CS 3700 Networks and Distributed Systems

Lecture 4: Ethernet/Media Access

Data Link Layer

Application Presentation Session **Transport** Network Data Link Physical

- Function:
 - Send blocks of data (frames) between physical devices
 - Regulate access to the physical media
- Key challenge:
 - How to delineate frames?
 - How to detect errors?
 - How to perform media access control (MAC)?
 - How to recover from and avoid collisions?

Outline

- Media Access Control
 - 802.3 Ethernet
 - 802.11 Wifi

- Ethernet and Wifi are both multi-access technologies
 - Broadcast medium, shared by many hosts
 - Simultaneous transmissions cause collisions
 - This destroys the data

- Ethernet and Wifi are both multi-access technologies
 - Broadcast medium, shared by many hosts
 - Simultaneous transmissions cause collisions
 - This destroys the data
- Media Access Control (MAC) protocols are required
 - Rules on how to share the medium
 - Strategies for detecting, avoiding, and recovering from collisions

- Channel partitioning
 - Divide the resource into small pieces
 - Allocate each piece to one host
 - Example: Time Division Multi-Access (TDMA) cellular
 - Example: Frequency Division Multi-Access (FDMA) cellular

- Channel partitioning
 - Divide the resource into small pieces
 - Allocate each piece to one host
 - Example: Time Division Multi-Access (TDMA) cellular
 - Example: Frequency Division Multi-Access (FDMA) cellular
- Taking turns
 - Tightly coordinate shared access to avoid collisions
 - Example: Token ring networks

- Channel partitioning
 - Divide the resource into small pieces
 - Allocate each piece to one host
 - Example: Time Division Multi-Access (TDMA) cellular
 - Example: Frequency Division Multi-Access (FDMA) cellular
- Taking turns
 - Tightly coordinate shared access to avoid collisions
 - Example: Token ring networks
- Contention
 - Allow collisions, but use strategies to recover
 - Examples: Ethernet, Wifi

- Channel partitioning
 - Divide the resource into small pieces
 - Allocate each piece to one host
 - Example: Time Division Multi-Access (TDMA) cellular
 - Example: Frequency Division Multi-Access (FDMA) cellular
- Taking turns
 - Tightly coordinate shared access to avoid collisions
 - Example: Token ring networks
- Contention
 - Allow collisions, but use strategies to recover
 - Examples: Ethernet, Wifi

- Share the medium
 - Two hosts sending at the same time collide, thus causing interference
 - If no host sends, channel is idle
 - Thus, want one user sending at any given time

- Share the medium
 - Two hosts sending at the same time collide, thus causing interference
 - If no host sends, channel is idle
 - Thus, want one user sending at any given time
- High utilization
 - TDMA is low utilization
 - Just like a circuit switched network

- Share the medium
 - Two hosts sending at the same time collide, thus causing interference
 - If no host sends, channel is idle
 - Thus, want one user sending at any given time
- High utilization
 - TDMA is low utilization
 - Just like a circuit switched network
- Simple, distributed algorithm
 - Multiple hosts that cannot directly coordinate
 - No fancy (complicated) token-passing schemes

- ALOHA
 - Developed in the 70's for packet radio networks

- ALOHA
 - Developed in the 70's for packet radio networks
- Slotted ALOHA
 - Start transmissions only at fixed time slots
 - Significantly fewer collisions than ALOHA

- ALOHA
 - Developed in the 70's for packet radio networks
- Slotted ALOHA
 - Start transmissions only at fixed time slots
 - Significantly fewer collisions than ALOHA
- Carrier Sense Multiple Access (CSMA)
 - Start transmission only if the channel is idle

- ALOHA
 - Developed in the 70's for packet radio networks
- Slotted ALOHA
 - Start transmissions only at fixed time slots
 - Significantly fewer collisions than ALOHA
- Carrier Sense Multiple Access (CSMA)
 - Start transmission only if the channel is idle
- CSMA / Collision Detection (CSMA/CD)
 - Stop ongoing transmission if collision is detected

