
CS 3700 
Networks and Distributed Systems

© 2014, Alan MIslove

Lecture 16: Security Basics

Definitions
Models
Principals
Basics
Vulnerabilities

2 Outline

Defining “security”

Policies and mechanisms for preserving desirable
protection properties over data and resources.

We reason about security in terms of properties
Policies specify what we want to enforce
Mechanisms are the means by which we enforce
policies

Always in the context of an attacker

3

Security properties

Let's consider an example where a general wants to give
the order "Attack at dawn."

In a network, messages must be distributed from one
principal to various other principals.

What are the properties we would like to enforce on
messages?

Alternatively, what are the bad things that could be done
to this message?

4

Confidentiality

"Hey, we're attacking at dawn!"

 Data must only be released to authorized principals

Cryptography has historically focused on providing
confidentiality

But, there are other mechanisms

Can have a temporal aspect

5

Integrity

"Retreat at dawn."

Data must not be modified (in an undetectable manner)

What constitutes a modification?

Corruption

Dropped, replayed, or reordered messages

Cryptography has also historically provided this

e.g, (cryptographic) hash functions, HMAC

6

Authenticity

Enemy commander: "Attack at dawn."

Establishment of identity

Or, verification of "genuineness"

Again, cryptography has long considered this

e.g., HMAC, signatures

7

Availability

“Xfk3^#M3mf a __ q3rf” – jamming results in garbled
message

Data and resources must be accessible when required

Related to integrity, but more concerned with denial of
service (DoS) attacks

Resource exhaustion (e.g., CPU, memory, network
bandwidth)

Usually easy to perform, can be difficult to defend

8

Non-repudiation

"I never said to attack at dawn!"

Data must be bound to identity

Prevents denial of message transmission or receipt

Cryptographic techniques

e.g., HMAC, certificates

9

Access Control

Policy specifying how entities can interact with resources

i.e., Who can access what?

Requires authentication and authorization

Access control primitives

10

Principal Users of a system

Subject Entity that acts on behalf of principals

Object Resource acted upon by subjects

Authentication

Verification of identity claim made by a subject on behalf
of a principal

 Involves examination of factors, or credentials
Something you have – e.g., a badge

Something you know – e.g., a password

Something you are – e.g., your fingerprint

 Desirable properties include being unforgeable,
unguessable, and revocable

11

Authorization

Authorization follows authentication

If asking what someone can do, you must know who
they are 

Usually represented as a policy specification of what
resources can be accessed by a given subject

Can also include the nature of the access

12

Types of Access Control

Discretionary Access Control (DAC)

Owners of objects specify policy

Mandatory Access Control (MAC)

Policy based on sensitivity levels – e.g., clearance

Owners do not specify their own policies

Role-based Access Control (RBAC)

Central authority defines policy in terms of roles

Roles ≈ permission sets

13

Access Control Matrices

Introduced by Lampson in 1971

Static description of system protection state

Abstract model of concrete systems

14

o1 o2 o3

s1 RW RX

s2 R RWX RW

s3 RWX

Given subjects si ∈S, objects oj ∈O, rights {R,W,X},

Definitions
Models
Principals
Basics
Vulnerabilities

15 Outline

Abstract Security Models

Access control lists

Capabilities

Bell-LaPadula

Biba Integrity

Clark-Wilson

Brewer-Nash

Non-interference

Information flow

16

Practical Security Models

UNIX permissions

Windows access control

Java permissions

Web (same-origin policy)

Android permissions

iOS (MAC model)

17

Limitations of Access Matrices

The Unix model is very simple
Users and groups, read/write/execute

Not all possible policies can be encoded

18

• file 1: two users have high privileges
– If user 3 and user 4 are in a group,

how to give user 2 read and user 1
nothing?

file 1 file 2

user 1 --- rw-

user 2 r-- r--

user 3 rw- rwx

user 4 rw- ---

• file 2: four distinct privilege levels
– Maximum of three levels (user, group, other)

Access Control List (ACL)

⟨object, subject, operation⟩

Authorization verified for each request by checking list of
tuples

Instantiation of access control matrices with update

Used pervasively in filesystems and networks

"Users a, b, and c and read file x."

"Hosts a and b can listen on port x."

Drawbacks?

19

Capabilities

In this model, authorization is synonymous with
possession of a capability

Capabilities represented as transferable, unforgeable
tokens

Many implementations

Hardware

Systems (EROS, Capsicum)

Languages (E, Caja, Joe-E)

Drawbacks?

