packets
 - PIFS – medium priority, used with Point Coordination Function (PCF)
 - SIFS – high priority, control packets (RTS, CTS, ACK, etc.)

- Contention interval: random wait time
MACA-style RTS/CTS is optional

Distributed Coordination Function (DCF) based on...

- Inter Frame Spacing (IFS)
 - DIFS – low priority, normal data packets
 - PIFS – medium priority, used with Point Coordination Function (PCF)
 - SIFS – high priority, control packets (RTS, CTS, ACK, etc.)

- Contention interval: random wait time
MACA-style RTS/CTS is optional

Distributed Coordination Function (DCF) based on...
- Inter Frame Spacing (IFS)
 - DIFS – low priority, normal data packets
 - PIFS – medium priority, used with Point Coordination Function (PCF)
 - SIFS – high priority, control packets (RTS, CTS, ACK, etc.)
- Contention interval: random wait time
802.11 DCF Example

Sender 1

Channel Busy

Sender 2

Sender 3

Time
802.11 DCF Example

Sender 1

Sense the channel

Channel Busy

Sender 2

Sender 3

Time
802.11 DCF Example

Channel Busy

Sender 1

Sender 2

Sender 3

Time

SIFS

PIFS

DIFS
802.11 DCF Example

Sender 1

Channel Busy

Sender 2

Sender 3
802.11 DCF Example

Sender 1

Channel Busy

Sender 2

SIFS

PIFS

Contention

Sender 3

DIFS

Time

Sense the channel
802.11 DCF Example

- **Sender 1**: Channel Busy, SIFS, Transmit Data
- **Sender 2**: Contention
- **Sender 3**: DIFS

Time line shows the sequence of events with SIFS, PIFS, DIFS, and Transmit Data.
802.11 DCF Example

Sender 1
Channel Busy

Sender 2
Channel Busy

Sender 3

Time

SIFS
PIFS
DIFS

Transmit Data

Contention
802.11 DCF Example

Sender 1

Channel Busy

Sender 2

Channel Busy

Sender 3

Channel Busy

SIFS

PIFS

DIFS

Transmit Data

Contention

Time

Ssense the channel

Ssense the channel
802.11 DCF Example

Time

Sender 1
Channel Busy

Sender 2

Sender 3

SIFS
PIFS
DIFS

Transmit Data

Contention

Channel Busy
We’ve only scratched the surface of 802.11

- Association – how do clients connect to access points?
 - Scanning
 - What about roaming?

- Variable sending rates to combat noisy channels

- Infrastructure vs. ad-hoc vs. point-to-point
 - Mesh networks and mesh routing

- Power saving optimizations
 - How do you sleep and also guarantee no lost messages?

- Security and encryption (WEP, WAP, 802.11x)

This is why there are courses on wireless networking