
CS 3700 
Networks and Distributed Systems

© 2014, Alan MIslove

Lecture 13: Distributed Systems
(Based off slides by Rik Sarkar at University of Edinburgh)



Application Layer

Function: 
Implement application using 
network 

Key challenges: 
Scalability 
Fault Tolerance 
Reliability 
Security 
Privacy 
…

2

Application
Presentation

Session
Transport
Network
Data Link
Physical



What are distributed systems?

From Wikipedia: 

Essentially, multiple computers working together 
Computers are connected by a network 
Exchange information (messages) 

System has a common goal

3

A distributed system is a software system in which components located 
on networked computers communicate and coordinate their actions by 

passing messages.



Definitions

No widely-accepted definition, but… 

Distributed systems comprised of hosts or nodes where 
Each node has its own local memory 
Hosts connected via a network 

Originally, requirement was physical distribution 
Today, distributed systems can be on same host 
E.g., VMs on a single host, processes on same machine

4



Networks vs. Distributed Systems

Definition similar to definition of a network 
Distributed system:  A program (or set of programs) 
that use a network to accomplish a goal 
Network:  A system for sending messages 
(information) between hosts 

Thus, distributed system uses a network 
Doesn’t care about network’s implementation 
But must deal with network’s (lack of) guarantees 
Also, network’s naming conventions, etc

5



(Brief) History of distributed systems 
Examples of distributed systems 
Fundamental challenges

6 Outline



History

Distributed systems developed in conjunction with 
networks 

Early applications: 
Remote procedure calls (RPC) 
Remote access (login, telnet) 
Human-level messaging (email) 
Bulletin boards (Usenet)

7



Early example:  Sabre

Sabre was the earliest airline Global Distribution System 
The system that they use at the airports

8



Sabre

American had a central office with cards for each flight 
Agent calls in, worker would mark seat sold on card 

Built a computerized version of the cards 
Disk (drum) with each memory location representing 
number of seats sold on a flight 
Built network connecting various agencies 
Distributed terminals to agencies 

Effect:  Removed human from the loop

9



Sabre network
10



Move towards microcomputers

In the 1980s, personal computers became popular 
Moved away from existing mainframes 

Required development of many distributed systems 
Email 
Web 
DNS 
… 

Scale of networks grew quickly, Internet came to 
dominate

11



Today

Growth of pervasive and mobile computing 
End users connect via a variety of devices, networks 
More challenging to build systems 

Popularity of “cloud computing” 
Essentially, can purchase computation as a commodity 
Many startups don’t own their servers 

All data stored in the cloud 
How do we build secure, reliable systems?

12



(Brief) History of distributed systems 
Examples of distributed systems 
Fundamental challenges

13 Outline



Example 1:  Web systems

Web is a widely popular distributed system 

Has two types of entities: 
Web browsers:  Clients that render web pages 
Web servers:  Machines that send data to clients 

All communication over HTTP

14



Example 2:  Bittorrent

Popular platform for large content distribution 

All clients “equal” 
Collaboratively download data 
Use custom protocol to download 

Robust if any client fails (or is removed)

15



Example 3:  Stock market

Large distributed system 
Many players 
Economic interests not aligned 

All transactions must be executed in-order 
E.g., Facebook IPO 

Transmission delay is a huge concern 
Hedge funds will buy up rack space closer to datacenter 
Can arbitrage millisecond differences in delay

16



(Brief) History of distributed systems 
Examples of distributed systems 
Fundamental challenges 
Design decisions

17 Outline



Challenge 1:  Global knowledge

No host has global knowledge 

Need to use network to exchange state information 
Network capacity is limited; can’t send everything 

Information may be incorrect, out of date, etc 
New information takes time to propagate 
Other things may happen in the meantime 

Fundamental challenge 
How do detect and address inconsistencies?

18



Challenge 2:  Time

Time cannot be measured perfectly 
Hosts have different clocks, skew 
Network can delay/duplicate messages 

How to determine what happened first? 
In a game, which player shot first? 
In a GDS, who bought the last seat on the plane? 

Need to have a more nuanced abstraction of time

19



Challenge 3:  Failures

A distributed system is one in which the failure of a 
computer you didn't even know existed can render your 
own computer unusable. — Leslie Lamport  

Failure is the common case 
As systems get more complex, failure more likely 
Must design systems to tolerate failure 

E.g., in Web systems, what if server fails? 
System need to detect failure, recover

20



Challenge 4:  Scalability

Systems tend to grow over time 
How to handle future users, hosts, networks, etc? 

E.g., in a multiplayer game, each user needs to send 
location to all other users 

O(n2) message complexity 
Will quickly overwhelm real networks 
Can reduce frequency of updates (with implications) 
Or, choose nodes who should update each other

21



Challenge 5:  Security

Distributed systems often have many different entities 
Often not mutually trusting (e.g., stock market) 
Economic incentives for abuse 

Systems often need to provide 
Confidentiality (only intended parties can read) 
Integrity (messages are authentic) 
Availability (system cannot be brought down)

22



Challenge 6:  Openness

Can system be extended/reimplemented? 
I.e., can I develop a new client? 

Requires specification of system/protocol published 
Often requires standards body (IETF, etc) to agree 
Cumbersome process, takes years 

Many corporations simply publish own APIs 

IETF works off of RFC (request for comment) 
Anyone can publish, propose new protocol

23



Challenge 7:  Concurrency

Large, complex systems exist in many places: 
E.g., Web sites replicated across many machines 

Often will have concurrent operations on a single object 
How to ensure object is in consistent state? 
E.g., bank account:  How to ensure I can’t overdraw? 

Solutions fall into many camps: 
Serialization:  Make operations happen in defined order 
Transactions:  Detect conflicts, abort 
Append-only structures:  Deal with conflicts later 
….

24



(Brief) History of distributed systems 
Examples of distributed systems 
Fundamental challenges 
Design decisions

25 Outline



Distributed system architecture

Two primary architectures: 
Client-server: System divided into clients (often 
limited in power, scope, etc) and servers (often more 
powerful, with more system visibility.  Clients send 
requests to servers. 
Peer-to-peer: All hosts are “equal”, or, hosts act as 
both clients and servers.  Peers send requests to each 
other.  More complicated to design, but with potentially 
higher resilience.

26



Messaging interface

Messaging is fundamentally asynchronous 
Client asks network to deliver message 
Waits for a response 

What should the programmer see? 
Synchronous interface:  Thread is “blocked” until a 
message comes back.  Easier to reason about 
Asynchronous interface:  Control returns immediately, 
response may come later.  Programmer has to 
remember all outstanding requests.  Potentially higher 
performance.

27



Naming

Need to be able to refer to hosts/processes 

Naming decisions should reflect system organization 
E.g., with different entities, hierarchal system may be 
appropriate (entities name their own hosts) 

Naming must also consider 
Mobility:  hosts may change locations 
Security:  how do hosts prove who they are? 
Scalability:  how many hosts can a naming system 
support?

28



Rest of the semester

Will explore a few distributed system basics 
Handling failures 
Time/clocks 
Remote procedure calls 
Security 

But, most time spent exploring real system 
Essentially, “case studies” 
Will explore Web, BitTorrent, Bitcoin in depth 
Different points in design space, address problems 
differently

29


