
CS 3700
Networks and Distributed Systems

Lecture 1: Logistics, Networking
Programming, Overview

❑ Course Logistics
❑ Networking Overview
❑ Intro to Network Programming

Outline2

Hello!
3

Welcome to CS 3700
! Are you in the right classroom?
! Okay, good.

Who am I?
! Professor Alan Mislove
! amislove@ccs.neu.edu
! West Village H 250
! Office Hours: 4:30-5:30pm Mondays

Why Take This Course?
4

How many of you have checked your e-mail, FB, texts…

Why Take This Course?
4

How many of you have checked your e-mail, FB, texts…
! Today?

Why Take This Course?
4

How many of you have checked your e-mail, FB, texts…
! Today?
! In the past hour?

Why Take This Course?
4

How many of you have checked your e-mail, FB, texts…
! Today?
! In the past hour?
! Since I started talking?

Networks and dist. systems are ubiquitous
5

Touch every part of our daily life
! Web search
! Social networking
! Watching movies
! Ordering merchandise
! Wasting time

Networks and dist. systems are ubiquitous
5

Touch every part of our daily life
! Web search
! Social networking
! Watching movies
! Ordering merchandise
! Wasting time

Networks and dist. systems are ubiquitous
5

Touch every part of our daily life
! Web search
! Social networking
! Watching movies
! Ordering merchandise
! Wasting time

Networks and dist. systems are ubiquitous
5

Touch every part of our daily life
! Web search
! Social networking
! Watching movies
! Ordering merchandise
! Wasting time

Networks and dist. systems are ubiquitous
5

Touch every part of our daily life
! Web search
! Social networking
! Watching movies
! Ordering merchandise
! Wasting time

Networks and dist. systems are ubiquitous
5

Touch every part of our daily life
! Web search
! Social networking
! Watching movies
! Ordering merchandise
! Wasting time

Networks and dist. systems are ubiquitous
6

Networking is one of the most critical topics in CS
! There would be no…
■ Big Data
■ Cloud
■ Apps or Mobile Computing

! … without networks

Goals
7

Fundamental understanding of networking and systems
! All the way from bits on a wire…
! … across the ever-evolving Internet…
! … to a complex distributed application

Focus on software and protocols
! Not hardware
! Minimal theory

Project-centric, hands on experience
! Real projects, protocols, etc

Online Resources
8

http://www.ccs.neu.edu/~amislove/cs3700/spring15

Class forum is on Piazza
! Sign up today!
! Install their iPhone/Android app

When in doubt, post to Piazza
! Piazza is preferable to email
! Use #hashtags (#homework1, #lecture2, #project3, etc.)

Teaching Style
9

I am a networking and systems researcher
! Things make sense to me that may not make sense to you
! I talk fast if nobody stops me

Solution: ask questions!
! Seriously, ask questions
! Standing up here in silence is very awkward
! I will stand here until you answer my questions

Help me learn your names
! Say your name before each question

Textbook
10

Two books, both optional
! Computer Networks: A Systems Approach
! Distributed Systems: Concepts and Design

Workload
11

Projects (5) 1%, 12%, 15%, 12%, 15%
Homeworks (10) 1.5% each

Midterm 12.5%
Final 12.5%

Participation 5%

Projects
12

This course is project-centric
! Designed to give you real networking experience
! Start early!
! Seriously, start early!

5 projects
! Due at 11:59:59pm on specified date
! Use turn-in scripts to submit your code, documentation, etc.
! Working code is paramount

Project Logistics
13

Languages
! You may choose the language for (most of) the projects
■ Code must compile on the CCIS Linux machines

Project 0 is released now, due next week

Project questions?
! Post them on Piazza!

Project Groups
14

Projects will be completed in groups of two
! Unless we have odd numbers…

Partner selection
! Pick whoever you want
! You may switch partners between projects
! Do not complain to me about your lazy partner
■ Hey, you picked them

Can’t find a partner?
! Post a message on Piazza!