20

Covert Channels

Access control is defined over "legitimate" channels

e.g., shared memory, pipes, sockets, files

However, isolation in real systems is imperfect

 External observations can be used to create covert
channels

Requires collusion with an insider

Can be extremely difficult to detect

Difficulty is proportionate to channel bandwidth

21

Side Channels

Side channels result from inadvertent information leakage
Timing – e.g., password recovery by timing keystrokes

Power – e.g., crypto key recovery by power
fluctuations

RF emissions – e.g., video signal recovery from video
cable EM leakage

Virtually any shared resource can be used

Countermeasures?

Remove access to shared resource

Introduce noise (chaff) or blind the resource

22

Definitions
Models
Principals
Basics
Vulnerabilities

23 Outline

Security Principles

We've seen some basic properties, policies, mechanisms,
models, and approaches to security

But, designing secure systems (and breaking them)
remains an art

Security principles help bridge the gap between art and
science

Let's look at a few

24

Economy of Mechanism
25

Would you depend on a defense designed like this?

Economy of Mechanism

Simplicity of design implies a smaller attack surface

Correctness of protection mechanisms is critical

"Who watches the watcher?"

We need to be able to trust our security mechanisms

(Or, at least quantify their efficacy)

Essentially the KISS principle

26

Defense in Depth

Don't depend on a single protection mechanism, since
they are apt to fail

Even very simple or formally verified defenses fail

Layering defenses increases the difficulty for attackers

Defenses should be complementary!

27

Fail-safe Defaults

The absence of explicit permission is equivalent to no
permission

Systems should be secure "out-of-the-box"

Most users stick with defaults

Security should be easy

Users should "opt-in" to less-secure configurations

28

Complete Mediation
29

Complete Mediation

Every access to every object must be checked for
authorization

Incomplete mediation implies that a path exists to bypass
a security mechanism

 Required property of reference monitors

30

Open Design

Kerckhoff's Principle: A cryptosystem should be secure
even if everything about the system, except the key, is
public knowledge

Generalization: A system should be secure even if the
adversary knows everything about its design

Design does not include runtime parameters

Contrast with "security through obscurity"

31

Separation of Privilege

Privilege, or authority, should only be distributed to
subjects that require it

Some components of a system should be less privileged
than others

Not every subject needs the ability to do everything

Not every subject is deserving of full trust

Contrast with "ambient authority"

32

Least Privilege

Subjects should possess only that authority that is
required to operate successfully

Closely related to separation of privilege

Not only should privilege be separated, but subjects should have
the least amount necessary to perform a task

33

Compromise Recording

Concede that attacks will occur, but record the fact

Auditing approach to security

Detection and recovery

"Tamper-evident" vs. "tamper-proof"

34

Threat Models

When analyzing a system's security, we often speak of a
threat model

Threat models bound the capabilities of an attacker

Many formal examples from cryptography (Dolev-Yao,
IND-CPA, IND-CCA)

Also important for systems

Passive network attacker, active network attacker,
privileged local user

35

Security vs. Usability

Security often comes with a trade-off between the level
of protection provided and ease-of-use

Systems that try to provide very strong security
guarantees tend to be unusable in practice

Completely insecure systems are usually easy to use

Pragmatic security follows the Pareto principle, or 80/20
rule

36

Definitions
Models
Principals
Basics
Vulnerabilities

37 Outline

Cryptographic Algorithms

Security foundation: cryptographic algorithms
Secret key cryptography, e.g. Data Encryption Standard
(DES)
Public key cryptography, e.g. RSA algorithm
Message digest, e.g. MD5

38

Symmetric Key

Both the sender and the receiver use the same secret keys
39

InternetEncrypt with
secret key

Decrypt with
secret key

Plaintext Plaintext

Ciphertext

Public-Key Cryptography: RSA

Sender uses a public key
Advertised to everyone

Receiver uses a private key

40

InternetEncrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

Message Digest (MD) MD5/SHA1

Can provide data integrity
Used to verify the authenticity of a message

Idea: compute a hash value on the message and send it along
with the message

Receiver can apply the same hash function on the message and
see whether the result coincides with the received hash

Very hard to forge a message that produces the same hash value
i.e. Message -> hash is easy
Hash -> Message is hard
Compare to other error detection methods (CRC, parity, etc)

41

MD 5 (cont’d)

Basic property: digest operation very hard to invert
Send the digest via a different channel

42

InternetDigest
(MD5)

Plaintext

digest

Digest
(MD5)

=

digest’

NO

corrupted msg Plaintext

Transport Layer Security

Application-layer protocol for confidentiality, integrity,
authenticity between clients and servers

