CS3600 — SYSTEMS AN

D N

NORTHEASTERN UNIVERSITY

Lecture 8: Deadlocks

- [WORKS

Prof. David Choffnes (choffnes@ccs.neu.edu)

[Prepared by Prof. Alan Mislove (amislove@ccs.neu.edu)]

mailto:choffnes@ccs.neu.edu
mailto:choffnes@ccs.neu.edu
mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

Deadlock

- A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

CS3600 — Systems and Networks 2 Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

- A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

- Example
- System has 2 disk drives

- P, and P, each hold one disk drive and each needs another one

- Example

- semaphores A and B, initialized to 1
Po P;

wait (A); wait(B);
wait (B); wait(A);

CS3600 — Systems and Networks 3 Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

- A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

- Example
- System has 2 disk drives

- P, and P, each hold one disk drive and each needs another one

- Example

- semaphores A and B, initialized to 1
P, P,

g

wait(A:—! wait(B);
wait (B); wait(A);

CS3600 — Systems and Networks 3 Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

- A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

- Example
- System has 2 disk drives

- P, and P, each hold one disk drive and each needs another one

- Example

- semaphores A and B, initialized to 1
Po P,

wait (A); wait(B):

wait (B); wait(A);

CS3600 — Systems and Networks 3 Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

- A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

- Example
- System has 2 disk drives

- P, and P, each hold one disk drive and each needs another one

- Example

- semaphores A and B, initialized to 1
Po P;

wait (A); wait(B);
wait (B); wait(A);

CS3600 — Systems and Networks 3 Based on slides by Silbershatz, Galvin, and Gagne

System Model

- Resource types Ry, R, .. ., R,

CPU cores, memory space, I/0O devices

- Each resource type R, has W; instances.

- Each process utilizes a resource as follows:
- request
- use

- release

CS3600 — Systems and Networks 4 Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

Deadlock can arise if four conditions
hold simultaneously.

CS3600 — Systems and Networks 5 Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

Deadlock can arise if four conditions
hold simultaneously.

- Mutual exclusion: only one process at a time can use a resource

CS3600 — Systems and Networks 5 Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

Deadlock can arise if four conditions
hold simultaneously.

- Mutual exclusion: only one process at a time can use a resource

- Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

CS3600 — Systems and Networks 5 Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

Deadlock can arise if four conditions
hold simultaneously.

- Mutual exclusion: only one process at a time can use a resource

- Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

- No preemption: aresource can be released only voluntarily by the process
holding it, after that process has completed its task

CS3600 — Systems and Networks 5 Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

Deadlock can arise if four conditions
hold simultaneously.

- Mutual exclusion: only one process at a time can use a resource

- Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

- No preemption: aresource can be released only voluntarily by the process
holding it, after that process has completed its task

. Circular wait: there exists a set {P,, P,, ..., P} of waiting processes such that
P, is waiting for a resource that is held by P,, P, is waiting for a resource that is
held by P, ..., P,_; is waiting for a resource that is held by P, and P,, is waiting
for a resource that is held by P,.

CS3600 — Systems and Networks 5 Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph

A set of vertices V and a set of edges E.

- Vis partitioned into two types:

- P={P;, P,, ..., P}, the set consisting of all the processes in the
system

- R={Ry, R,, ..., R}, the set consisting of all resource types in
the system

- request edge - directed edge P,— R,

- assignment edge - directed edge R, — P;

CS3600 — Systems and Networks 6 Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph (Cont.)

e Process

@

- Resource Type with 4 instances

O O
OO

- P;requests instance of R; _» oo
- P;is holding an instance of R; <——4§g

CS3600 — Systems and Networks 7 Based on slides by Silbershatz, Galvin, and Gagne

Example of a Resource Allocation Graph

R. R,
@ @
\ \
\@
\ 7
@
& @
8
R, o
R,

CS3600 — Systems and Networks 8 Based on slides by Silbershatz, Galvin, and Gagne

©] O
o
R, o
Ay

CS3600 — Systems and Networks 9 Based on slides by Silbershatz, Galvin, and Gagne

Resource Allocation Graph With A Deadlock

R, R,
Q Q
\ \

(] @]
@]

R, o
Ry

CS3600 — Systems and Networks 9 Based on slides by Silbershatz, Galvin, and Gagne

CS3600 — Systems and Networks 10 Based on slides by Silbershatz, Galvin, and Gagne

Graph With A Cycle But No Deadlock

CS3600 — Systems and Networks 10 Based on slides by Silbershatz, Galvin, and Gagne

CS3600 — Systems and Networks | | Based on slides by Silbershatz, Galvin, and Gagne

Basic Facts

- If graph contains no cycles = no deadlock

- If graph contains a cycle =

- if only one instance per resource type, then deadlock

- if several instances per resource type, possibility of deadlock

CS3600 — Systems and Networks 12 Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

CS3600 — Systems and Networks |3 Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

- Avoidance - Ensure that the system will never enter a deadlock
state

CS3600 — Systems and Networks |3 Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

- Avoidance - Ensure that the system will never enter a deadlock
state

- Recovery - Allow the system to enter a deadlock state and then
recover

CS3600 — Systems and Networks |3 Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

- Avoidance - Ensure that the system will never enter a deadlock
state

- Recovery - Allow the system to enter a deadlock state and then
recover

- Ignorance - Ignore the problem and pretend that deadlocks never

occur in the system; used by most operating systems, including
UNIX

CS3600 — Systems and Networks |3 Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Avoidance