Late Policy
15

Each student is given 4 slip days that they can use at any
time to extend a deadline
! You don’t need to ask me, just turn-in stuff late
! All group members must have unused slip days
■ i.e. if one member has zero slip days left, the whole group is late

Assignments are due at 11:59:59, no exceptions
! 1 second late = 1 hour late = 1 day late
! 20% off per day late

Exams
16

Midterm and Final
! 1-2 hours, in class
! Midterm on networking, final on distributed systems
! The final will not be cumulative

All exams are:
! Closed book, closed notes, leave the laptop at home
! You may have a 1-page double-sided “cheat sheet”
! And use a calculator

Cheating
17

Do not do it
! Seriously, don’t make me say it again
Cheating is an automatic zero
! Will be referred to the university for discipline and possible

expulsion
Project code must be original
! You and your groupmates only
■ Unless we give you starter code, obviously

! StackOverflow/Quora are not your friends
! If you have questions about an online resource, ask me

Questions?18

❑ Course Logistics
❑ Networking Overview
❑ Intro to Network Programming

Outline19

What is a Comm. Network?
20

What is a Comm. Network?
20

A communications network is a network of links and nodes
arranged so that messages may be passed from one part

of the network to another

What is a Comm. Network?
20

A communications network is a network of links and nodes
arranged so that messages may be passed from one part

of the network to another

What are nodes and links?
! People and roads
! Telephones and switches
! Computers and routers

What is a Comm. Network?
20

A communications network is a network of links and nodes
arranged so that messages may be passed from one part

of the network to another

What are nodes and links?
! People and roads
! Telephones and switches
! Computers and routers
What is a message?
! Information

What is a Comm. Network?
20

A communications network is a network of links and nodes
arranged so that messages may be passed from one part

of the network to another

What are nodes and links?
! People and roads
! Telephones and switches
! Computers and routers
What is a message?
! Information

Networks are key for:
• Speed

• Distance

Networks are Fundamental
21

Networks are Fundamental
21

Smoke
Signals!

Networks are Old
22

2400 BC: courier networks in Egypt
550 BC: postal service invented in Persia

Networks are Old
22

2400 BC: courier networks in Egypt
550 BC: postal service invented in Persia

Problems:
• Speed

• Reliability

• Security

Towards Electric Communication
23

1837: Telegraph invented by Samuel Morse
! Distance: 10 miles
! Speed: 10 words per minute
! In use until 1985!

Towards Electric Communication
23

1837: Telegraph invented by Samuel Morse
! Distance: 10 miles
! Speed: 10 words per minute
! In use until 1985!
Key challenge: how to encode information?
! Originally used unary encoding

A • B •• C ••• D •••• E •••••

Towards Electric Communication
23

1837: Telegraph invented by Samuel Morse
! Distance: 10 miles
! Speed: 10 words per minute
! In use until 1985!
Key challenge: how to encode information?
! Originally used unary encoding

A • B •• C ••• D •••• E •••••
! Next generation: binary encoding

A •– B –••• C –•–• D –•• E •

Towards Electric Communication
23

1837: Telegraph invented by Samuel Morse
! Distance: 10 miles
! Speed: 10 words per minute
! In use until 1985!
Key challenge: how to encode information?
! Originally used unary encoding

A • B •• C ••• D •••• E •••••
! Next generation: binary encoding

A •– B –••• C –•–• D –•• E •

Higher compression =
faster speeds

Telephony
24

1876 – Alexander Graham Bell invents the telephone

Telephony
24

1876 – Alexander Graham Bell invents the telephone
Key challenge: how to scale the network?
! Originally, all phones were directly connected
■ O(n2) complexity; n*(n–1)/2

Telephony
24

1876 – Alexander Graham Bell invents the telephone
Key challenge: how to scale the network?
! Originally, all phones were directly connected
■ O(n2) complexity; n*(n–1)/2

! 1878: Switching

Telephony
24

1876 – Alexander Graham Bell invents the telephone
Key challenge: how to scale the network?
! Originally, all phones were directly connected
■ O(n2) complexity; n*(n–1)/2

