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Global time

In practice, we act like there is a global notion of time 
 
                                 e.g., What time is it? 

But, time is relative 
Einstein showed speed of light constant for all observers 
Leads to Relativity of Simultaneity 

Basically, impossible to tell if two events are simultaneous 
If events are separated by space 
But, if events are causally connected, can preserve order
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Global time in systems

For human-scale systems, these differences don’t matter 
Rarely are we going near the speed of light 

But these do come to play in computing systems 
Must consider relativity of time when designing systems 
E.g., high-frequency trading systems 

Need to be able to declare who bought first 
Or, need to be able to merge multiple writes to single 
object
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Historic clocks

Our units of time date from the Sumerians in 2000BC 
Sexagesimal system based on hand counting 

Humans used a variety of devices to measure time 
Sundials 
Astronomical clocks 
Candle clocks 
Hourglasses 

Mechanical clocks developed in medieval ages 
Typically maintained by monks (church bell tower)
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Electronic clocks

First developed in 1920s 
Uses carefully shaped quartz crystal 
Pass current, counts oscillations 

Most oscillate at 32,768/sec 
Easy to count in hardware 
Small enough to fit (~4mm) 

Typical quartz clock quite accurate 
Within 15 sec/30 days (6e-6) 
Can achieve 1e-7 accuracy in controlled lab conditions 
Not good enough for today’s applications
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Atomic clocks

Based on atomic physics 
Cool atoms to near absolute zero 
Bombard them with microwaves 
Count transitions between energy levels 

Most accurate timekeeping devices today 
Accurate to within 10-9 seconds per day 
E.g., loses 1 second in 30 million years 

SI second now defined in terms of atomic oscillations 
9,192,631,770 transitions of cesium-133 atom
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TAI

Atomic clocks used to define a number of time standards 

TAI:  International Atomic Time 
Avg. of 200 atomic clocks, corrected for time dilation 

Essentially, a count of the number of seconds passed
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Measuring real-world time

Originally, each town defined noon locally 
Point at which sun highest in the sky 

With growth of railroads, this became impractical 
Continually have to re-set watches 
Hard to set rail schedules 

Notion of “time zones” developed 
Regions where wall-clock time is the same 
Now, need to synchronize clocks
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GMT, UT1, and UTC

GMT:  Greenwich Mean Time 
Originally, mean solar time at 0º longitude 
This isn’t really “noon” due to Earth’s axial tilt 

UT1:  Universal Time 
Modernized version of GMT 
Based on rotation of Earth,  ~86,400 seconds/day 

UTC:  Universal Coordinated Time 
UT1 + leap seconds 
Minutes can have 59-61 seconds 
Since 1972, 25 leap seconds have been introduced
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Correctness

What does it mean for a clock to be correct? 
Relative to an “ideal” clock 
Clock skew is magnitude, clock drift is difference in rates 

Say clock is correct within p if 
 

                (1-p)(t’-t) ≤ H(t’) - H(t) ≤ (1+p)(t’-t) 

(t’-t)  True length of interval 
H(t’) - H(t)  Measured length of interval 
(1-p)(t’-t)  Smallest acceptable measurement 
(1+p)(t’-t)  Largest acceptable measurement 

Monotonic property:  t < t’  ⇒ H(t) < H(t’)
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Monotonicity

If a clock is running “slow” relative to real time 
Can simply re-set the clock to real time 
Doesn’t break monotonicity 

But, if a clock is running “fast”, what to do? 
Re-setting the clock back breaks monotonicity 
Imagine programming with the same time occurring 
twice 

Instead, “slow down” clock  
Maintains monotonicity
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Simple synchronization

If we know message delay T 
A sends current time t to B, who sets time to t+T 

Typically, don’t know exact delay 
May know range on delay min < T < max 
B can then set time to t+(max-min)/2 
Clocks are then within (max-min)/2 of each other 

Can general this protocol to many clocks 
Overall accuracy still ~(max-min) 

But, don’t generally have any bound on delay

14



Cristian’s method

No assumption of delay bound 

A sends request to B of current time 
B responds with local time T 
A measures RTT 
A sets local time to T+RTT/2 

Assumes that delay is symmetric 
Why? 

