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Transport Layer
2

Function: 
! Demultiplexing of data streams 
Optional functions: 
! Creating long lived connections 
! Reliable, in-order packet delivery 
! Error detection 
! Flow and congestion control 
Key challenges: 
! Detecting and responding to congestion 
! Balancing fairness against high utilization
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❑ Congestion Control 
❑ Evolution of TCP 
❑ Problems with TCP
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What is Congestion?
4

Load on the network is higher than capacity
! Capacity is not uniform across networks
■ Modem vs. Cellular vs. Cable vs. Fiber Optics

! There are multiple flows competing for bandwidth
■ Residential cable modem vs. corporate datacenter

! Load is not uniform over time
■ 10pm, Sunday night = Bittorrent Game of Thrones



Why is Congestion Bad?
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Results in packet loss 
! Routers have finite buffers 
! Internet traffic is self similar, no buffer can prevent all drops 
! When routers get overloaded, packets will be dropped 
Practical consequences 
! Router queues build up, delay increases 
! Wasted bandwidth from retransmissions 
! Low network goodput
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Knee – point after which  
! Throughput increases very 

slow 
! Delay increases fast 
In an M/M/1 queue 
! Delay = 1/(1 – utilization) 
Cliff – point after which 
! Throughput ! 0 
! Delay ! ∞
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Load

Congestion Avoidance: 
Stay left of the knee

Congestion Control: 
Stay left of the cliff
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Advertised Window, Revisited
8

Does TCP’s advertised window solve congestion?
NO

The advertised window only protects the receiver
A sufficiently fast receiver can max the window
! What if the network is slower than the receiver?
! What if there are other concurrent flows?
Key points
! Window size determines send rate
! Window must be adjusted to prevent congestion collapse 
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Goals of Congestion Control
9

1. Adjusting to the bottleneck bandwidth 
2. Adjusting to variations in bandwidth 
3. Sharing bandwidth between flows 
4. Maximizing throughput
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General Approaches
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Do nothing, send packets indiscriminately
! Many packets will drop, totally unpredictable performance
! May lead to congestion collapse
Reservations
! Pre-arrange bandwidth allocations for flows
! Requires negotiation before sending packets
! Must be supported by the network
Dynamic adjustment
! Use probes to estimate level of congestion
! Speed up when congestion is low
! Slow down when congestion increases
! Messy dynamics, requires distributed coordination
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Sending rate is ~ window/RTT
Idea: vary the window size to control the send rate



TCP Congestion Control
11

Each TCP connection has a window
! Controls the number of unACKed packets
Sending rate is ~ window/RTT
Idea: vary the window size to control the send rate
Introduce a congestion window at the sender
! Congestion control is sender-side problem
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Limits how much data is in transit 
Denominated in bytes 

1. wnd = min(cwnd, adv_wnd); 
2. effective_wnd = wnd – 
  (last_byte_sent – last_byte_acked);
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Limits how much data is in transit 
Denominated in bytes 

1. wnd = min(cwnd, adv_wnd); 
2. effective_wnd = wnd – 
  (last_byte_sent – last_byte_acked);
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Two Basic Components
13

1. Detect congestion
! Packet dropping is most reliably signal
■ Delay-based methods are hard and risky

! How do you detect packet drops? ACKs
■ Timeout after not receiving an ACK
■ Several duplicate ACKs in a row (ignore for now)

2. Rate adjustment algorithm
! Modify cwnd
! Probe for bandwidth
! Responding to congestion

Except on 
wireless 
networks
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Rate Adjustment
14

Recall: TCP is ACK clocked
! Congestion = delay = long wait between ACKs
! No congestion = low delay = ACKs arrive quickly
Basic algorithm
! Upon receipt of ACK: increase cwnd
■ Data was delivered, perhaps we can send faster
■ cwnd growth is proportional to RTT

! On loss: decrease cwnd
■ Data is being lost, there must be congestion

Question: increase/decrease functions to use?
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• Max efficiency 
• Perfect fairness
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Multiplicative Increase, Additive Decrease
16

Not stable!
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Additive Increase, Multiplicative Decrease
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Converges to 
stable and fair 
cycle
Symmetric around 
y=x
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Implementing Congestion Control

Maintains three variables:
! cwnd:  congestion window
! adv_wnd: receiver advertised window 
! ssthresh:  threshold size (used to update cwnd)
For sending, use: wnd = min(cwnd, adv_wnd)

