
Lecture 10: Congestion Control

Revised 2/9/2014

CS 3700 
Networks and Distributed Systems

Transport Layer
2

Function:
! Demultiplexing of data streams
Optional functions:
! Creating long lived connections
! Reliable, in-order packet delivery
! Error detection
! Flow and congestion control
Key challenges:
! Detecting and responding to congestion
! Balancing fairness against high utilization

Application

Presentation

Session

Transport

Network

Data Link

Physical

❑ Congestion Control
❑ Evolution of TCP
❑ Problems with TCP

Outline3

What is Congestion?
4

Load on the network is higher than capacity

What is Congestion?
4

Load on the network is higher than capacity
! Capacity is not uniform across networks
■ Modem vs. Cellular vs. Cable vs. Fiber Optics

! There are multiple flows competing for bandwidth
■ Residential cable modem vs. corporate datacenter

! Load is not uniform over time
■ 10pm, Sunday night = Bittorrent Game of Thrones

Why is Congestion Bad?
5

Results in packet loss
! Routers have finite buffers
! Internet traffic is self similar, no buffer can prevent all drops
! When routers get overloaded, packets will be dropped
Practical consequences
! Router queues build up, delay increases
! Wasted bandwidth from retransmissions
! Low network goodput

The Danger of Increasing Load
6

Knee – point after which
! Throughput increases very

slow
! Delay increases fast
In an M/M/1 queue
! Delay = 1/(1 – utilization)
Cliff – point after which
! Throughput ! 0
! Delay ! ∞

Load

Load

G
oo

dp
ut

D
el

ay

Knee Cliff

The Danger of Increasing Load
6

Knee – point after which
! Throughput increases very

slow
! Delay increases fast
In an M/M/1 queue
! Delay = 1/(1 – utilization)
Cliff – point after which
! Throughput ! 0
! Delay ! ∞

Load

Load

G
oo

dp
ut

D
el

ay

Knee Cliff

Ideal point

The Danger of Increasing Load
6

Knee – point after which
! Throughput increases very

slow
! Delay increases fast
In an M/M/1 queue
! Delay = 1/(1 – utilization)
Cliff – point after which
! Throughput ! 0
! Delay ! ∞

Congestion
Collapse

Load

Load

G
oo

dp
ut

D
el

ay

Knee Cliff

Ideal point

Cong. Control vs. Cong. Avoidance
7

Congestion
Collapse

G
oo

dp
ut

Knee Cliff

Load

Cong. Control vs. Cong. Avoidance
7

Congestion
Collapse

G
oo

dp
ut

Knee Cliff

Load

Congestion Avoidance:
Stay left of the knee

Cong. Control vs. Cong. Avoidance
7

Congestion
Collapse

G
oo

dp
ut

Knee Cliff

Load

Congestion Avoidance:
Stay left of the knee

Congestion Control:
Stay left of the cliff

Advertised Window, Revisited
8

Does TCP’s advertised window solve congestion?

Advertised Window, Revisited
8

Does TCP’s advertised window solve congestion?
NO

The advertised window only protects the receiver
A sufficiently fast receiver can max the window
! What if the network is slower than the receiver?
! What if there are other concurrent flows?

Advertised Window, Revisited
8

Does TCP’s advertised window solve congestion?
NO

The advertised window only protects the receiver
A sufficiently fast receiver can max the window
! What if the network is slower than the receiver?
! What if there are other concurrent flows?
Key points
! Window size determines send rate
! Window must be adjusted to prevent congestion collapse

Goals of Congestion Control
9

Goals of Congestion Control
9

1. Adjusting to the bottleneck bandwidth
2. Adjusting to variations in bandwidth
3. Sharing bandwidth between flows
4. Maximizing throughput

General Approaches
10

Do nothing, send packets indiscriminately
! Many packets will drop, totally unpredictable performance
! May lead to congestion collapse

General Approaches
10

Do nothing, send packets indiscriminately
! Many packets will drop, totally unpredictable performance
! May lead to congestion collapse
Reservations
! Pre-arrange bandwidth allocations for flows
! Requires negotiation before sending packets
! Must be supported by the network