A can do this many times in a row, use overall min RTT 
Rough accuracy is RTT/2 - min, with overall min min
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Synchronizing in the real world

Network Time Protocol (NTP) developed in 80s with goals 
Keep machines synchronized to UTC 
Deal with lengthly losses of connectivity  
Enable clients to synchronized frequently (scalable) 
Avoid security attacks 

NTP deployed widely today 
Uses 64-bit value, epoch is 1/1/1900 (rollover in 2036) 
LANs:  Precision to 1ms 
Internet:  Precision to 10s of ms
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NTP Hierarchy

Based on hierarchy of accuracy, called strata 
Stratum 0:  High-precision atomic clocks 
Stratum 1:  Hosts directly connected to atomic clocks 
Stratum 2:  Hosts that run NTP with stratum 1 hosts 
Stratum 3:  Hosts that run NTP with stratum 2 hosts 
… 

Stratum x hosts often synch with other stratum x hosts 
Provides redundancy
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NTP strata
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NTP in practice

Run on UDP port 123 

Most Internet hosts support NTP 

Accuracy on general Intenet is ~10ms 
Up to 1ms on local networks, ideal conditions 

Many networks run local NTP servers  
E.g., time.ccs.neu.edu 

NTP has recently been a vector for DDoS attacks 
Best practice is for servers to filter requests outside 
local network 
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Logical ordering

Goal:  Be able to provide some synchronization of events 
Recall, never able to do perfectly synchronize clocks 

How to deal with this fact in the real world? 

Create a new abstraction: Logical ordering 
Remove real-world time from equation 
Base ordering on causality 

Logical clocks are based on the simple principles: 
1. Events observed by a single process are ordered 
2. Any message must be sent before it is received
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Example of logical ordering

Each host can order all events it observes 
B observes m1 received before m3 sent 

Can “interleave” timelines via messages 

Cannot make statement about all pairs of events 
E.g., m5 send and m1 receive can’t be ordered
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Happened-before relation

Formalize logical clocks via happened-before (→) relation 
If e1 precedes e2 on single host, then e1 → e2 
If e1 and e2 and send/receive of message, then e1 → e2 
e1 → e2 and e2 → e3, then e1 → e3 

If neither e1 → e2 nor e2 → e1, then e1 and e2 are concurrent 
Say e1 || e2
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Limits of happened-before

Cannot capture external events 
Only considers message-passing; phone call? 
Two events may be concurrent in our system 

If e1 || e2, it does not imply causality 
Potential causality is implied 
E.g., process may receive message before unrelated event 

But, still pretty useful 
How to implement logical ordering in a real system?
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Logical clocks

Lamport created way to create logical clock from ordering 

Define logical clock to be a monotonically increasing value 
Numeric abstraction 
Meaningless value by itself 

Each host i maintains internal logical clock Li 

Li is incremented after each event 
Li  is piggy-backed on each message sent 
Upon receipt of message with t 

Set value to max(Li, t) + 1
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Example of logical clocks

For each event e, timestamp is longest chain of events 
that happened-before e 

Certain events cause “skipping” of clock 
A’s clock skips from 1 to 5
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No reverse implication

We can observe that e1 → e2  ⇒  L(e1) < L(e2) 

If e1 happened before e2, then logical clocks ordered 

But the reverse is not true 
L(e1) < L(e2)  ⇏  e1 → e2 

In example, L(e) < L(b), but e ↛ b 
In fact, e concurrent with all but f
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Vector clocks

Developed to overcome lack of reverse implication 
Want L(e1) < L(e2)  ⇒  e1 → e2 

Processes keep local vector clock Vi 
Array of logical clocks of length N (# processes) 
Initially [0,0, … 0] 

Similar update procedure to logical clocks 
Vi[i] is incremented after each event 
Vi  is piggy-backed on each message sent 
Upon receipt of message with vector clock Vk 

Vi[x] = max(Vi[x], Vk[x]) + 1, for all x
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Example of vector clocks

Invariant: 
 
Vi[j] is the number of events in process Pj that happened 
before the current state of process Pi
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Comparing vector timestamps

Given two vector timestamps Vi and Vj 
Vi = Vj  iff  Vi[x] = Vj[x] for all x 
Vi < Vj  iff  Vi[x] < Vj[x] for all x 

For example, (2,4,1) < (3,5,9) 

But, other pairs incomparable 
E.g., (2,4,1) and (3,1,7)  

As with logical clocks e1 → e2  ⇒  L(e1) < L(e2) 

And also L(e1) < L(e2)  ⇒  e1 → e2
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Vector vs. logical clocks

Vector clocks augment logical clocks 
Use generalization of same mechanism 

Cost:  Larger messages, more complexity 
Often don’t know total number of processes 

But, with both can say when certain events happened before 
each other 

Also, can extent vector clocks to matrix clocks 
Your logical clock + others’

33