- Topology: radio broadcast with multiple stations
- Protocol:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - □ No ACK = collision, wait a random time then retransmit

- Topology: radio broadcast with multiple stations
- Protocol:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - □ No ACK = collision, wait a random time then retransmit

- Topology: radio broadcast with multiple stations
- Protocol:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - □ No ACK = collision, wait a random time then retransmit

- Topology: radio broadcast with multiple stations
- Protocol:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - □ No ACK = collision, wait a random time then tetransmit

- Topology: radio broadcast with multiple stations
- Protocol:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - □ No ACK = collision, wait g random time then retransmit

- Topology: radio broadcast with multiple stations
- Protocol:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - □ No ACK = collision, wait a random time then retransmit

- Topology: radio broadcast with multiple stations
- Protocol:
 - Stations transmit data immediately
 - Receivers ACK all packets
 - No ACK = collision, wait a random time then retransmit
 - Simple, but radical concept
 - Previous attempts all divided the channel
 - TDMA, FDMA, etc.
 - Optimized for the common case: few senders

Q

- In TDMA, each host must wait for its turn
 - Delay is proportional to number of hosts
- In Aloha, each host sends immediately
 - Much lower delay
 - But, much lower utilization

Ç

- In TDMA, each host must wait for its turn
 - Delay is proportional to number of hosts
- In Aloha, each host sends immediately
 - Much lower delay
 - But, much lower utilization

Tradeoffs vs. TDMA

- 9
- In TDMA, each host must wait for its turn
 - Delay is proportional to number of hosts
- In Aloha, each host sends immediately
 - Much lower delay
 - But, much lower utilization

Tradeoffs vs. TDMA

- In TDMA, each host must wait for its turn
 - Delay is proportional to number of hosts
- In Aloha, each host sends immediately
 - Much lower delay
 - But, much lower utilization

 \blacksquare Maximum throughput is $\sim 18\%$ of channel capacity

Tradeoffs vs. TDMA

- Protocol
 - Same as ALOHA, except time is divided into slots
 - Hosts may only transmit at the beginning of a slot
- Thus, frames either collide completely, or not at all
 - □ 37% throughput vs. 18% for ALOHA
 - But, hosts must have synchronized clocks

Slotted ALOHA

Preamble is 7 bytes of 10101010. Why?

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011
- Source and destination are MAC addresses
 - □ E.g. 00:45:A5:F3:25:0C
 - Broadcast: FF:FF:FF:FF:FF

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011
- Source and destination are MAC addresses
 - □ E.g. 00:45:A5:F3:25:0C
 - Broadcast: FF:FF:FF:FF:FF

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011
- Source and destination are MAC addresses
 - □ E.g. 00:45:A5:F3:25:0C
 - Broadcast: FF:FF:FF:FF:FF
- Minimum packet length of 64 bytes, hence the pad

802.3 Ethernet

- Preamble is 7 bytes of 10101010. Why?
- Start Frame (SF) is 10101011
- Source and destination are MAC addresses
 - □ E.g. 00:45:A5:F3:25:0C
 - Broadcast: FF:FF:FF:FF:FF
- Minimum packet length of 64 bytes, hence the pad

Broadcast Ethernet

12

Broadcast Ethernet

biodacasi Lilietile

Broadcast Ethernet

Originally, Ethernet was a broadcast technology 10Base2 **Terminator** Tee Connector **Hubs** and 10BaseT and 100BaseT repeaters are T stands for Twisted Pair layer-1 devices, i.e. physical only

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
- Algorithm
 - Sense for carrier

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
- Algorithm
 - Sense for carrier
 - 2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
- Algorithm
 - Sense for carrier
 - 2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time
 - Send a frame and sense for collision

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
- Algorithm
 - Sense for carrier
 - 2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time
 - Send a frame and sense for collision
 - 4. If no collision, then frame has been delivered

CSMA/CD

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
- Algorithm
 - Sense for carrier
 - 2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time
 - Send a frame and sense for collision
 - If no collision, then frame has been delivered
 - 5. If collision, abort immediately
 - Why keep sending if the frame is already corrupted?