General Approaches
10

Do nothing, send packets indiscriminately
! Many packets will drop, totally unpredictable performance
! May lead to congestion collapse
Reservations
! Pre-arrange bandwidth allocations for flows
! Requires negotiation before sending packets
! Must be supported by the network
Dynamic adjustment
! Use probes to estimate level of congestion
! Speed up when congestion is low
! Slow down when congestion increases
! Messy dynamics, requires distributed coordination

General Approaches
10

Do nothing, send packets indiscriminately
! Many packets will drop, totally unpredictable performance
! May lead to congestion collapse
Reservations
! Pre-arrange bandwidth allocations for flows
! Requires negotiation before sending packets
! Must be supported by the network
Dynamic adjustment
! Use probes to estimate level of congestion
! Speed up when congestion is low
! Slow down when congestion increases
! Messy dynamics, requires distributed coordination

TCP Congestion Control
11

Each TCP connection has a window
! Controls the number of unACKed packets
Sending rate is ~ window/RTT
Idea: vary the window size to control the send rate

TCP Congestion Control
11

Each TCP connection has a window
! Controls the number of unACKed packets
Sending rate is ~ window/RTT
Idea: vary the window size to control the send rate
Introduce a congestion window at the sender
! Congestion control is sender-side problem

Congestion Window (cwnd)
12

Limits how much data is in transit
Denominated in bytes

1. wnd = min(cwnd, adv_wnd);
2. effective_wnd = wnd –
 (last_byte_sent – last_byte_acked);

Congestion Window (cwnd)
12

Limits how much data is in transit
Denominated in bytes

1. wnd = min(cwnd, adv_wnd);
2. effective_wnd = wnd –
 (last_byte_sent – last_byte_acked);

last_byte_acked last_byte_sent

wnd

Congestion Window (cwnd)
12

Limits how much data is in transit
Denominated in bytes

1. wnd = min(cwnd, adv_wnd);
2. effective_wnd = wnd –
 (last_byte_sent – last_byte_acked);

last_byte_acked last_byte_sent

wnd

effective_wnd

Two Basic Components
13

1. Detect congestion

Two Basic Components
13

1. Detect congestion
! Packet dropping is most reliably signal
■ Delay-based methods are hard and risky

! How do you detect packet drops? ACKs
■ Timeout after not receiving an ACK
■ Several duplicate ACKs in a row (ignore for now)

Two Basic Components
13

1. Detect congestion
! Packet dropping is most reliably signal
■ Delay-based methods are hard and risky

! How do you detect packet drops? ACKs
■ Timeout after not receiving an ACK
■ Several duplicate ACKs in a row (ignore for now)

Except on
wireless
networks

Two Basic Components
13

1. Detect congestion
! Packet dropping is most reliably signal
■ Delay-based methods are hard and risky

! How do you detect packet drops? ACKs
■ Timeout after not receiving an ACK
■ Several duplicate ACKs in a row (ignore for now)

2. Rate adjustment algorithm
! Modify cwnd
! Probe for bandwidth
! Responding to congestion

Except on
wireless
networks

Rate Adjustment
14

Recall: TCP is ACK clocked
! Congestion = delay = long wait between ACKs
! No congestion = low delay = ACKs arrive quickly

Rate Adjustment
14

Recall: TCP is ACK clocked
! Congestion = delay = long wait between ACKs
! No congestion = low delay = ACKs arrive quickly
Basic algorithm
! Upon receipt of ACK: increase cwnd
■ Data was delivered, perhaps we can send faster
■ cwnd growth is proportional to RTT

! On loss: decrease cwnd
■ Data is being lost, there must be congestion

Rate Adjustment
14

Recall: TCP is ACK clocked
! Congestion = delay = long wait between ACKs
! No congestion = low delay = ACKs arrive quickly
Basic algorithm
! Upon receipt of ACK: increase cwnd
■ Data was delivered, perhaps we can send faster
■ cwnd growth is proportional to RTT

! On loss: decrease cwnd
■ Data is being lost, there must be congestion

Question: increase/decrease functions to use?

Utilization and Fairness
15

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Utilization and Fairness
15

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Utilization and Fairness
15

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Utilization and Fairness
15

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Max
throughput for

flow 2

Zero
throughput for

flow 1

Utilization and Fairness
15

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Max
throughput for

flow 1

Zero
throughput for

flow 2

Utilization and Fairness
15

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

tLess than full
utilization

Utilization and Fairness
15

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

tLess than full
utilization

More than full
utilization

(congestion)

Utilization and Fairness
15

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Equal
throughput
(fairness)

Utilization and Fairness
15

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t
Ideal point

• Max efficiency
• Perfect fairness

Multiplicative Increase, Additive Decrease
16

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Additive Decrease
16

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Additive Decrease
16

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Additive Decrease
16

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Additive Decrease
16

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Additive Decrease
16

Not stable!

