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Deadlock

• A set of blocked processes each holding a resource and waiting to 
acquire a resource held by another process in the set
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The Deadlock Problem

• A set of blocked processes each holding a resource and waiting 
to acquire a resource held by another process in the set

• Example 
• System has 2 disk drives

• P1 and P2 each hold one disk drive and each needs another one

• Example 
• semaphores A and B, initialized to 1

             P0                  P1

     wait (A);  wait(B); 

     wait (B);  wait(A);
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System Model

• Resource types R1, R2, . . ., Rm

CPU cores, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:
• request 

• use 
• release
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Deadlock Characterization

Deadlock can arise if four conditions 
hold simultaneously.
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• Mutual exclusion:  only one process at a time can use a resource

Deadlock can arise if four conditions 
hold simultaneously.
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• Mutual exclusion:  only one process at a time can use a resource

• Hold and wait:  a process holding at least one resource is waiting to acquire 
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• No preemption:  a resource can be released only voluntarily by the process 
holding it, after that process has completed its task

Deadlock can arise if four conditions 
hold simultaneously.

5



CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

• Mutual exclusion:  only one process at a time can use a resource

• Hold and wait:  a process holding at least one resource is waiting to acquire 
additional resources held by other processes

• No preemption:  a resource can be released only voluntarily by the process 
holding it, after that process has completed its task

• Circular wait:  there exists a set {P0, P1, …, Pn} of waiting processes such that 
P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is 
held by P2, …, Pn–1 is waiting for a resource that is held by Pn, and Pn is waiting 
for a resource that is held by P0.

Deadlock can arise if four conditions 
hold simultaneously.
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Resource-Allocation Graph

• V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set consisting of all the processes in the 

system

• R = {R1, R2, …, Rm}, the set consisting of all resource types in 
the system

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.
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Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj Pi

Pi
Rj

Rj
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Example of a Resource Allocation Graph
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Resource Allocation Graph With A Deadlock

9



CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne10



CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Graph With A Cycle But No Deadlock
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Basic Facts

• If graph contains no cycles ⇒ no deadlock

• If graph contains a cycle ⇒

• if only one instance per resource type, then deadlock

• if several instances per resource type, possibility of deadlock
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Methods for Handling Deadlocks
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Methods for Handling Deadlocks

• Avoidance - Ensure that the system will never enter a deadlock 
state
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• Avoidance - Ensure that the system will never enter a deadlock 
state

• Recovery - Allow the system to enter a deadlock state and then 
recover
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Methods for Handling Deadlocks

• Avoidance - Ensure that the system will never enter a deadlock 
state

• Recovery - Allow the system to enter a deadlock state and then 
recover

• Ignorance - Ignore the problem and pretend that deadlocks never 
occur in the system; used by most operating systems, including 
UNIX
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Deadlock Avoidance

• Simplest and most useful model requires that each process declare 
the maximum number of resources of each type that it may need

• The deadlock-avoidance algorithm dynamically examines the 
resource-allocation state to ensure that there can never be a 
circular-wait condition

• Resource-allocation state is defined by the number of available and 
allocated resources, and the maximum demands of the processes

Requires that the system has some additional a 
priori information available
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Safe State
• When a process requests an available resource, system must decide if 

immediate allocation results in a safe state

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL 
the  processes  in the systems such that  for each Pi, the resources that Pi 

can still request can be satisfied by currently available resources + 
resources held by all the Pj, with j < I
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Safe State
• When a process requests an available resource, system must decide if 

immediate allocation results in a safe state

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL 
the  processes  in the systems such that  for each Pi, the resources that Pi 

can still request can be satisfied by currently available resources + 
resources held by all the Pj, with j < I

• That is:
• If Pi resource needs are not immediately available, then Pi can wait until all 

Pj have finished

• When Pj is finished, Pi can obtain needed resources, execute, return 
allocated resources, and terminate

• When Pi terminates, Pi +1 can obtain its needed resources, and so on 
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Basic Facts

• If a system is in safe state ⇒ no deadlocks

• If a system is in unsafe state ⇒ possibility of deadlock

• Avoidance ⇒ ensure that a system will never enter an unsafe state.
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Avoidance algorithms

• Single instance of a resource type
• Use a resource-allocation graph

• Multiple instances of a resource type
•  Use the banker’s algorithm

•  In book, not discussed in class
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Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicates that process Pj may request 
resource Rj; represented by a dashed line

• Claim edge converts to request edge when a process requests a 
resource

• Request edge converted to an assignment edge when the  
resource is allocated to the process

• When a resource is released by a process, assignment edge 
reconverts to a claim edge

• Resources must be claimed a priori in the system
18
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Resource-Allocation Graph
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Unsafe State In Resource-Allocation Graph
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Resource-Allocation Graph Algorithm
• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting the request 
edge to an assignment edge does not result in the formation 
of a cycle in the resource allocation graph
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But enough about deadlock
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• Why	  do	  research	  with	  me	  at	  NEU?
–Build	  things
–Make	  a	  difference
–You	  want	  to	  play	  with	  cell	  phone	  networks	  and	  apps
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Quick	  survey

• Today,	  have	  you	  used	  your	  phone	  to	  check
–Facebook?
–TwiNer?
–E-‐mail?



Quick	  survey

• Today,	  have	  you	  used	  your	  phone	  to	  check
–Facebook?
–TwiNer?
–E-‐mail?

• How	  many	  have	  made	  a	  voice	  call?



Can	  you	  ping	  me	  now?

• Phones	  are	  increasingly	  used	  for	  data,	  but	  
designed	  for	  voice

• Performance	  suffers	  for	  a	  number	  of	  reasons
–Network	  is	  slow
–Devices	  are	  slow
–Too	  many	  apps	  open	  at	  once
–Apps	  are	  poorly	  wriNen



Apps	  for	  the	  Greater	  Good

• Goal:	  Make	  mobile	  performance	  more	  
transparent
–Head-‐to-‐head	  comparisons	  (SpeedBump)
–Get	  what	  you	  pay	  for	  (ShortChanged)
–Mobile	  network	  cartography	  (MapMyNetwork)

• Goal:	  Use	  data	  to	  improve	  performance
–Comparison	  shopping	  (TimeToSwitch)
–Performance	  localiza0on	  (SpeedSpoNer)



Tracking	  the	  trackers

• a

27



hNp://daemonfstudios.com/demos/meddleVis2/

28

http://daemonfstudios.com/demos/meddleVis2/
http://daemonfstudios.com/demos/meddleVis2/

