BitTorrent

Katrina LaCurts
MIT CSAIL
katrina@csail.mit.edu

(much content borrowed from Dave Levin, dml@cs.umd.edu)
Phases of BitTorrent

- **Bootstrapping:** Getting the first pieces
- **Steady-state:** Trading with peers
 - Assumption: peers have pieces to trade with other peers
- **End-game:** Getting the last pieces
Steady-state

In steady-state, a BitTorrent peer uploads to and downloads from different neighbors. How does he decide who to upload to, how much to upload, etc.?

Divide protocol into rounds. Peers that upload the most to us in round t get uploaded to in round $t+1$.
BitTorrent's Unchoker

Round t

13 ➪ 10 ➪ 4 ➪ 12 ➪ 7 ➪ 9 ➪ 15

Round t+1

10 ➪ 10 ➪ 10 ➪ 10 ➪ 10 ➪ 10 ➪ 10
BitTorrent’s Unchoker
BitTorrent’s Unchoker

Best strategy: Come in last peers do *not* have incentive to give as much as possible

BitTorrent's Unchoker

Sybil Attack: Create additional identities to subvert the system
PropShare Unchoker

Round t

13
10
4
12
7
9
15

Round $t+1$

13/70
10/70
4/70
12/70
7/70
9/70
15/70

Total: 70

PropShare Unchnerker

Total: 70

50/70

20/70

20?
PropShare Unchoker

Upload Less →
Receive Less →
Incentive to Upload More
PropShare Unchoker

Total: 70

PropShare is Sybil-proof
Steady-state Results

- BitTyrant and PropShare are both faster than BitTorrent
 - For different reasons
- PropShare performs comparably to BitTyrant
- PropShare does not suffer from a tragedy of the commons
 - BitTyrant does
Phases of BitTorrent

Bootstrapping: Getting the first pieces
assumption: peers have *nothing* to give to other peers

Steady-state: Trading with peers

End-game: Getting the last pieces
Optimistic Unchoking

reserve a portion of bandwidth to give \textit{freely} to other peers
(presumably new peers)

exploit: always asked to be optimistically unchoked
(i.e., never upload)

tragedy of the commons: system will collapse if everyone does this

Locher, et al. “Free Riding in BitTorrent is Cheap”. HotNets, 2006
Junk Updates
force peers to upload useless data

no incentive to repeatedly ask for unchoking, but wastes system resources

can we put new peers to work doing something useful?
Solution: Encryption

Levin, et al.

both and get pieces from

problem: can send junk or nothing at all

TBS
Bootstrapping Summary

- Bootstrapping is not a very large part of the download. Even so, it can be exploited.
- A better bootstrapping mechanism has potential to yield better performance throughout the download.
- Moreover, it can be used whenever a peer becomes uninteresting, not just in the bootstrapping phase.
Phases of BitTorrent

- **0%**: Bootstrapping: Getting the first pieces
- **100%**: Steady-state: Trading with peers
- **100%**: End-game: Getting the last pieces
 assumption: not many peers are mutually interesting
Strategic Piece Revelation

Round t

Goal: Be as interesting as possible to lots of peers
Strategic Piece Revelation

RBoard+1

Strategically reveal pieces → Peers are interested in me longer
Peer Selection

- Before our download even starts, a BitTorrent client gets a set of peers from the tracker.
- During the download, the peer figures out the “best” of this set
- What if we could decide which peers would be best without trading with them first?
Peer Selection

- Measuring link characteristics is sometimes seen as a threat, and doesn’t scale.
- Many measurement systems require a “map” of the Internet, which is hard to obtain.
- Network coordinate systems don’t require a map, but are complicated and don’t always work.
- Could try simple things (use peers in our ISP, e.g.), but it’s not clear that these work either.
Summary

• BitTorrent is a large system; lots of things to tweak
 • Bootstrapping, steady-state, end-game phases
 • Peer selection
• Not all strategies are fair
• A combination of techniques (from various phases) would probably result in an extremely fast client