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Additive Decrease
16

Not stable!
Veers away from
fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Additive Decrease
17

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Additive Decrease
17

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Additive Decrease
17

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Additive Decrease
17

Stable

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Additive Decrease
17

Stable
But does not
converge to
fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Multiplicative Decrease
18

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Multiplicative Decrease
18

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Multiplicative Decrease
18

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Multiplicative Decrease
18

Stable

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Multiplicative Increase, Multiplicative Decrease
18

Stable
But does not
converge to
fairness

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Multiplicative Decrease
19

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Multiplicative Decrease
19

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Multiplicative Decrease
19

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Multiplicative Decrease
19

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Multiplicative Decrease
19

Converges to
stable and fair
cycle

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Multiplicative Decrease
19

Converges to
stable and fair
cycle

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Additive Increase, Multiplicative Decrease
19

Converges to
stable and fair
cycle
Symmetric around
y=x

Flow 1 Throughput

Fl
ow

 2
 T

hr
ou

gh
pu

t

Implementing Congestion Control

Maintains three variables:
! cwnd: congestion window
! adv_wnd: receiver advertised window
! ssthresh: threshold size (used to update cwnd)
For sending, use: wnd = min(cwnd, adv_wnd)

20

20

Implementing Congestion Control

Maintains three variables:
! cwnd: congestion window
! adv_wnd: receiver advertised window
! ssthresh: threshold size (used to update cwnd)
For sending, use: wnd = min(cwnd, adv_wnd)
Two phases of congestion control
1. Slow start (cwnd < ssthresh)
■ Probe for bottleneck bandwidth

2. Congestion avoidance (cwnd >= ssthresh)
■ AIMD

20

20

Slow Start

Goal: reach knee quickly
Upon starting (or restarting) a connection
! cwnd =1
! ssthresh = adv_wnd
! Each time a segment is ACKed, cwnd++

21

Load

G
oo

dp
ut

Knee Cliff

Slow Start

Goal: reach knee quickly
Upon starting (or restarting) a connection
! cwnd =1
! ssthresh = adv_wnd
! Each time a segment is ACKed, cwnd++
Continues until…
! ssthresh is reached
! Or a packet is lost

21

Load

G
oo

dp
ut

Knee Cliff

Slow Start

Goal: reach knee quickly
Upon starting (or restarting) a connection
! cwnd =1
! ssthresh = adv_wnd
! Each time a segment is ACKed, cwnd++
Continues until…
! ssthresh is reached
! Or a packet is lost
Slow Start is not actually slow
! cwnd increases exponentially

21

Load

G
oo

dp
ut

Knee Cliff

Slow Start Example
22

cwnd = 1

Slow Start Example
22

1
cwnd = 1

cwnd = 2

Slow Start Example
22

1

2
3

cwnd = 1

cwnd = 2

cwnd = 4

Slow Start Example
22

1

2
3

4
5
6
7

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

Slow Start Example
22

1

2
3

4
5
6
7

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd grows rapidly
Slows down when…
! cwnd >= ssthresh
! Or a packet drops

Congestion Avoidance

AIMD mode
ssthresh is lower-bound guess about location of the knee
If cwnd >= ssthresh then  
 each time a segment is ACKed 
 increment cwnd by 1/cwnd (cwnd += 1/cwnd).
So cwnd is increased by one only if all segments have
been acknowledged

23

Congestion Avoidance Example
24

0

3

6

9

12

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Round Trip Times

cw
nd

 (i
n

se
gm

en
ts

)

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

ssthresh = 8

Congestion Avoidance Example
24

0

3

6

9

12

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Round Trip Times

cw
nd

 (i
n

se
gm

en
ts

)

Slow
Start

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

ssthresh = 8

Congestion Avoidance Example
24

0

3

6

9

12

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

Round Trip Times

cw
nd

 (i
n

se
gm

en
ts

)