! 1878: Switching

Telephony
24

1876 – Alexander Graham Bell invents the telephone
Key challenge: how to scale the network?
! Originally, all phones were directly connected
■ O(n2) complexity; n*(n–1)/2

! 1878: Switching

Telephony
24

1876 – Alexander Graham Bell invents the telephone
Key challenge: how to scale the network?
! Originally, all phones were directly connected
■ O(n2) complexity; n*(n–1)/2

! 1878: Switching
! 1937: Trunk lines + multiplexing

Telephony
24

1876 – Alexander Graham Bell invents the telephone
Key challenge: how to scale the network?
! Originally, all phones were directly connected
■ O(n2) complexity; n*(n–1)/2

! 1878: Switching
! 1937: Trunk lines + multiplexing

Advantages

• Easy to use

• Switching mitigates complexity

•Makes cable management tractable

Problems

•Manual switching

• 1918: cross country call took 15 minutes to set up

Growth of the Telephone Network
25

1881: Twisted pair for local loops
1885: AT&T formed
1892: Automatic telephone switches
1903: 3 million telephones in the US
1915: First transcontinental cable
1927: First transatlantic cable
1937: first round-the-world call
1946: National numbering plan

Crazy idea: Packet switching
26

Telephone networks are circuit switched
! Each call reserves resources end-to-end
! Provides excellent quality of service
Problems

Crazy idea: Packet switching
26

Telephone networks are circuit switched
! Each call reserves resources end-to-end
! Provides excellent quality of service
Problems
! Resource intense (what if the circuit is idle?)
! Complex network components (per circuit state, security)

Crazy idea: Packet switching
26

Telephone networks are circuit switched
! Each call reserves resources end-to-end
! Provides excellent quality of service
Problems
! Resource intense (what if the circuit is idle?)
! Complex network components (per circuit state, security)
Packet switching
! No connection state, network is store-and-forward
! Minimal network assumptions
! Statistical multiplexing gives high overall utilization

The World’s Most Successful Computer Science
Research Project
27

History of the Internet
28

1961: Kleinrock @ MIT: packet-switched network
1962: Licklider’s vision of Galactic Network
1965: Roberts connects computers over phone line
1967: Roberts publishes vision of ARPANET
1969: BBN installs first InterfaceMsgProcessor at UCLA
1970: Network Control Protocol (NCP)
1972: Public demonstration of ARPANET
1972: Kahn @ DARPA advocates Open Architecture
1972: Vint Cerf @ Stanford writes TCP

The 1960s
29

The 1960s
29

1971
30

1973
31

1973
31

Growing Pains
32

Problem: early networks used incompatible protocols

Kahn’s Ground Rules
33

1. Each network is independent, cannot be forced to change
2. Best-effort communication (i.e. no guarantees)
3. Routers connect networks
4. No global control

Kahn’s Ground Rules
33

1. Each network is independent, cannot be forced to change
2. Best-effort communication (i.e. no guarantees)
3. Routers connect networks
4. No global control

Principles behind the development of IP
Led to the Internet as we know it
Internet is still structured as independent networks

The Birth of Routing
34

The Birth of Routing
34

Trivia

• Kahn believed that there would
only be ~20 networks.
• He was way off.
•Why?

35

2000

36

2006

37

2009

More Internet History
38

1974: Cerf and Kahn paper on TCP (IP kept separate)
1980: TCP/IP adopted as defense standard
1983: ARPANET and MILNET split
1983: Global NCP to TCP/IP flag day
198x: Internet melts down due to congestion
1986: Van Jacobson saves the Internet (BSD TCP)
1987: NSFNET merges with other networks
1988: Deering and Cheriton propose multicast
199x: QoS rises and falls, ATM rises and falls
1994: NSF backbone dismantled, private backbone
1999-present: The Internet boom and bust … and boom
2007: Release of iPhone, rise of Mobile Internet

More Internet History
38

1974: Cerf and Kahn paper on TCP (IP kept separate)
1980: TCP/IP adopted as defense standard
1983: ARPANET and MILNET split
1983: Global NCP to TCP/IP flag day
198x: Internet melts down due to congestion
1986: Van Jacobson saves the Internet (BSD TCP)
1987: NSFNET merges with other networks
1988: Deering and Cheriton propose multicast
199x: QoS rises and falls, ATM rises and falls
1994: NSF backbone dismantled, private backbone
1999-present: The Internet boom and bust … and boom
2007: Release of iPhone, rise of Mobile Internet

What is next?