Requires that the system has some additional a
priori information available

- Simplest and most useful model requires that each process declare
the maximum number of resources of each type that it may need

- The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition

- Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes

CS3600 — Systems and Networks 2 Based on slides by Silbershatz, Galvin, and Gagne

Safe State

- When a process requests an available resource, system must decide if
immediate allocation results in a safe state

- System is in safe state if there exists a sequence <P;, P,, ..., P,> of ALL
the processes in the systems such that for each P;, the resources that P,

can still request can be satisfied by currently available resources +
resources held by all the P, withj </

CS3600 — Systems and Networks |5 Based on slides by Silbershatz, Galvin, and Gagne

Safe State

- When a process requests an available resource, system must decide if
immediate allocation results in a safe state

- System is in safe state if there exists a sequence <P;, P,, ..., P,> of ALL
the processes in the systems such that for each P;, the resources that P,

can still request can be satisfied by currently available resources +
resources held by all the P, withj </

- That is:

.- If

¥

- W

nave finisheo

P. resource needs are not immediately available, then P; can wait until all

nen Pj is finis

ned, P; can obtain needed resources, execute, return

allocated resources, and terminate

- When P; terminates, P, ; can obtain its needed resources, and so on
CS3600 — Systems and Networks |5 Based on slides by Silbershatz, Galvin, and Gagne

Basic Facts

- If a system is in safe state = no deadlocks
- If a system is in unsafe state = possibility of deadlock

- Avoidance = ensure that a system will never enter an unsafe state.

CS3600 — Systems and Networks |6 Based on slides by Silbershatz, Galvin, and Gagne

Avoidance algorithms

- Single instance of a resource type

- Use a resource-allocation graph
- Multiple instances of a resource type

- Use the banker’s algorithm

- In book, not discussed in class

CS3600 — Systems and Networks ¥ Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph Scheme

- Claim edge P; — R; indicates that process P; may request
resource R;; represented by a dashed line

- Claim edge converts to request edge when a process requests a
resource

- Request edge converted to an assignment edge when the
resource is allocated to the process

- When a resource is released by a process, assignment edge
reconverts to a claim edge

- Resources must be claimed a priori in the system

CS3600 — Systems and Networks |8 Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph

A,

CS3600 — Systems and Networks = Based on slides by Silbershatz, Galvin, and Gagne

CS3600 — Systems and Networks LG, Based on slides by Silbershatz, Galvin, and Gagne

Unsafe State In Resource-Allocation Graph

A,

\ e

CS3600 — Systems and Networks LG, Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph Algorithm

- Suppose that process P; requests a resource R,

- The request can be granted only if converting the request
edge to an assignment edge does not result in the formation
of a cycle in the resource allocation graph

CS3600 — Systems and Networks A Based on slides by Silbershatz, Galvin, and Gagne

But enough about deadlock

CS3600 — Systems and Networks L) Based on slides by Silbershatz, Galvin, and Gagne

Research Opportunities for Undergrads

 Why do research in CCIS at NEU?

—Work on interesting problems
—You’re considering grad school
—You’re curious in general

—Because you’'re already done writing your FAT file system

Research Opportunities for Undergrads

 Why do research in CCIS at NEU?

—Work on interesting problems
—You’re considering grad school
—You’re curious in general

—Because you’'re already done writing your FAT file system

 Why do research with me at NEU?
—Build things
—Make a difference
—You want to play with cell phone networks and apps

Quick survey

Quick survey

* Today, have you used your phone to check

—Facebook?
—Twitter?

—E-mail?

Quick survey

* Today, have you used your phone to check

—Facebook?
—Twitter?

—E-mail?

* How many have made a voice call?

Can you ping me now?

* Phones are increasingly used for data, but
designed for voice

* Performance suffers for a number of reasons
—Network is slow
—Devices are slow

—Too many apps open at once

—Apps are poorly written

Apps for the Greater Good

* Goal: Make mobile performance more
transparent

—Head-to-head comparisons (SpeedBump)

—Get what you pay for (ShortChanged)

L\

—Mobile network cartography (MapMyNetwork) L | :
* Goal: Use data to improve performance

a<Finn Hill

BlugRidge

—Comparison shopping (TimeToSwitch) o fl

By
—Performance localization (SpeedSpotter) o AL @MM“T

Beaux Ars.

(]
|

Tracking the trackers

B O O / " daemontstudios.com/demo x \

C | "~ daemonfstudios.com/demos/meddleVis/?graph_url=demo.json

Meddle - @
Connection
Visualization ®

Meddle makes it easy to see
who your apps are talking to:

o Each circle with a shadow Is an

B
o All other nodes are web services
« Lines show the connections each
app makes

o Red circles are sites known to Q
track users

¢ Sizashows how often each app or
site is used

Explore the graph: @

« Drag an empty part of the graph to @
move

+ Scroll the mouse wheel 10 zoom

e Clickalinkto ban it

¢ Hover 10 show only direct
connections

Best viewed in Google Chrome @

27

http://daemonfstudios.com/demos/meddleVis2/

http://daemonfstudios.com/demos/meddleVis2/
http://daemonfstudios.com/demos/meddleVis2/

