
CS 3700 
Networks and Distributed Systems

© 2014, Alan MIslove

Lecture 14: Time + Logical Clocks
(Based off slides by Rik Sarkar at University of Edinburgh)

Global time

In practice, we act like there is a global notion of time 
 
 e.g., What time is it?

But, time is relative
Einstein showed speed of light constant for all observers
Leads to Relativity of Simultaneity

Basically, impossible to tell if two events are simultaneous
If events are separated by space
But, if events are causally connected, can preserve order

2

Global time in systems

For human-scale systems, these differences don’t matter
Rarely are we going near the speed of light

But these do come to play in computing systems
Must consider relativity of time when designing systems
E.g., high-frequency trading systems

Need to be able to declare who bought first
Or, need to be able to merge multiple writes to single
object

3

Defining and measuring time
Correcting clocks
NTP
Logical clocks
Vector clocks

4 Outline

Historic clocks

Our units of time date from the Sumerians in 2000BC
Sexagesimal system based on hand counting

Humans used a variety of devices to measure time
Sundials
Astronomical clocks
Candle clocks
Hourglasses

Mechanical clocks developed in medieval ages
Typically maintained by monks (church bell tower)

5

Electronic clocks

First developed in 1920s
Uses carefully shaped quartz crystal
Pass current, counts oscillations

Most oscillate at 32,768/sec
Easy to count in hardware
Small enough to fit (~4mm)

Typical quartz clock quite accurate
Within 15 sec/30 days (6e-6)
Can achieve 1e-7 accuracy in controlled lab conditions
Not good enough for today’s applications

6

Atomic clocks

Based on atomic physics
Cool atoms to near absolute zero
Bombard them with microwaves
Count transitions between energy levels

Most accurate timekeeping devices today
Accurate to within 10-9 seconds per day
E.g., loses 1 second in 30 million years

SI second now defined in terms of atomic oscillations
9,192,631,770 transitions of cesium-133 atom

7

TAI

Atomic clocks used to define a number of time standards

TAI: International Atomic Time
Avg. of 200 atomic clocks, corrected for time dilation

Essentially, a count of the number of seconds passed

8

Measuring real-world time

Originally, each town defined noon locally
Point at which sun highest in the sky

With growth of railroads, this became impractical
Continually have to re-set watches
Hard to set rail schedules

Notion of “time zones” developed
Regions where wall-clock time is the same
Now, need to synchronize clocks

9

GMT, UT1, and UTC

GMT: Greenwich Mean Time
Originally, mean solar time at 0º longitude
This isn’t really “noon” due to Earth’s axial tilt

UT1: Universal Time
Modernized version of GMT
Based on rotation of Earth, ~86,400 seconds/day

UTC: Universal Coordinated Time
UT1 + leap seconds
Minutes can have 59-61 seconds
Since 1972, 25 leap seconds have been introduced

10

Defining and measuring time
Correcting clocks
NTP
Logical clocks
Vector clocks

11 Outline

Correctness

What does it mean for a clock to be correct?
Relative to an “ideal” clock
Clock skew is magnitude, clock drift is difference in rates

Say clock is correct within p if 
 

 (1-p)(t’-t) ≤ H(t’) - H(t) ≤ (1+p)(t’-t) 

(t’-t) True length of interval
H(t’) - H(t) Measured length of interval
(1-p)(t’-t) Smallest acceptable measurement
(1+p)(t’-t) Largest acceptable measurement

Monotonic property: t < t’ ⇒ H(t) < H(t’)

12

Monotonicity

If a clock is running “slow” relative to real time
Can simply re-set the clock to real time
Doesn’t break monotonicity

But, if a clock is running “fast”, what to do?
Re-setting the clock back breaks monotonicity
Imagine programming with the same time occurring
twice

Instead, “slow down” clock
Maintains monotonicity

13

Simple synchronization

If we know message delay T
A sends current time t to B, who sets time to t+T

Typically, don’t know exact delay
May know range on delay min < T < max
B can then set time to t+(max-min)/2
Clocks are then within (max-min)/2 of each other

Can general this protocol to many clocks
Overall accuracy still ~(max-min)

But, don’t generally have any bound on delay

14

Cristian’s method

No assumption of delay bound

A sends request to B of current time
B responds with local time T
A measures RTT
A sets local time to T+RTT/2

Assumes that delay is symmetric
Why?