Internet Applications Over Time
39

1972: Email
1973: Telnet – remote access to computing
1982: DNS – “phonebook” of the Internet
1985: FTP – remote file access
1989: NFS – remote file systems
1991: The World Wide Web (WWW) goes public
1995: SSH – secure remote shell access
1995-1997: Instant messaging (ICQ, AIM)
1998: Google
1999: Napster, birth of P2P
2001: Bittorrent
2004: Facebook
2005: YouTube
2007: The iPhone

Internet Applications Over Time
39

1972: Email
1973: Telnet – remote access to computing
1982: DNS – “phonebook” of the Internet
1985: FTP – remote file access
1989: NFS – remote file systems
1991: The World Wide Web (WWW) goes public
1995: SSH – secure remote shell access
1995-1997: Instant messaging (ICQ, AIM)
1998: Google
1999: Napster, birth of P2P
2001: Bittorrent
2004: Facebook
2005: YouTube
2007: The iPhone

Invented by Shawn
Fanning at NEU

Internet Applications Over Time
39

1972: Email
1973: Telnet – remote access to computing
1982: DNS – “phonebook” of the Internet
1985: FTP – remote file access
1989: NFS – remote file systems
1991: The World Wide Web (WWW) goes public
1995: SSH – secure remote shell access
1995-1997: Instant messaging (ICQ, AIM)
1998: Google
1999: Napster, birth of P2P
2001: Bittorrent
2004: Facebook
2005: YouTube
2007: The iPhone

Internet Applications Over Time
39

1972: Email
1973: Telnet – remote access to computing
1982: DNS – “phonebook” of the Internet
1985: FTP – remote file access
1989: NFS – remote file systems
1991: The World Wide Web (WWW) goes public
1995: SSH – secure remote shell access
1995-1997: Instant messaging (ICQ, AIM)
1998: Google
1999: Napster, birth of P2P
2001: Bittorrent
2004: Facebook
2005: YouTube
2007: The iPhone

What is next?

Takeaways
40

Communication is fundamental to human nature

Takeaways
40

Communication is fundamental to human nature
Key concepts have existed for a long time
! Speed/bandwidth
! Latency
! Switching
! Packets vs. circuits

! Encoding
! Cable management
! Multiplexing
! Routing

Takeaways
40

Communication is fundamental to human nature
Key concepts have existed for a long time
! Speed/bandwidth
! Latency
! Switching
! Packets vs. circuits
The Internet has changed the world
! Promise of free ($) and free (freedom) communication
! Shrunk the world

! Encoding
! Cable management
! Multiplexing
! Routing

Takeaways
40

Communication is fundamental to human nature
Key concepts have existed for a long time
! Speed/bandwidth
! Latency
! Switching
! Packets vs. circuits
The Internet has changed the world
! Promise of free ($) and free (freedom) communication
! Shrunk the world
What made the Internet so successful? Stay tuned!

! Encoding
! Cable management
! Multiplexing
! Routing

❑ Course Logistics
❑ Networking Overview
❑ Intro to Network Programming

Outline41

Socket Programming
42

Goal: familiarize yourself with socket programming
! Why am I presenting C sockets?
! Because C sockets are the de-facto standard for networking

APIs

Socket Programming
42

Goal: familiarize yourself with socket programming
! Why am I presenting C sockets?
! Because C sockets are the de-facto standard for networking

APIs
Project 0: Implement a semi-trivial protocol
! We will have a server set up for you
! There may be chances for extra credit ;)

C Sockets
43

Socket API since 1983
! Berkeley Sockets
! BSD Sockets (debuted with BSD 4.2)
! Unix Sockets (originally included with AT&T Unix)
! Posix Sockets (slight modifications)
Original interface of TCP/IP
! All other socket APIs based on C sockets

Clients and Servers
44

A fundamental problem: rendezvous
! One or more parties want to provide a service
! One or more parties want to use the service
! How do you get them together?

