
CS3600 — SYSTEMS AND NETWORKS
NORTHEASTERN UNIVERSITY

Lecture 8: Deadlocks

Prof. David Choffnes (choffnes@ccs.neu.edu)

[Prepared by Prof. Alan Mislove (amislove@ccs.neu.edu)]

mailto:choffnes@ccs.neu.edu
mailto:choffnes@ccs.neu.edu
mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock

• A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

2

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

• Example
• System has 2 disk drives

• P1 and P2 each hold one disk drive and each needs another one

• Example
• semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B);

 wait (B); wait(A);

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

• Example
• System has 2 disk drives

• P1 and P2 each hold one disk drive and each needs another one

• Example
• semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B);

 wait (B); wait(A);

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

• Example
• System has 2 disk drives

• P1 and P2 each hold one disk drive and each needs another one

• Example
• semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B);

 wait (B); wait(A);

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

• Example
• System has 2 disk drives

• P1 and P2 each hold one disk drive and each needs another one

• Example
• semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B);

 wait (B); wait(A);

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

System Model

• Resource types R1, R2, . . ., Rm

CPU cores, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:
• request

• use
• release

4

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

• No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

• No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such that
P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is
held by P2, …, Pn–1 is waiting for a resource that is held by Pn, and Pn is waiting
for a resource that is held by P0.

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph

• V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set consisting of all the processes in the

system

• R = {R1, R2, …, Rm}, the set consisting of all resource types in
the system

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

6

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj Pi

Pi
Rj

Rj

7

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Example of a Resource Allocation Graph

8

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource Allocation Graph With A Deadlock

9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Graph With A Cycle But No Deadlock

10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne11

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Basic Facts

• If graph contains no cycles ⇒ no deadlock

• If graph contains a cycle ⇒

• if only one instance per resource type, then deadlock

• if several instances per resource type, possibility of deadlock

12

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

• Avoidance - Ensure that the system will never enter a deadlock
state

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

• Avoidance - Ensure that the system will never enter a deadlock
state

• Recovery - Allow the system to enter a deadlock state and then
recover

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

• Avoidance - Ensure that the system will never enter a deadlock
state

• Recovery - Allow the system to enter a deadlock state and then
recover

• Ignorance - Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems, including
UNIX

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Avoidance

• Simplest and most useful model requires that each process declare
the maximum number of resources of each type that it may need

• The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition

• Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes

Requires that the system has some additional a
priori information available

14

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Safe State
• When a process requests an available resource, system must decide if

immediate allocation results in a safe state

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL
the processes in the systems such that for each Pi, the resources that Pi

can still request can be satisfied by currently available resources +
resources held by all the Pj, with j < I

15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Safe State
• When a process requests an available resource, system must decide if

immediate allocation results in a safe state

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL
the processes in the systems such that for each Pi, the resources that Pi

can still request can be satisfied by currently available resources +
resources held by all the Pj, with j < I

• That is:
• If Pi resource needs are not immediately available, then Pi can wait until all

Pj have finished

• When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate

• When Pi terminates, Pi +1 can obtain its needed resources, and so on
15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Basic Facts

• If a system is in safe state ⇒ no deadlocks

• If a system is in unsafe state ⇒ possibility of deadlock

• Avoidance ⇒ ensure that a system will never enter an unsafe state.

16

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Avoidance algorithms

• Single instance of a resource type
• Use a resource-allocation graph

• Multiple instances of a resource type
• Use the banker’s algorithm

• In book, not discussed in class

17

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicates that process Pj may request
resource Rj; represented by a dashed line

• Claim edge converts to request edge when a process requests a
resource

• Request edge converted to an assignment edge when the
resource is allocated to the process

• When a resource is released by a process, assignment edge
reconverts to a claim edge

• Resources must be claimed a priori in the system
18

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph

19

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne20

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Unsafe State In Resource-Allocation Graph

20

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph Algorithm
• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting the request
edge to an assignment edge does not result in the formation
of a cycle in the resource allocation graph

21

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

But enough about deadlock

22

Research	 Opportuni0es	 for	 Undergrads

• Why	 do	 research	 in	 CCIS	 at	 NEU?
–Work	 on	 interes0ng	 problems
–You’re	 considering	 grad	 school
–You’re	 curious	 in	 general
–Because	 you’re	 already	 done	 wri0ng	 your	 FAT	 file	 system

Research	 Opportuni0es	 for	 Undergrads

• Why	 do	 research	 in	 CCIS	 at	 NEU?
–Work	 on	 interes0ng	 problems
–You’re	 considering	 grad	 school
–You’re	 curious	 in	 general
–Because	 you’re	 already	 done	 wri0ng	 your	 FAT	 file	 system

• Why	 do	 research	 with	 me	 at	 NEU?
–Build	 things
–Make	 a	 difference
–You	 want	 to	 play	 with	 cell	 phone	 networks	 and	 apps

Quick	 survey

Quick	 survey

• Today,	 have	 you	 used	 your	 phone	 to	 check
–Facebook?
–TwiNer?
–E-‐mail?

Quick	 survey

• Today,	 have	 you	 used	 your	 phone	 to	 check
–Facebook?
–TwiNer?
–E-‐mail?

• How	 many	 have	 made	 a	 voice	 call?

Can	 you	 ping	 me	 now?

• Phones	 are	 increasingly	 used	 for	 data,	 but	
designed	 for	 voice

• Performance	 suffers	 for	 a	 number	 of	 reasons
–Network	 is	 slow
–Devices	 are	 slow
–Too	 many	 apps	 open	 at	 once
–Apps	 are	 poorly	 wriNen

Apps	 for	 the	 Greater	 Good

• Goal:	 Make	 mobile	 performance	 more	
transparent
–Head-‐to-‐head	 comparisons	 (SpeedBump)
–Get	 what	 you	 pay	 for	 (ShortChanged)
–Mobile	 network	 cartography	 (MapMyNetwork)

• Goal:	 Use	 data	 to	 improve	 performance
–Comparison	 shopping	 (TimeToSwitch)
–Performance	 localiza0on	 (SpeedSpoNer)

Tracking	 the	 trackers

• a

27

hNp://daemonfstudios.com/demos/meddleVis2/

28

http://daemonfstudios.com/demos/meddleVis2/
http://daemonfstudios.com/demos/meddleVis2/