A can do this many times in a row, use overall min RTT
Rough accuracy is RTT/2 - min, with overall min min

15

A B

RT
T

Defining and measuring time
Correcting clocks
NTP
Logical clocks
Vector clocks

16 Outline

Synchronizing in the real world

Network Time Protocol (NTP) developed in 80s with goals
Keep machines synchronized to UTC
Deal with lengthly losses of connectivity
Enable clients to synchronized frequently (scalable)
Avoid security attacks

NTP deployed widely today
Uses 64-bit value, epoch is 1/1/1900 (rollover in 2036)
LANs: Precision to 1ms
Internet: Precision to 10s of ms

17

NTP Hierarchy

Based on hierarchy of accuracy, called strata
Stratum 0: High-precision atomic clocks
Stratum 1: Hosts directly connected to atomic clocks
Stratum 2: Hosts that run NTP with stratum 1 hosts
Stratum 3: Hosts that run NTP with stratum 2 hosts
…

Stratum x hosts often synch with other stratum x hosts
Provides redundancy

18

NTP strata
19

NTP in practice

Run on UDP port 123

Most Internet hosts support NTP

Accuracy on general Intenet is ~10ms
Up to 1ms on local networks, ideal conditions

Many networks run local NTP servers
E.g., time.ccs.neu.edu

NTP has recently been a vector for DDoS attacks
Best practice is for servers to filter requests outside
local network

20

Defining and measuring time
Correcting clocks
NTP
Logical clocks
Vector clocks

21 Outline

Logical ordering

Goal: Be able to provide some synchronization of events
Recall, never able to do perfectly synchronize clocks

How to deal with this fact in the real world?

Create a new abstraction: Logical ordering
Remove real-world time from equation
Base ordering on causality

Logical clocks are based on the simple principles:
1. Events observed by a single process are ordered
2. Any message must be sent before it is received

22

Example of logical ordering

Each host can order all events it observes
B observes m1 received before m3 sent

Can “interleave” timelines via messages

Cannot make statement about all pairs of events
E.g., m5 send and m1 receive can’t be ordered

23

A

B
C

D

send

send

send send
sendreceive

receive

receive receive

receive
m1 m2

m3

m4 m5

Happened-before relation

Formalize logical clocks via happened-before (→) relation
If e1 precedes e2 on single host, then e1 → e2
If e1 and e2 and send/receive of message, then e1 → e2
e1 → e2 and e2 → e3, then e1 → e3

If neither e1 → e2 nor e2 → e1, then e1 and e2 are concurrent
Say e1 || e2

24

A

B
C

D

send

send

send send
sendreceive

receive

receive receive

receive
m1 m2

m3

m4 m5

Limits of happened-before

Cannot capture external events
Only considers message-passing; phone call?
Two events may be concurrent in our system

If e1 || e2, it does not imply causality
Potential causality is implied
E.g., process may receive message before unrelated event

But, still pretty useful
How to implement logical ordering in a real system?

25

Logical clocks

Lamport created way to create logical clock from ordering

Define logical clock to be a monotonically increasing value
Numeric abstraction
Meaningless value by itself

Each host i maintains internal logical clock Li

Li is incremented after each event
Li is piggy-backed on each message sent
Upon receipt of message with t

Set value to max(Li, t) + 1

26

Example of logical clocks

For each event e, timestamp is longest chain of events
that happened-before e

Certain events cause “skipping” of clock
A’s clock skips from 1 to 5

27

A

B
C

D

m1 m2

m3

m4 m5

1

2
3

4

5

1

2

2

3

4

No reverse implication

We can observe that e1 → e2 ⇒ L(e1) < L(e2)

If e1 happened before e2, then logical clocks ordered

But the reverse is not true
L(e1) < L(e2) ⇏ e1 → e2

In example, L(e) < L(b), but e ↛ b
In fact, e concurrent with all but f

28

A

B
C

1
a

2
b

3
c

4
d

1
e

5
f

Defining and measuring time
Correcting clocks
NTP
Logical clocks
Vector clocks

29 Outline

Vector clocks

Developed to overcome lack of reverse implication
Want L(e1) < L(e2) ⇒ e1 → e2

Processes keep local vector clock Vi
Array of logical clocks of length N (# processes)
Initially [0,0, … 0]

Similar update procedure to logical clocks
Vi[i] is incremented after each event
Vi is piggy-backed on each message sent
Upon receipt of message with vector clock Vk

Vi[x] = max(Vi[x], Vk[x]) + 1, for all x

30

Example of vector clocks

Invariant: 
 
Vi[j] is the number of events in process Pj that happened
before the current state of process Pi

31

A

B
C

D

m1 m2

m3

m4 m5

(1,0,0,0)

(1,1,0,0)
(1,2,0,0)

(1,3,0,0)

(2,3,0,0)

(0,0,1,0)

(0,0,1,1)

(0,0,2,0)

(0,0,2,2)

(1,2,3,0)

m6

(1,2,4,0)

(3,3,4,0)

Comparing vector timestamps

Given two vector timestamps Vi and Vj
Vi = Vj iff Vi[x] = Vj[x] for all x
Vi < Vj iff Vi[x] < Vj[x] for all x

For example, (2,4,1) < (3,5,9)

But, other pairs incomparable
E.g., (2,4,1) and (3,1,7)

As with logical clocks e1 → e2 ⇒ L(e1) < L(e2)

And also L(e1) < L(e2) ⇒ e1 → e2

32

Vector vs. logical clocks

Vector clocks augment logical clocks
Use generalization of same mechanism

Cost: Larger messages, more complexity
Often don’t know total number of processes

But, with both can say when certain events happened before
each other

Also, can extent vector clocks to matrix clocks
Your logical clock + others’

33