Clients and Servers
44

A fundamental problem: rendezvous
! One or more parties want to provide a service
! One or more parties want to use the service
! How do you get them together?
Solution: client-server architecture
! Client: initiator of communication
! Server: responder
! At least one side has to wait for the other
■ Service provider (server) sits and waits
■ Clients locates servers, initiates contact
■ Use well-known semantic names for location (DNS)

Key Differences

Clients
Execute on-demand
Unprivileged
Simple
(Usually) sequential
Not performance
sensitive

Servers
Always-on
Privileged
Complex
(Massively) concurrent
High performance
Scalable

45

Similarities
46

Share common protocols
! Application layer
! Transport layer
! Network layer
Both rely on APIs for network access

Sockets
47

Basic network abstraction: the socket

Sockets
47

Basic network abstraction: the socket

Socket: an object that allows reading/writing from a
network interface
In Unix, sockets are just file descriptors
! read() and write() both work on sockets
! Caution: socket calls are blocking

C Socket API Overview

Clients
1. gethostbyname()
2. socket()
3. connect()
4. write() / send()
5. read() / recv()
6. close()

Servers
1. socket()
2. bind()
3. listen()
4. while (whatever) {
5. accept()
6. read() / recv()
7. write() / send()
8. close()
9. }
10. close()

48

C Socket API Overview

Clients
1. gethostbyname()
2. socket()
3. connect()
4. write() / send()
5. read() / recv()
6. close()

Servers
1. socket()
2. bind()
3. listen()
4. while (whatever) {
5. accept()
6. read() / recv()
7. write() / send()
8. close()
9. }
10. close()

48

int socket(int, int, int)
49

Most basic call, used by clients and servers
Get a new socket
Parameters
! int domain: a constant, usually PF_INET
! int type: a constant, usually SOCK_STREAM or SOCK_DGRAM

■ SOCK_STREAM means TCP
■ SOCK_DGRAM means UDP

! int protocol: usually 0 (zero)
Return: new file descriptor, -1 on error
Many other constants are available
! Why so many options?

int socket(int, int, int)
49

Most basic call, used by clients and servers
Get a new socket
Parameters
! int domain: a constant, usually PF_INET
! int type: a constant, usually SOCK_STREAM or SOCK_DGRAM

■ SOCK_STREAM means TCP
■ SOCK_DGRAM means UDP

! int protocol: usually 0 (zero)
Return: new file descriptor, -1 on error
Many other constants are available
! Why so many options?

The C socket API is extensible.
• The Internet isn’t the only network domain
• TCP/UDP aren’t the only transport protocols
• In theory, transport protocols may have different

dialects

int bind(int, struct sockaddr *, int)
50

Used by servers to associate a socket to a network
interface and a port
! Why is this necessary?
Parameters:
! int sockfd: an unbound socket
! struct sockaddr * my_addr: the desired IP address and port
! int addrlen: sizeof(struct sockaddr)
Return: 0 on success, -1 on failure
! Why might bind() fail?

int bind(int, struct sockaddr *, int)
50

Used by servers to associate a socket to a network
interface and a port
! Why is this necessary?
Parameters:
! int sockfd: an unbound socket
! struct sockaddr * my_addr: the desired IP address and port
! int addrlen: sizeof(struct sockaddr)
Return: 0 on success, -1 on failure
! Why might bind() fail?

• Each machine may have multiple network interfaces
• Example: Wifi and Ethernet in your laptop
• Example: Cellular and Bluetooth in your phone

• Each network interface has its own IP address
• We’ll talk about ports next…

int bind(int, struct sockaddr *, int)
50

Used by servers to associate a socket to a network
interface and a port
! Why is this necessary?
Parameters:
! int sockfd: an unbound socket
! struct sockaddr * my_addr: the desired IP address and port
! int addrlen: sizeof(struct sockaddr)
Return: 0 on success, -1 on failure
! Why might bind() fail?