20
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Implementing Congestion Control

Maintains three variables:
! cwnd:  congestion window
! adv_wnd: receiver advertised window 
! ssthresh:  threshold size (used to update cwnd)
For sending, use: wnd = min(cwnd, adv_wnd)
Two phases of congestion control
1. Slow start (cwnd < ssthresh)
■ Probe for bottleneck bandwidth

2. Congestion avoidance (cwnd >= ssthresh)
■ AIMD

20
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Slow Start

Goal: reach knee quickly
Upon starting (or restarting) a connection
! cwnd =1
! ssthresh = adv_wnd
! Each time a segment is ACKed, cwnd++
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Slow Start

Goal: reach knee quickly
Upon starting (or restarting) a connection
! cwnd =1
! ssthresh = adv_wnd
! Each time a segment is ACKed, cwnd++
Continues until…
! ssthresh is reached
! Or a packet is lost
Slow Start is not actually slow
! cwnd increases exponentially
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Slow Start Example
22
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cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 8

cwnd grows rapidly 
Slows down when… 
! cwnd >= ssthresh 
! Or a packet drops



Congestion Avoidance

AIMD mode 
ssthresh is lower-bound guess about location of the knee 
If cwnd >= ssthresh then  
 each time a segment is ACKed 
 increment cwnd by 1/cwnd  (cwnd += 1/cwnd). 
So cwnd is increased by one only if all segments have 
been acknowledged

23
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TCP Pseudocode

Initially: 
cwnd = 1;  
ssthresh = adv_wnd;

New ack received:  
if (cwnd < ssthresh)  
      /* Slow Start*/ 
      cwnd = cwnd + 1;  
else  
      /* Congestion Avoidance */  
      cwnd = cwnd + 1/cwnd;

Timeout: 
/* Multiplicative decrease */  
ssthresh = cwnd/2;  
cwnd = 1;

25
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❑ Congestion Control 
❑ Evolution of TCP 
❑ Problems with TCP
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The Evolution of TCP
28

Thus far, we have discussed TCP Tahoe
! Original version of TCP
However, TCP was invented in 1974!
! Today, there are many variants of TCP
Early, popular variant: TCP Reno
! Tahoe features, plus…
! Fast retransmit
! Fast recovery
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Problem: in Tahoe, if 
segment is lost, there is a 
long wait until the RTO 
Reno: retransmit after 3 
duplicate ACKs

1

2
3

4
5
6
7

cwnd = 1

cwnd = 2

cwnd = 4

2

3
4

4
4
4

3 Duplicate 
ACKs



TCP Reno: Fast Recovery

After a fast-retransmit set cwnd to ssthresh/2 
! i.e. don’t reset cwnd to 1 
! Avoid unnecessary return to slow start 
! Prevents expensive timeouts 
But when RTO expires still do cwnd = 1 
! Return to slow start, same as Tahoe 
! Indicates packets aren’t being delivered at all 
! i.e. congestion must be really bad

30
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Fast Retransmit and Fast Recovery

At steady state, cwnd oscillates around the optimal 
window size
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Fast Retransmit and Fast Recovery

At steady state, cwnd oscillates around the optimal 
window size
TCP always forces packet drops
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Many TCP Variants…
32

Tahoe: the original
! Slow start with AIMD
! Dynamic RTO based on RTT estimate
Reno: fast retransmit and fast recovery
NewReno: improved fast retransmit
! Each duplicate ACK triggers a retransmission
! Problem: >3 out-of-order packets causes pathological 

retransmissions
Vegas: delay-based congestion avoidance
And many, many, many more…



TCP in the Real World
33

What are the most popular variants today? 
! Key problem: TCP performs poorly on high bandwidth-delay 

product networks (like the modern Internet) 
! Compound TCP (Windows) 
■ Based on Reno 
■ Uses two congestion windows: delay based and loss based 
■ Thus, it uses a compound congestion controller 

! TCP CUBIC (Linux) 
■ Enhancement of BIC (Binary Increase Congestion Control) 
■ Window size controlled by cubic function 
■ Parameterized by the time T since the last dropped packet
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Key Problem: TCP performs poorly when
! The capacity of the network (bandwidth) is large
! The delay (RTT) of the network is large
! Or, when bandwidth * delay is large
■ b * d = maximum amount of in-flight data in the network
■ a.k.a. the bandwidth-delay product