Slow
Start

cwnd >= ssthresh

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd = 9

ssthresh = 8

TCP Pseudocode

Initially: 
cwnd = 1;  
ssthresh = adv_wnd;

New ack received:  
if (cwnd < ssthresh)  
 /* Slow Start*/ 
 cwnd = cwnd + 1;  
else  
 /* Congestion Avoidance */  
 cwnd = cwnd + 1/cwnd;

Timeout: 
/* Multiplicative decrease */  
ssthresh = cwnd/2;  
cwnd = 1;

25

The Big Picture

Time

cw
nd

26

ssthresh

The Big Picture

Time

cw
nd

Slow Start

26

ssthresh

The Big Picture

Time

cw
nd

Timeout

Slow Start

26

ssthresh

The Big Picture

Time

cw
nd

Timeout

Slow Start

26

ssthresh

The Big Picture

Time

cw
nd

Timeout

Slow Start

Congestion
Avoidance

26

ssthresh

The Big Picture

Time

cw
nd

Timeout

Slow Start

Congestion
Avoidance

26

ssthresh

The Big Picture

Time

cw
nd

Timeout

Slow Start

Congestion
Avoidance

26

ssthresh

❑ Congestion Control
❑ Evolution of TCP
❑ Problems with TCP

Outline27

The Evolution of TCP
28

Thus far, we have discussed TCP Tahoe
! Original version of TCP
However, TCP was invented in 1974!
! Today, there are many variants of TCP

The Evolution of TCP
28

Thus far, we have discussed TCP Tahoe
! Original version of TCP
However, TCP was invented in 1974!
! Today, there are many variants of TCP
Early, popular variant: TCP Reno
! Tahoe features, plus…
! Fast retransmit
! Fast recovery

TCP Reno: Fast Retransmit
29

Problem: in Tahoe, if
segment is lost, there is a
long wait until the RTO
Reno: retransmit after 3
duplicate ACKs

1

2
3

4
5
6
7

cwnd = 1

cwnd = 2

cwnd = 4

2

3
4

4
4
4

TCP Reno: Fast Retransmit
29

Problem: in Tahoe, if
segment is lost, there is a
long wait until the RTO
Reno: retransmit after 3
duplicate ACKs

1

2
3

4
5
6
7

cwnd = 1

cwnd = 2

cwnd = 4

2

3
4

4
4
4

3 Duplicate
ACKs

TCP Reno: Fast Recovery

After a fast-retransmit set cwnd to ssthresh/2
! i.e. don’t reset cwnd to 1
! Avoid unnecessary return to slow start
! Prevents expensive timeouts
But when RTO expires still do cwnd = 1
! Return to slow start, same as Tahoe
! Indicates packets aren’t being delivered at all
! i.e. congestion must be really bad

30

Fast Retransmit and Fast Recovery
31

Time

cw
nd

ssthresh

Fast Retransmit and Fast Recovery
31

Time

cw
nd

Slow Start

ssthresh

Fast Retransmit and Fast Recovery
31

Time

cw
nd

Timeout

Slow Start

ssthresh

Fast Retransmit and Fast Recovery
31

Time

cw
nd

Timeout

Slow Start

ssthresh

Fast Retransmit and Fast Recovery
31

Time

cw
nd

Timeout

Slow Start

Congestion Avoidance
Fast Retransmit/Recovery

ssthresh

Fast Retransmit and Fast Recovery
31

Time

cw
nd

Timeout

Slow Start

Congestion Avoidance
Fast Retransmit/Recovery

ssthresh

Timeout

Fast Retransmit and Fast Recovery

At steady state, cwnd oscillates around the optimal
window size

31

Time

cw
nd

Timeout

Slow Start

Congestion Avoidance
Fast Retransmit/Recovery

ssthresh

Timeout

Fast Retransmit and Fast Recovery

At steady state, cwnd oscillates around the optimal
window size
TCP always forces packet drops

31

Time

cw
nd

Timeout

Slow Start

Congestion Avoidance
Fast Retransmit/Recovery

ssthresh

Timeout

Many TCP Variants…
32

Tahoe: the original
! Slow start with AIMD
! Dynamic RTO based on RTT estimate
Reno: fast retransmit and fast recovery