Port Numbers
51

Port Numbers
51

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?

Port Numbers
51

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?

TCP/UDP port field is
16-bits wide

Port Numbers
51

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?
Ports <1024 are reserved
! Only privileged processes (e.g. superuser) may access
! Why?
! Does this cause security issues?

Port Numbers
51

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?
Ports <1024 are reserved
! Only privileged processes (e.g. superuser) may access
! Why?
! Does this cause security issues?• In olden times, all important apps used low

port numbers
• Examples: IMAP, POP, HTTP, SSH, FTP
• This rule is no longer useful

Port Numbers
51

Basic mechanism for multiplexing applications per host
! 65,535 ports available
! Why?
Ports <1024 are reserved
! Only privileged processes (e.g. superuser) may access
! Why?
! Does this cause security issues?
“I tried to open a port and got an error”
! Port collision: only one app per port per host
! Dangling sockets…

Dangling Sockets
52

Common error: bind fails with “already in use” error
OS kernel keeps sockets alive in memory after close()
! Usually a one minute timeout
! Why?

Dangling Sockets
52

Common error: bind fails with “already in use” error
OS kernel keeps sockets alive in memory after close()
! Usually a one minute timeout
! Why?

• Closing a TCP socket is a multi-step process
• Involves contacting the remote machine
• “Hey, this connection is closing”
• Remote machine must acknowledge the closing
• All this book keeping takes time

Dangling Sockets
52

Common error: bind fails with “already in use” error
OS kernel keeps sockets alive in memory after close()
! Usually a one minute timeout
! Why?

Dangling Sockets
52

Common error: bind fails with “already in use” error
OS kernel keeps sockets alive in memory after close()
! Usually a one minute timeout
! Why?
Allowing socket reuse

int yes=1;
if (setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int))
 == -1) { perror("setsockopt"); exit(1); }

struct sockaddr
53

Structure for storing naming information
! But, different networks have different naming conventions
! Example: IPv4 (32-bit addresses) vs. IPv6 (64-bit addresses)

struct sockaddr
53

Structure for storing naming information
! But, different networks have different naming conventions
! Example: IPv4 (32-bit addresses) vs. IPv6 (64-bit addresses)
In practice, use more specific structure implementation

1. struct sockaddr_in my_addr;
2. memset(&my_addr, 0, sizeof(sockaddr_in));
3. my_addr.sin_family = htons(AF_INET);
4. my_addr.sin_port = htons(MyAwesomePort);
5. my_addr.sin_addr.s_addr = inet_addr("10.12.110.57");

htons(), htonl(), ntohs(), ntohl()
54

Little Endian vs. Big Endian
! Not a big deal as long as data stays local
! What about when hosts communicate over networks?

htons(), htonl(), ntohs(), ntohl()
54

Little Endian vs. Big Endian
! Not a big deal as long as data stays local
! What about when hosts communicate over networks?
Network byte order
! Standardized to Big Endian
! Be careful: x86 is Little Endian
Functions for converting host order to network order
! h to n s – host to network short (16 bits)
! h to n l – host to network long (32 bits)
! n to h * – the opposite

Binding Shortcuts
55

If you don’t care about the port
! my_addr.sin_port = htons(0);
! Chooses a free port at random
! This is rarely the behavior you want

Binding Shortcuts
55

If you don’t care about the port
! my_addr.sin_port = htons(0);
! Chooses a free port at random
! This is rarely the behavior you want
If you don’t care about the IP address
! my_addr.sin_addr.s_addr = htonl(INADDR_ANY);
! INADDR_ANY == 0
! Meaning: don’t bind to a specific IP
! Traffic on any interface will reach the server
■ Assuming its on the right port

! This is usually the behavior you want

int listen(int, int)
56

Put a socket into listen mode
! Used on the server side
! Wait around for a client to connect()
Parameters
! int sockfd: the socket
! int backlog: length of the pending connection queue
■ New connections wait around until you accept() them
■ Just set this to a semi-large number, e.g. 1000