Introduced by Netscape in 1995 as the Secure Sockets
Layer (SSL) to encapsulate HTTP traffic – i.e., HTTPS

Sits between application and transport layers
Therefore, applications must be TLS-aware

Both client and server must have an asymmetric keypair
In practice, X.509 certificates and PKI rooted in
certificate authorities (CAs)

43

X.509

Version: 3 (0x2)
Serial Number:
 0e:77:76:8a:5d:07:f0:e5:79:59:ca:2a:9d:50:82:b5
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com,
 CN=DigiCert High Assurance EV CA-1
Validity
 Not Before: May 27 00:00:00 2011 GMT
 Not After : Jul 29 12:00:00 2013 GMT
Subject: C=US, ST=California, L=San Francisco,
 O=GitHub, Inc., CN=github.com
Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus:
 00:ed:d3:89:c3:5d:70:72:09:f3:33:4f:1a:72:74:
 d9:b6:5a:95:50:bb:68:61:9f:f7:fb:1f:19:e1:da:

44

Connection Establishment
45

Nonces

Certificate
Chain

Encrypted with
server public key

(Both sides derive
session key k from
pre-master key)

C� S : ClientHello({Version,Prefs, NC})
S� C : ServerHello({Version,Prefs, NS})
S� C : Certificate({Cert1, . . . ,Certn})
S� C : ServerHelloDone

C� S : ClientKeyExchange(ES({PreMasterKey}))
C� S : ChangeCipherSpec

C� S : Ek(Finished)

S� C : ChangeCipherSpec

S� C : Ek(Finished)

TLS Authentication

Typical scenario: identify the server
X.509 Common Name (CN) field contains hostname
During connection establishment, client can check the CN,
verify the CA's signature of the server's certificate, and
check whether the CA is trusted
CA trust established via local trust anchors – i.e., a list of CA
public keys obtained out-of-band

TLS can also provide mutual authentication
Server can require a client certificate and perform an
analogous check
Usually, client authentication is handled using another
mechanism

46

TLS Authentication
47

CA A Domain X

KA CX

Sign(CX, KA)

TLS Authentication
48

CA A Domain X

KA CX || Sign(CX, KA)

TLS Authentication
49

Browser

CA

CB

CC

Domain X

CX || Sign(CX, KA)

TLS Authentication
50

Browser

CA

CB

CC

Domain X

CX || Sign(CX, KA)

Verify(Sign(CX, KA), CX)
&& X == Domain(CX) ?

TLS Authentication
51

Browser

CA

CB

CC

Domain Y

CY || Sign(CY, KA)

Verify(Sign(CY, KA), CY)
&& X == Domain(CY)

TLS Authentication
52

Browser

CA

CB

CC

Domain X

CX || Sign(CX, KD)

Verify(Sign(CX, KD), CX)
&& X == Domain(CX)

CA Trustworthiness

A CA is essentially a trusted third party
Certificate signatures are attestations of authenticity
for the server and (optionally) the client
Remember: trust is bad and should be minimized!

If a CA mistakenly (or purposefully) signs a certificate for
a domain and provides it to a malicious principal, TLS can
be subverted

Not only must we trust root CAs, but also intermediate
CAs that have been delegated signing authority

53

CA Trustworthiness

Clearly, the CA secret key must be protected at all costs
Possession of the CA secret key grants adversaries the
ability to sign any domain
Attractive target for adversaries

Signatures should only be issued after verifying the
identity of the requester

Also known as domain validation
Should be easy, right?

54

CA Failures

Issued to: Microsoft Corporation
Issued by: VeriSign Commercial Software Publishers CA
Valid from 1/29/2001 to 1/30/2002
Serial number is 1B51 90F7 3724 399C 9254 CD42 4637 996A

Issued to: Microsoft Corporation
Issued by: VeriSign Commercial Software Publishers CA
Valid from 1/30/2001 to 1/31/2002
Serial number is 750E 40FF 97F0 47ED F556 C708 4EB1 ABFD

In 2001, VeriSign issued two executable signing
certificates to someone claiming to be from Microsoft

Could be used to issue untrusted software updates

55

Comodo
56

DigiNotar
57

TrustWave
58

Certificate Pinning

One approach to avoid HTTPS attacks is to pin
certificates

Browser downloads server certificate as usual
Server certificate is validated against a trusted local
copy or hash
Trusted data shipped with browser

This technique was used to detect the use of fake
DigiNotar-issued certificates in 2011