High Bandwidth-Delay Product
34

Key Problem: TCP performs poorly when
! The capacity of the network (bandwidth) is large
! The delay (RTT) of the network is large
! Or, when bandwidth * delay is large
■ b * d = maximum amount of in-flight data in the network
■ a.k.a. the bandwidth-delay product

Why does TCP perform poorly?
! Slow start and additive increase are slow to converge
! TCP is ACK clocked
■ i.e. TCP can only react as quickly as ACKs are received
■ Large RTT ! ACKs are delayed ! TCP is slow to react



Poor Performance of TCP Reno CC
35

Bottleneck Bandwidth (Mb/s)

Avg
. 
TCP 
Utili
zati
on 50 flows in both directions 

Buffer = BW x Delay 
RTT = 80 ms

Round Trip Delay (sec)

Avg
. 
TCP 
Utili
zati
on

50 flows in both directions 
Buffer = BW x Delay 

BW = 155 Mb/s
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Goals
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Fast window growth
! Slow start and additive increase are too slow when 

bandwidth is large
! Want to converge more quickly
Maintain fairness with other TCP varients
! Window growth cannot be too aggressive
Improve RTT fairness
! TCP Tahoe/Reno flows are not fair when RTTs vary widely
Simple implementation
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Compound TCP Implementation
37

Default TCP implementation in Windows
Key idea: split cwnd into two separate windows
! Traditional, loss-based window
! New, delay-based window
wnd = min(cwnd + dwnd, adv_wnd)
! cwnd is controlled by AIMD
! dwnd is the delay window
Rules for adjusting dwnd:
! If RTT is increasing, decrease dwnd (dwnd >= 0)
! If RTT is decreasing, increase dwnd
! Increase/decrease are proportional to the rate of change
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Advantages: fast ramp up, more fair to flows with different RTTs
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Compound TCP Example

Aggressiveness corresponds to changes in RTT
Advantages: fast ramp up, more fair to flows with different RTTs
Disadvantage: must estimate RTT, which is very challenging

38

Time

cw
nd

Timeout

Slow Start

Timeout
Slower 
cwnd 

growth

Faster 
cwnd 

growth



TCP CUBIC Implementation
39

Default TCP implementation in Linux 
Replace AIMD with cubic function 

! B ! a constant fraction for multiplicative increase 
! T ! time since last packet drop 
! W_max ➔ cwnd when last packet dropped
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TCP CUBIC Example

Less wasted bandwidth due to fast ramp up
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TCP CUBIC Example

Less wasted bandwidth due to fast ramp up
Stable region and slow acceleration help maintain fairness 
! Fast ramp up is more aggressive than additive increase 
! To be fair to Tahoe/Reno, CUBIC needs to be less aggressive
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Deploying TCP Variants

TCP assumes all flows employ TCP-like congestion control
! TCP-friendly or TCP-compatible
! Violated by UDP :(
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Deploying TCP Variants

TCP assumes all flows employ TCP-like congestion control
! TCP-friendly or TCP-compatible
! Violated by UDP :(
If new congestion control algorithms are developed, they 
must be TCP-friendly
Be wary of unforeseen interactions
! Variants work well with others like themselves
! Different variants competing for resources may trigger unfair, 

pathological behavior

42



TCP Perspectives

Cerf/Kahn
! Provide flow control
! Congestion handled by retransmission
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TCP Perspectives

Cerf/Kahn
! Provide flow control
! Congestion handled by retransmission
Jacobson / Karels
! Need to avoid congestion
! RTT estimates critical
! Queuing theory can help
Winstein/Balakrishnan
! TCP is maximizing an objective function

■ Fairness/efficiency
■ Throughput/delay

! Let a machine pick the best fit for your environment
43



❑ Congestion Control 
❑ Evolution of TCP 
❑ Problems with TCP

Outline44
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Common TCP Options
45

Window scaling
SACK: selective acknowledgement
Maximum segment size (MSS)
Timestamp

Options

Destination Port
0 16 31

Sequence Number
Source Port

Acknowledgement Number
Advertised Window

Urgent Pointer
Flags

Checksum

4

HLen
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Window Scaling
46

Problem: the advertised window is only 16-bits
! Effectively caps the window at 65536B, 64KB
! Example: 1.5Mbps link, 513ms RTT

(1.5Mbps * 0.513s) = 94KB
64KB / 94KB = 68% of maximum possible speed

Solution: introduce a window scaling value
! wnd = adv_wnd << wnd_scale;
! Maximum shift is 14 bits, 1GB maximum window
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SACK: Selective Acknowledgment
47