Return: 0 on success, -1 on error

int accept(int, void *, int *)
57

Accept an incoming connection on a socket
Parameters
! int sockfd: the listen()ing socket
! void * addr: pointer to an empty struct sockaddr
■ Clients IP address and port number go here
■ In practice, use a struct sockaddr_in

! int * addrlen: length of the data in addr
■ In practice, addrlen == sizeof(struct sockaddr_in)

Return: a new socket for the client, or -1 on error
! Why?

int accept(int, void *, int *)
57

Accept an incoming connection on a socket
Parameters
! int sockfd: the listen()ing socket
! void * addr: pointer to an empty struct sockaddr
■ Clients IP address and port number go here
■ In practice, use a struct sockaddr_in

! int * addrlen: length of the data in addr
■ In practice, addrlen == sizeof(struct sockaddr_in)

Return: a new socket for the client, or -1 on error
! Why?

• You don’t want to consume your listen() socket
• Otherwise, how would you serve more clients?
• Closing a client connection shouldn’t close the server

close(int sockfd)
58

Close a socket
! No more sending or receiving
shutdown(int sockfd, int how)
! Partially close a socket
■ how = 0; // no more receiving
■ how = 1; // no more sending
■ how = 2; // just like close()

! Note: shutdown() does not free the file descriptor
! Still need to close() to free the file descriptor

C Socket API Overview

Clients
1. gethostbyname()
2. socket()
3. connect()
4. write() / send()
5. read() / recv()
6. close()

Servers
1. socket()
2. bind()
3. listen()
4. while (whatever) {
5. accept()
6. read() / recv()
7. write() / send()
8. close()
9. }
10. close()

59

struct * gethostbyname(char *)
60

Returns information about a given host
Parameters
! const char * name: the domain name or IP address of a host
! Examples: “www.google.com”, “10.137.4.61”
Return: pointer to a hostent structure, 0 on failure
! Various fields, most of which aren’t important

1. struct hostent * h = gethostname(“www.google.com”);
2. struct sockaddr_in my_addr;
3. memcpy(&my_addr.sin_addr.s_addr, h->h_addr,
 h->h_length);

struct * gethostbyname(char *)
60

Returns information about a given host
Parameters
! const char * name: the domain name or IP address of a host
! Examples: “www.google.com”, “10.137.4.61”
Return: pointer to a hostent structure, 0 on failure
! Various fields, most of which aren’t important

1. struct hostent * h = gethostname(“www.google.com”);
2. struct sockaddr_in my_addr;
3. memcpy(&my_addr.sin_addr.s_addr, h->h_addr,
 h->h_length);

int connect(int, struct sockaddr *, int)
61

Connect a client socket to a listen()ing server socket
Parameters
! int sockfd: the client socket
! struct sockaddr * serv_addr: address and port of the server
! int addrlen: length of the sockaddr structure
Return: 0 on success, -1 on failure
Notice that we don’t bind() the client socket
! Why?

write() and send()
62

ssize_t write(int fd, const void *buf, size_t count);
! fd: file descriptor (ie. your socket)
! buf: the buffer of data to send
! count: number of bytes in buf
! Return: number of bytes actually written
int send(int sockfd, const void *msg, int len, int flags);
! First three, same as above
! flags: additional options, usually 0
! Return: number of bytes actually written
Do not assume that count / len == the return value!
! Why might this happen?

read() and recv()
63

ssize_t read(int fd, void *buf, size_t count);
! Fairly obvious what this does
int recv(int sockfd, void *buf, int len, unsigned int flags);
! Seeing a pattern yet?
Return values:
! -1: there was an error reading from the socket
■ Usually unrecoverable. close() the socket and move on

! >0: number of bytes received
■ May be less than count / len

! 0: the sender has closed the socket

More Resources
64

Beej’s famous socket tutorial
! http://beej.us/net2/html/syscalls.html

http://beej.us/net2/html/syscalls.html
http://beej.us/net2/html/syscalls.html