But, it doesn't scale – reserved for "critical" sites

59

Definitions
Models
Principals
Basics
Vulnerabilities

60 Outline

Importance of Network Security

Internet currently used for important services
Financial transactions, medical records

Could be used in the future for critical services
911, surgical operations, energy system control, transportation
system control

Networks more open than ever before
Global, ubiquitous Internet, wireless

Malicious Users
Selfish users: want more network resources than you
Malicious users: would hurt you even if it doesn’t get them
more network resources

61

Network Security Problems

Host Compromise
Attacker gains control of a host

Denial-of-Service
Attacker prevents legitimate users from gaining service

Attack can be both
E.g., host compromise that provides resources for
denial-of-service

62

Host Compromise

One of earliest major Internet security incidents
Internet Worm (1988): compromised almost every
BSD-derived machine on Internet

Today: estimated that a single worm could compromise
10M hosts in < 5 min

Attacker gains control of a host
Reads data
Erases data
Compromises another host
Launches denial-of-service attack on another host

63

Definitions

Worm
Replicates itself
Usually relies on stack overflow attack

Virus
Program that attaches itself to another (usually
trusted) program

Trojan horse
Program that gives a hacker a back door
Usually relies on user exploitation

64

Host Compromise: Buffer Overflow

Typical code has many bugs because those bugs are not
triggered by common input

Network code is vulnerable because it accepts input from
the network

Network code that runs with high privileges (i.e., as root)
is especially dangerous

E.g., web server

65

Example

What is wrong here?

#define MAXNAMELEN 64

int offset = OFFSET_USERNAME;

char username[MAXNAMELEN];

int name_len;

name_len = ntohl(*(int *)packet);

memcpy(&username, packet[offset], name_len);

66

name_len name
0 43

packet

Example

void foo(packet) {

 #define MAXNAMELEN 64

 int offset = OFFSET_USERNAME;

 char username[MAXNAMELEN];

 int name_len;

 name_len = ntohl(*(int*)packet);

 memcpy(&username,

 packet[offset],name_len);

 …

}

67

“foo” return address

username

offset

name_len

Stack

X

X-4

X-8

X-72

X-76

Example

void foo(packet) {

 #define MAXNAMELEN 64

 int offset = OFFSET_USERNAME;

 char username[MAXNAMELEN];

 int name_len;

 name_len = ntohl(*(int *) packet);

 memcpy(&username,

 packet[offset],name_len);

 …

}

68

“foo” return address

username

offset

name_len

Stack

X

X-4

X-8

X-72

X-76

Effect of Stack Based Buffer Overflow

Write into part of the stack or heap
Write arbitrary code to part of memory
Cause program execution to jump to arbitrary code

Worm
Probes host for vulnerable software
Sends bogus input
Attacker can do anything that the privileges of the buggy
program allows

Launches copy of itself on compromised host
Spread at exponential rate
10M hosts in < 5 minutes

69

Worm Spreading

f = (e K(t-T) – 1) / (1+ e K(t-T))

f – fraction of hosts infected

K – rate at which one host can compromise others

T – start time of the attack

70

T

f

t

1

Worm Examples

Morris worm (1988)

Code Red (2001)

MS Slammer (January 2003)

MS Blaster (August 2003)

71

MS SQL Slammer (January 2003)

Uses UDP port 1434 to exploit a buffer overflow in MS
SQL server

Effect
Generate massive amounts of network packets
Brought down as many as 5 of the 13 internet root name
servers

Others
The worm only spreads as an in-memory process: it
never writes itself to the hard drive

Solution: close UDP port on firewall and reboot

72

MS SQL Slammer (January 2003)

xx

73

(From http://www.f-secure.com/v-descs/mssqlm.shtml)

Hall of Shame

Software that have had many stack overflow bugs:
BIND (most popular DNS server)
RPC (Remote Procedure Call, used for NFS)

NFS (Network File System)
Sendmail (most popular UNIX mail delivery software)
IIS (Windows web server)
SNMP (Simple Network Management Protocol, used to
manage routers and other network devices)

74

Potential Solutions

Don’t write buggy software
It’s not like people try to write buggy software

Type-safe Languages
Unrestricted memory access of C/C++ contributes to problem
Use Java, Perl, or Python instead

OS architecture
Compartmentalize programs better, so one compromise
doesn’t compromise the entire system
E.g., DNS server doesn’t need total system access

Firewalls

75

Firewall

Security device whose goal is to prevent computers from outside to gain
control to inside machines

Hardware or software

76

Firewall

Internet

Attacker

Firewall (cont’d)