CSMA/CD

- Carrier sense multiple access with collision detection
- Key insight: wired protocol allows us to sense the medium
- Algorithm
 - Sense for carrier
 - 2. If carrier is present, wait for it to end
 - Sending would cause a collision and waste time
 - Send a frame and sense for collision
 - If no collision, then frame has been delivered
 - 5. If collision, abort immediately
 - Why keep sending if the frame is already corrupted?
 - 6. Perform exponential backoff then retransmit

Collisions can occur

Collisions can occur

Collisions can occur

- Collisions can occur
- Collisions are quickly detected and aborted

- Collisions can occur
- Collisions are quickly detected and aborted
- Note the role of distance, propagation delay, and frame length

Exponential Backoff

- When a sender detects a collision, send "jam signal"
 - Make sure all hosts are aware of collision
 - Jam signal is 32 bits long (plus header overhead)
- Exponential backoff operates in multiples of 512 bits
 - □ Select $k \in [0, 2^n 1]$, where n = number of collisions
 - Wait $k * 51.2 \mu s$ before retransmission
 - \square n is capped at 10, frame dropped after 16 collisions
- Backoff time is divided into contention slots

Exponential Backoff

- When a sender detects a collision, send "jam signal"
 - Make sure all hosts are aware of collision
 - Jam signal is 32 bits long (plus header overhead)
- Exponential backoff operates in multiples of 512 bits
 - □ Select $k \in [0, 2^n 1]$, where n = number of collisions
 - Wait $k * 51.2 \mu s$ before retransmission
 - \square n is capped at 10, frame dropped after 16 collisions
- Backoff time is divided into contention slots

Remember this number

Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?
- Time t: Host A starts transmitting

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?
- Time t: Host A starts transmitting

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?
- Time t: Host A starts transmitting
- 2. Time t + d: Host B starts transmitting

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?
- Time t: Host A starts transmitting
- 2. Time t + d: Host B starts transmitting

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?
- Time t: Host A starts transmitting
- 2. Time t + d: Host B starts transmitting
- 3. Time t + 2*d: collision detected

Minimum Packet Sizes

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable length?
- Time t: Host A starts transmitting
- 2. Time t + d: Host B starts transmitting
- 3. Time t + 2*d: collision detected

min_frame_size*light_speed/(2*bandwidth) = max_cable_length (64B*8)*($2.5*10^8$ mps)/($2*10^7$ bps) = 6400 meters

- Why is the minimum packet size 64 bytes?
 - To give hosts enough time to detect collisions
- What is the relationship between packet size and cable

length?

- 10 Mbps Ethernet
- Time t: Host A stermitting
 Packet and cable lengths change for faster Ethernet standards
- 2. Time t + d: Host transmitting
- 3. Time t + 2*d: collision detected

```
min_frame_size*light_speed/(2*b) dwidth) = max_cable_length (64B*8)*(2.5*10^8 \text{mps})/(2*10^7 \text{bps}) = 6400 \text{ meters}
```

Cable Length Examples

```
min_frame_size*light_speed/(2*bandwidth) = max_cable_length (64B*8)*(2.5*10^8 mps)/(2*10Mbps) = 6400 meters
```

What is the max cable length if min packet size were changed to 1024 bytes?

Cable Length Examples

```
min_frame_size*light_speed/(2*bandwidth) = max_cable_length (64B*8)*(2.5*10^8 mps)/(2*10Mbps) = 6400 meters
```

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers

Cable Length Examples

```
min_frame_size*light_speed/(2*bandwidth) = max_cable_length (64B*8)*(2.5*10^8 mps)/(2*10Mbps) = 6400 meters
```

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers
- What is max cable length if bandwidth were changed to 1 Gbps?