Many TCP Variants…
32

Tahoe: the original
! Slow start with AIMD
! Dynamic RTO based on RTT estimate
Reno: fast retransmit and fast recovery
NewReno: improved fast retransmit
! Each duplicate ACK triggers a retransmission
! Problem: >3 out-of-order packets causes pathological

retransmissions

Many TCP Variants…
32

Tahoe: the original
! Slow start with AIMD
! Dynamic RTO based on RTT estimate
Reno: fast retransmit and fast recovery
NewReno: improved fast retransmit
! Each duplicate ACK triggers a retransmission
! Problem: >3 out-of-order packets causes pathological

retransmissions
Vegas: delay-based congestion avoidance

Many TCP Variants…
32

Tahoe: the original
! Slow start with AIMD
! Dynamic RTO based on RTT estimate
Reno: fast retransmit and fast recovery
NewReno: improved fast retransmit
! Each duplicate ACK triggers a retransmission
! Problem: >3 out-of-order packets causes pathological

retransmissions
Vegas: delay-based congestion avoidance
And many, many, many more…

TCP in the Real World
33

What are the most popular variants today?
! Key problem: TCP performs poorly on high bandwidth-delay

product networks (like the modern Internet)
! Compound TCP (Windows)
■ Based on Reno
■ Uses two congestion windows: delay based and loss based
■ Thus, it uses a compound congestion controller

! TCP CUBIC (Linux)
■ Enhancement of BIC (Binary Increase Congestion Control)
■ Window size controlled by cubic function
■ Parameterized by the time T since the last dropped packet

High Bandwidth-Delay Product
34

Key Problem: TCP performs poorly when
! The capacity of the network (bandwidth) is large
! The delay (RTT) of the network is large
! Or, when bandwidth * delay is large
■ b * d = maximum amount of in-flight data in the network
■ a.k.a. the bandwidth-delay product

High Bandwidth-Delay Product
34

Key Problem: TCP performs poorly when
! The capacity of the network (bandwidth) is large
! The delay (RTT) of the network is large
! Or, when bandwidth * delay is large
■ b * d = maximum amount of in-flight data in the network
■ a.k.a. the bandwidth-delay product

Why does TCP perform poorly?
! Slow start and additive increase are slow to converge
! TCP is ACK clocked
■ i.e. TCP can only react as quickly as ACKs are received
■ Large RTT ! ACKs are delayed ! TCP is slow to react

Poor Performance of TCP Reno CC
35

Bottleneck Bandwidth (Mb/s)

Avg
.
TCP
Utili
zati
on 50 flows in both directions

Buffer = BW x Delay
RTT = 80 ms

Round Trip Delay (sec)

Avg
.
TCP
Utili
zati
on

50 flows in both directions
Buffer = BW x Delay

BW = 155 Mb/s

Goals
36

Fast window growth
! Slow start and additive increase are too slow when

bandwidth is large
! Want to converge more quickly

Goals
36

Fast window growth
! Slow start and additive increase are too slow when

bandwidth is large
! Want to converge more quickly
Maintain fairness with other TCP varients
! Window growth cannot be too aggressive

Goals
36

Fast window growth
! Slow start and additive increase are too slow when

bandwidth is large
! Want to converge more quickly
Maintain fairness with other TCP varients
! Window growth cannot be too aggressive
Improve RTT fairness
! TCP Tahoe/Reno flows are not fair when RTTs vary widely

Goals
36

Fast window growth
! Slow start and additive increase are too slow when

bandwidth is large
! Want to converge more quickly
Maintain fairness with other TCP varients
! Window growth cannot be too aggressive
Improve RTT fairness
! TCP Tahoe/Reno flows are not fair when RTTs vary widely
Simple implementation

Compound TCP Implementation
37

Default TCP implementation in Windows
Key idea: split cwnd into two separate windows
! Traditional, loss-based window
! New, delay-based window

Compound TCP Implementation
37

Default TCP implementation in Windows
Key idea: split cwnd into two separate windows
! Traditional, loss-based window
! New, delay-based window
wnd = min(cwnd + dwnd, adv_wnd)
! cwnd is controlled by AIMD
! dwnd is the delay window

Compound TCP Implementation
37

Default TCP implementation in Windows
Key idea: split cwnd into two separate windows
! Traditional, loss-based window
! New, delay-based window
wnd = min(cwnd + dwnd, adv_wnd)
! cwnd is controlled by AIMD
! dwnd is the delay window
Rules for adjusting dwnd:
! If RTT is increasing, decrease dwnd (dwnd >= 0)
! If RTT is decreasing, increase dwnd
! Increase/decrease are proportional to the rate of change