Restrict traffic between Internet and devices (machines)
behind it based on

Source address and port number
Payload
Stateful analysis of data

Examples of rules
Block any external packets not for port 80
Block any email with an attachment
Block any external packets with an internal IP address

Ingress filtering

77

Firewalls: Properties

Easier to deploy firewall than secure all internal hosts

Doesn’t prevent user exploitation

Tradeoff between availability of services (firewall passes
more ports on more machines) and security

If firewall is too restrictive, users will find way around it,
thus compromising security
E.g., have all services use port 80

Can’t prevent problem from spreading from within

78

Host Compromise: User Exploitation

Some security architectures rely on the user to decide if a
potentially dangerous action should be taken, e.g.,

Run code downloaded from the Internet
“Do you accept content from Microsoft?”

Run code attached to email
“subject: You’ve got to see this!”

Allow a macro in a data file to be run
“Here is the latest version of the document.”

79

User Exploitation

Users are not good at making this decision
Which of the following is the real name Microsoft uses when
you download code from them?

Microsoft
Microsoft, Inc.
Microsoft Corporation

Typical email attack
Attacker sends email to some initial victims
Reading the email / running its attachment / viewing its
attachment opens the hole
Worm/trojan/virus mails itself to everyone in address book

80

Solutions

OS architecture

Don’t ask the users questions which they don’t know how
to answer anyway

Separate code and data
Viewing data should not launch attack

Be very careful about installing new software

81

Denial of Service

Huge problem in current Internet
Major sites attacked: Yahoo!, Amazon, eBay, CNN,
Microsoft
12,000 attacks on 2,000 organizations in 3 weeks
Some more that 600,000 packets/second

More than 192Mb/s
Almost all attacks launched from compromised hosts

General form
Prevent legitimate users from gaining service by
overloading or crashing a server
E.g., SYN attack

82

Effect on Victim

Buggy implementations allow unfinished connections to
eat all memory, leading to crash

Better implementations limit the number of unfinished
connections

Once limit reached, new SYNs are dropped

Effect on victim’s users
Users can’t access the targeted service on the victim
because the unfinished connection queue is full ! DoS

83

Other Denial-of-Service Attacks

Reflection
Cause one non-compromised host to attack another
E.g., host A sends DNS request or TCP SYN with source
V to server R. R sends reply to V

84

Reflector (R)

Internet

Attacker (A)
RV

Victim (V)

Other Denial-of-Service Attacks

Reflection
Cause one non-compromised host to attack another
E.g., host A sends DNS request or TCP SYN with source
V to server R. R sends reply to V

85

Reflector (R)

Internet

Attacker (A)

V R

Victim (V)

Other Denial-of-Service Attacks

DNS
Ping flooding attack on DNS root servers (October
2002)
9 out of 13 root servers brought down
Relatively small impact (why?)

BGP
Address space hijacking: Claiming ownership over the
address space owned by others

October 1995, Los Angeles county pulled down
Also happen because of operator mis-configurations

86

Address Space Hijacking

M hijacks the address space of CNN
87

B

F

C

DA

E

CNN X

M
Drop
packets

Renders Destination Network Unreachable

Address Space Hijacking
88

B

F

C

DA

E

CNN X

M

Impersonates end-hosts in destination network

CNN

Dealing with Attacks

Distinguish attack from flash crowd

Prevent damage
Distinguish attack traffic from legitimate traffic
Rate limit attack traffic

Stop attack
Identify attacking machines
Shutdown attacking machines
Usually done manually, requires cooperation of ISPs, other users

Identify attacker
Very difficult, except
Usually brags/gloats about attack on IRC
Also done manually, requires cooperation of ISPs, other users

89

Incomplete Solutions

Fair queueing, rate limiting (e.g., token bucket)

Prevent a user from sending at 10Mb/s and hurting a user
sending at 1Mb/s

Does not prevent 10 users from sending at 1Mb/s and
hurting a user sending a 1Mb/s

90

Identify and Stop Attacking Machines

Defeat spoofed source addresses

Does not stop or slow attack

Ingress filtering
A domain’s border router drop outgoing packets which
do not have a valid source address for that domain
If universal, could abolish spoofing

IP Traceback
Routers probabilistically tag packets with an identifier
Destination can infer path to true source after receiving
enough packets

91

Summary

Network security is possibly the Internet’s biggest
problem

Preventing Internet from expanding into critical
applications

Host Compromise
Poorly written software
Solutions: better OS security architecture, type-safe
languages, firewalls

Denial-of-Service
No easy solution: DoS can happen at many levels

92