Cable Length Examples

```
min_frame_size*light_speed/(2*bandwidth) = max_cable_length (64B*8)*(2.5*10^8 mps)/(2*10Mbps) = 6400 meters
```

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers
- What is max cable length if bandwidth were changed to 1 Gbps?
 - 64 meters

Cable Length Examples

```
min_frame_size*light_speed/(2*bandwidth) = max_cable_length (64B*8)*(2.5*10^8 mps)/(2*10Mbps) = 6400 meters
```

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers
- What is max cable length if bandwidth were changed to 1 Gbps?
 - 64 meters
- What if you changed min packet size to 1024 bytes and bandwidth to 1 Gbps?

Cable Length Examples

```
min_frame_size*light_speed/(2*bandwidth) = max_cable_length (64B*8)*(2.5*10^8 mps)/(2*10Mbps) = 6400 meters
```

- What is the max cable length if min packet size were changed to 1024 bytes?
 - 102.4 kilometers
- What is max cable length if bandwidth were changed to 1 Gbps?
 - 64 meters
- What if you changed min packet size to 1024 bytes and bandwidth to 1 Gbps?
 - 1024 meters

Exponential Backoff, Revisited

- Remember the 512 bit backoff timer?
- Minimum Ethernet packet size is also 512 bits
 - □ 64 bytes * 8 = 512 bits
- Coincidence? Of course not.
 - □ If the backoff time was <512 bits, a sender who waits and another who sends immediately can still collide

- Maximum Transmission Unit (MTU): 1500 bytes
- Pros:
 - Bit errors in long packets incur significant recovery penalty
- Cons:
 - More bytes wasted on header information
 - Higher per packet processing overhead
- Datacenters shifting towards Jumbo Frames
 - 9000 bytes per packet

Long Live Ethernet

- Today's Ethernet is switched
 - More on this later
- 1Gbit and 10Gbit Ethernet now common
 - 100Gbit on the way
 - Uses same old packet header
 - Full duplex (send and receive at the same time)
 - Auto negotiating (backwards compatibility)
 - Can also carry power

- Framing
- Error Checking and Reliability
- Media Access Control
 - 802.3 Ethernet
 - 802.11 Wifi

- Ethernet has one shared collision domain
 - All hosts on a LAN can observe all transmissions
- Wireless radios have small range compared to overall system
 - Collisions are local
 - Collision are at the receiver, not the sender
 - Carrier sense (CS in CSMA) plays a different role
- 802.11 uses CSMA/CA not CSMA/CD
 - Collision avoidance, rather than collision detection

23

23

Hidden Terminal Problem

23

Radios on the same network cannot always hear each other

Hidden terminals mean that sender-side collision detection is useless

24

24

Carrier sensing is pre-

Carrier sense detects a busy channel

Carrier sense detects a Carrier sensing is pr busy channel

Carrier sense can erroneously reduce utilization

Reachability in Wireless

- High level problem:
 - Reachability in wireless is not transitive
 - Just because A can reach B, and B can reach C, doesn't mean A can reach C

- Multiple Access with Collision Avoidance
 - Developed in 1990

Multiple Access with Collision Avoidance Developed in 1990 Sense the channel Host in Host in Sender's Receiver's Range Range Sender Receiver RTS RTS Soft-reserve the channel

- What if sender does not receive CTS or ACK?
 - Assume collision
 - Enter exponential backoff mode

- 802.11
 - Uses CSMA/CA, not MACA
- □ 802.11b
 - Introduced in 1999
 - Uses the unlicensed 2.4 Ghz band
 - Same band as cordless phones, microwave ovens
 - Complementary code keying (CCK) modulation scheme
 - 5.5 and 11 Mbps data rates
 - Practical throughput with TCP is only 5.9 Mbps
 - 11 channels (in the US). Only 1, 6, and 11 are orthogonal