Compound TCP Example
38

Time

cw
nd

Compound TCP Example
38

Time

cw
nd

Timeout

Slow Start

Compound TCP Example
38

Time

cw
nd

Timeout

Slow Start

High
RTT

Compound TCP Example
38

Time

cw
nd

Timeout

Slow Start

High
RTT

Compound TCP Example
38

Time

cw
nd

Timeout

Slow Start

Slower
cwnd

growth

High
RTT

Compound TCP Example
38

Time

cw
nd

Timeout

Slow Start

Slower
cwnd

growth

Low
RTT

High
RTT

Compound TCP Example
38

Time

cw
nd

Timeout

Slow Start

Slower
cwnd

growth

Low
RTT

High
RTT

Compound TCP Example
38

Time

cw
nd

Timeout

Slow Start

Slower
cwnd

growth

Faster
cwnd

growth

Low
RTT

High
RTT

Compound TCP Example
38

Time

cw
nd

Timeout

Slow Start

Timeout
Slower
cwnd

growth

Faster
cwnd

growth

Low
RTT

High
RTT

Compound TCP Example

Aggressiveness corresponds to changes in RTT

38

Time

cw
nd

Timeout

Slow Start

Timeout
Slower
cwnd

growth

Faster
cwnd

growth

Low
RTT

High
RTT

Compound TCP Example

Aggressiveness corresponds to changes in RTT
Advantages: fast ramp up, more fair to flows with different RTTs

38

Time

cw
nd

Timeout

Slow Start

Timeout
Slower
cwnd

growth

Faster
cwnd

growth

Low
RTT

High
RTT

Compound TCP Example

Aggressiveness corresponds to changes in RTT
Advantages: fast ramp up, more fair to flows with different RTTs
Disadvantage: must estimate RTT, which is very challenging

38

Time

cw
nd

Timeout

Slow Start

Timeout
Slower
cwnd

growth

Faster
cwnd

growth

TCP CUBIC Implementation
39

Default TCP implementation in Linux
Replace AIMD with cubic function

! B ! a constant fraction for multiplicative increase
! T ! time since last packet drop
! W_max ➔ cwnd when last packet dropped

TCP CUBIC Example
40

Time

cw
nd

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

cwndmax

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

cwndmax

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

cwndmax

Fast ramp
up

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

cwndmax

Fast ramp
up

Stable
Region

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

cwndmax

Fast ramp
up

Stable
Region

Slowly accelerate to
probe for bandwidth

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

TCP CUBIC Example
40

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

TCP CUBIC Example

Less wasted bandwidth due to fast ramp up

40

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

TCP CUBIC Example

Less wasted bandwidth due to fast ramp up
Stable region and slow acceleration help maintain fairness
! Fast ramp up is more aggressive than additive increase
! To be fair to Tahoe/Reno, CUBIC needs to be less aggressive

40

Time

cw
nd

Timeout

Slow Start

CUBIC Function

cwndmax

Simulations of CUBIC Flows
41

Simulations of CUBIC Flows
41

CUBIC

CUBIC

RenoReno

Deploying TCP Variants

TCP assumes all flows employ TCP-like congestion control
! TCP-friendly or TCP-compatible
! Violated by UDP :(

42

Deploying TCP Variants

TCP assumes all flows employ TCP-like congestion control
! TCP-friendly or TCP-compatible
! Violated by UDP :(
If new congestion control algorithms are developed, they
must be TCP-friendly

42

Deploying TCP Variants

TCP assumes all flows employ TCP-like congestion control
! TCP-friendly or TCP-compatible
! Violated by UDP :(
If new congestion control algorithms are developed, they
must be TCP-friendly
Be wary of unforeseen interactions
! Variants work well with others like themselves
! Different variants competing for resources may trigger unfair,

pathological behavior

42

TCP Perspectives

Cerf/Kahn
! Provide flow control
! Congestion handled by retransmission

43

TCP Perspectives

Cerf/Kahn
! Provide flow control
! Congestion handled by retransmission
Jacobson / Karels
! Need to avoid congestion
! RTT estimates critical
! Queuing theory can help