Problem: duplicate ACKs only tell us 
about 1 missing packet 
! Multiple rounds of dup ACKs needed to 

fill all holes
Solution: selective ACK 
! Include received, out-of-order 

sequence numbers in TCP header 
! Explicitly tells the sender about holes in 

the sequence

8
9
10
11

4

4
5
6
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4

4
4
4
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Maximum segment size (MSS)
! Essentially, what is the hosts MTU
! Saves on path discovery overhead



Other Common Options
48

Maximum segment size (MSS)
! Essentially, what is the hosts MTU
! Saves on path discovery overhead
Timestamp
! When was the packet sent (approximately)?
! Used to prevent sequence number wraparound
! PAWS algorithm



Issues with TCP
49

The vast majority of Internet traffic is TCP 
However, many issues with the protocol 
! Lack of fairness 
! Synchronization of flows 
! Poor performance with small flows 
! Really poor performance on wireless networks 
! Susceptibility to denial of service
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Fairness
50

Problem: TCP throughput depends on RTT

1 Mbps 1 Mbps
1 Mbps1 Mbps

1 Mbps

100 ms

1000 ms

ACK clocking makes TCP inherently unfair 
Possible solution: maintain a separate delay window 
! Implemented by Microsoft’s Compound TCP



Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd



Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd

cw
nd

Oscillating, but high overall 
utilization



Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd

cw
nd

cw
nd

Oscillating, but high overall 
utilization

In reality, flows synchronize



Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd

cw
nd

cw
nd

Oscillating, but high overall 
utilization

In reality, flows synchronize

One flow causes all 
flows to drop 

packets



Synchronization of Flows

Ideal bandwidth sharing

51

cw
nd

cw
nd

cw
nd

Oscillating, but high overall 
utilization

In reality, flows synchronize

One flow causes all 
flows to drop 

packets

Periodic lulls of low 
utilization
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Small Flows
52

Problem: TCP is biased against short flows
! 1 RTT wasted  for connection setup (SYN, SYN/ACK)
! cwnd always starts at 1
Vast majority of Internet traffic is short flows
! Mostly HTTP transfers, <100KB
! Most TCP flows never leave slow start!
Proposed solutions (driven by Google):
! Increase initial cwnd to 10
! TCP Fast Open: use cryptographic hashes to identify 

receivers, eliminate the need for three-way handshake
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Wireless Networks
53

Problem: Tahoe and Reno assume loss = congestion
! True on the WAN, bit errors are very rare
! False on wireless, interference is very common
TCP throughput ~ 1/sqrt(drop rate)
! Even a few interference drops can kill performance
Possible solutions:
! Break layering, push data link info up to TCP
! Use delay-based congestion detection (TCP Vegas)
! Explicit congestion notification (ECN)



Denial of Service
54

Problem: TCP connections require state
! Initial SYN allocates resources on the server
! State must persist for several minutes (RTO)



Denial of Service
54

Problem: TCP connections require state
! Initial SYN allocates resources on the server
! State must persist for several minutes (RTO)
SYN flood: send enough SYNs to a server to allocate all 
memory/meltdown the kernel



Denial of Service
54

Problem: TCP connections require state
! Initial SYN allocates resources on the server
! State must persist for several minutes (RTO)
SYN flood: send enough SYNs to a server to allocate all 
memory/meltdown the kernel
Solution: SYN cookies
! Idea: don’t store initial state on the server
! Securely insert state into the SYN/ACK packet
! Client will reflect the state back to the server
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! Timestamp: freshness check 
! Cryptographic hash: prevents spoofed packets
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SYN Cookies
55

Did the client really send me a SYN recently? 
! Timestamp: freshness check 
! Cryptographic hash: prevents spoofed packets
Maximum segment size (MSS) 
! Usually stated by the client during initial SYN 
! Server should store this value… 
! Reflect the clients value back through them

Sequence NumberTimestamp
310 5

MSS
8

Crypto Hash of Client IP & Port
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SYN Cookies in Practice
56

Advantages
! Effective at mitigating SYN floods
! Compatible with all TCP versions
! Only need to modify the server
! No need for client support
Disadvantages
! MSS limited to 3 bits, may be smaller than clients actual MSS
! Server forgets all other TCP options included with the client’s 

SYN
■ SACK support, window scaling, etc.