802.11b

- 28
- 802.11
 - Uses CSMA/CA, not MACA
- □ 802.11b
 - Introduced in 1999

- □ 802.11a
 - Uses the 5 Ghz band
 - □ 6, 9, 12, 18, 24, 36, 48, 54 Mbps
 - Switches from CCK to Orthogonal Frequency Division Multiplexing (OFDM)
 - Each frequency is orthogonal
- 802.11g
 - Introduced in 2003
 - Uses OFDM to improve performance (54 Mbps)
 - Backwards compatible with 802.11b
 - Warning: b devices cause g networks to fall back to CCK

- □ 802.11n
 - Introduced in 2009
 - Multiple Input Multiple Output (MIMO)
 - Multiple send and receive antennas per devices (up to four)
 - Data stream is multiplexed across all antennas
 - Maximum 600 Mbps transfer rate (in a 4x4 configuration)
 - 300 Mbps is more common (2x2 configuration)
- □ 802.11ac
 - Final approval in Feb 2014
 - 8x8 MIMO in the 5 GHz band, 500 Mbps 1 GBps rates

31

- MACA-style RTS/CTS is optional
- Distributed Coordination Function (DCF) based on...
 - Inter Frame Spacing (IFS)
 - DIFS low priority, normal data packets
 - PIFS medium priority, used with Point Coordination Function (PCF)
 - SIFS high priority, control packets (RTS, CTS, ACK, etc.)
 - Contention interval: random wait time

31

- MACA-style RTS/CTS is optional
- Distributed Coordination Function (DCF) based on...
 - Inter Frame Spacing (IFS)
 - DIFS low priority, normal data packets
 - PIFS medium priority, used with Point Coordination Function (PCF)
 - SIFS high priority, control packets (RTS, CTS, ACK, etc.)
 - Contention interval: random wait time

Channel Busy

Sender

31

- MACA-style RTS/CTS is optional
- Distributed Coordination Function (DCF) based on...
 - Inter Frame Spacing (IFS)
 - DIFS low priority, normal data packets
 - PIFS medium priority, used with Point Coordination Function (PCF)
 - SIFS high priority, control packets (RTS, CTS, ACK, etc.)
 - Contention interval: random wait time

Sender

Time

31

- MACA-style RTS/CTS is optional
- Distributed Coordination Function (DCF) based on...
 - Inter Frame Spacing (IFS)
 - DIFS low priority, normal data packets
 - PIFS medium priority, used with Point Coordination Function (PCF)
 - SIFS high priority, control packets (RTS, CTS, ACK, etc.)
 - Contention interval: random wait time

Sender

Time

31

- MACA-style RTS/CTS is optional
- Distributed Coordination Function (DCF) based on...
 - Inter Frame Spacing (IFS)
 - DIFS low priority, normal data packets
 - PIFS medium priority, used with Point Coordination Function (PCF)
 - SIFS high priority, control packets (RTS, CTS, ACK, etc.)
 - Contention interval: random wait time

Sender

31

- MACA-style RTS/CTS is optional
- Distributed Coordination Function (DCF) based on...
 - Inter Frame Spacing (IFS)
 - DIFS low priority, normal data packets
 - PIFS medium priority, used with Point Coordination Function (PCF)
 - SIFS high priority, control packets (RTS, CTS, ACK, etc.)
 - Contention interval: random wait time

Sender

Sense the channel

801.11 is Complicated

- We've only scratched the surface of 802.11
 - Association how do clients connect to access points?
 - Scanning
 - What about roaming?
 - Variable sending rates to combat noisy channels
 - Infrastructure vs. ad-hoc vs. point-to-point
 - Mesh networks and mesh routing
 - Power saving optimizations
 - How do you sleep and also guarantee no lost messages?
 - Security and encryption (WEP, WAP, 802.11x)
- This is why there are courses on wireless networking