43

TCP Perspectives

Cerf/Kahn
! Provide flow control
! Congestion handled by retransmission
Jacobson / Karels
! Need to avoid congestion
! RTT estimates critical
! Queuing theory can help
Winstein/Balakrishnan
! TCP is maximizing an objective function

■ Fairness/efficiency
■ Throughput/delay

! Let a machine pick the best fit for your environment
43

❑ Congestion Control
❑ Evolution of TCP
❑ Problems with TCP

Outline44

Common TCP Options
45

Options

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

Common TCP Options
45

Options

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

Common TCP Options
45

Window scaling

Options

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

Common TCP Options
45

Window scaling
SACK: selective acknowledgement

Options

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

Common TCP Options
45

Window scaling
SACK: selective acknowledgement
Maximum segment size (MSS)

Options

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

Common TCP Options
45

Window scaling
SACK: selective acknowledgement
Maximum segment size (MSS)
Timestamp

Options

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen

Window Scaling
46

Problem: the advertised window is only 16-bits
! Effectively caps the window at 65536B, 64KB
! Example: 1.5Mbps link, 513ms RTT

Window Scaling
46

Problem: the advertised window is only 16-bits
! Effectively caps the window at 65536B, 64KB
! Example: 1.5Mbps link, 513ms RTT

(1.5Mbps * 0.513s) = 94KB
64KB / 94KB = 68% of maximum possible speed

Window Scaling
46

Problem: the advertised window is only 16-bits
! Effectively caps the window at 65536B, 64KB
! Example: 1.5Mbps link, 513ms RTT

(1.5Mbps * 0.513s) = 94KB
64KB / 94KB = 68% of maximum possible speed

Solution: introduce a window scaling value
! wnd = adv_wnd << wnd_scale;
! Maximum shift is 14 bits, 1GB maximum window

SACK: Selective Acknowledgment
47

8
9
10
11

4
5
6
7

SACK: Selective Acknowledgment
47

Problem: duplicate ACKs only tell us
about 1 missing packet
! Multiple rounds of dup ACKs needed to

fill all holes 8
9
10
11

4

4
5
6
7

4

4
4
4

SACK: Selective Acknowledgment
47

Problem: duplicate ACKs only tell us
about 1 missing packet
! Multiple rounds of dup ACKs needed to

fill all holes
Solution: selective ACK
! Include received, out-of-order

sequence numbers in TCP header
! Explicitly tells the sender about holes in

the sequence

8
9
10
11

4

4
5
6
7

4

4
4
4

Other Common Options
48

Maximum segment size (MSS)
! Essentially, what is the hosts MTU
! Saves on path discovery overhead

Other Common Options
48

Maximum segment size (MSS)
! Essentially, what is the hosts MTU
! Saves on path discovery overhead
Timestamp
! When was the packet sent (approximately)?
! Used to prevent sequence number wraparound
! PAWS algorithm

Issues with TCP
49

The vast majority of Internet traffic is TCP
However, many issues with the protocol
! Lack of fairness
! Synchronization of flows
! Poor performance with small flows
! Really poor performance on wireless networks
! Susceptibility to denial of service

Fairness
50

Problem: TCP throughput depends on RTT

Fairness
50

Problem: TCP throughput depends on RTT

Fairness
50

Problem: TCP throughput depends on RTT

1 Mbps 1 Mbps
1 Mbps1 Mbps

1 Mbps

Fairness
50

Problem: TCP throughput depends on RTT

1 Mbps 1 Mbps
1 Mbps1 Mbps

1 Mbps

Fairness
50

Problem: TCP throughput depends on RTT

1 Mbps 1 Mbps
1 Mbps1 Mbps

1 Mbps

100 ms

Fairness
50

Problem: TCP throughput depends on RTT

1 Mbps 1 Mbps
1 Mbps1 Mbps

1 Mbps

100 ms

1000 ms

Fairness
50

Problem: TCP throughput depends on RTT

1 Mbps 1 Mbps
1 Mbps1 Mbps

1 Mbps

100 ms

1000 ms

Fairness
50

Problem: TCP throughput depends on RTT

1 Mbps 1 Mbps
1 Mbps1 Mbps

1 Mbps

100 ms

1000 ms

ACK clocking makes TCP inherently unfair
Possible solution: maintain a separate delay window
! Implemented by Microsoft’s Compound TCP

Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd

Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd

cw
nd

Oscillating, but high overall
utilization

Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd

cw
nd

cw
nd

Oscillating, but high overall
utilization

In reality, flows synchronize

Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd

cw
nd

cw
nd

Oscillating, but high overall
utilization

In reality, flows synchronize

One flow causes all
flows to drop

packets

Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd

cw
nd

cw
nd

Oscillating, but high overall
utilization

In reality, flows synchronize

One flow causes all
flows to drop

packets

Periodic lulls of low
utilization

Small Flows
52

Problem: TCP is biased against short flows
! 1 RTT wasted for connection setup (SYN, SYN/ACK)
! cwnd always starts at 1

Small Flows
52

Problem: TCP is biased against short flows
! 1 RTT wasted for connection setup (SYN, SYN/ACK)
! cwnd always starts at 1
Vast majority of Internet traffic is short flows
! Mostly HTTP transfers, <100KB
! Most TCP flows never leave slow start!

Small Flows
52

Problem: TCP is biased against short flows
! 1 RTT wasted for connection setup (SYN, SYN/ACK)
! cwnd always starts at 1
Vast majority of Internet traffic is short flows
! Mostly HTTP transfers, <100KB
! Most TCP flows never leave slow start!
Proposed solutions (driven by Google):
! Increase initial cwnd to 10
! TCP Fast Open: use cryptographic hashes to identify

receivers, eliminate the need for three-way handshake

Wireless Networks
53

Problem: Tahoe and Reno assume loss = congestion
! True on the WAN, bit errors are very rare
! False on wireless, interference is very common

Wireless Networks
53

Problem: Tahoe and Reno assume loss = congestion
! True on the WAN, bit errors are very rare
! False on wireless, interference is very common
TCP throughput ~ 1/sqrt(drop rate)
! Even a few interference drops can kill performance

Wireless Networks
53

Problem: Tahoe and Reno assume loss = congestion
! True on the WAN, bit errors are very rare
! False on wireless, interference is very common
TCP throughput ~ 1/sqrt(drop rate)
! Even a few interference drops can kill performance
Possible solutions:
! Break layering, push data link info up to TCP
! Use delay-based congestion detection (TCP Vegas)
! Explicit congestion notification (ECN)

Denial of Service
54

Problem: TCP connections require state
! Initial SYN allocates resources on the server
! State must persist for several minutes (RTO)

Denial of Service
54

Problem: TCP connections require state
! Initial SYN allocates resources on the server
! State must persist for several minutes (RTO)
SYN flood: send enough SYNs to a server to allocate all
memory/meltdown the kernel

Denial of Service
54

Problem: TCP connections require state
! Initial SYN allocates resources on the server
! State must persist for several minutes (RTO)
SYN flood: send enough SYNs to a server to allocate all
memory/meltdown the kernel
Solution: SYN cookies
! Idea: don’t store initial state on the server
! Securely insert state into the SYN/ACK packet
! Client will reflect the state back to the server

SYN Cookies
55

Sequence Number
0

SYN Cookies
55

Sequence NumberTimestamp
310 5

MSS
8

Crypto Hash of Client IP & Port

SYN Cookies
55

Did the client really send me a SYN recently?
! Timestamp: freshness check
! Cryptographic hash: prevents spoofed packets

Sequence NumberTimestamp
310 5

MSS
8

Crypto Hash of Client IP & Port

SYN Cookies
55

Did the client really send me a SYN recently?
! Timestamp: freshness check
! Cryptographic hash: prevents spoofed packets
Maximum segment size (MSS)
! Usually stated by the client during initial SYN
! Server should store this value…
! Reflect the clients value back through them

Sequence NumberTimestamp
310 5

MSS
8

Crypto Hash of Client IP & Port

SYN Cookies in Practice
56

Advantages
! Effective at mitigating SYN floods
! Compatible with all TCP versions
! Only need to modify the server
! No need for client support

SYN Cookies in Practice
56

Advantages
! Effective at mitigating SYN floods
! Compatible with all TCP versions
! Only need to modify the server
! No need for client support
Disadvantages
! MSS limited to 3 bits, may be smaller than clients actual MSS
! Server forgets all other TCP options included with the client’s

SYN
■ SACK support, window scaling, etc.

