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Background

Processes often need to coordinate and share information 

!
But, concurrent access to shared data may result in data inconsistency 

!
Maintaining data consistency requires mechanisms to ensure the orderly execution 
of cooperating processes 

!
This lecture:  how do we ensure correct execution when multiple processes may be 
accessing the same data? 
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Producer-Consumer Problem

• Paradigm for cooperating processes, producer process 
produces information (repeatedly) that is consumed by a 
consumer process 

!
• Processes allowed to share memory 

!
• How can we implement a producer and consumer using 

shared memory? 
• Assume two shared variables:  buffer[] and counter
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Producer 
in = 0; 
!
while (true) { 
!
  /*  produce an item */ 
   
  while (counter == BUFFER_SIZE) {} // do nothing 
  buffer[in] = nextProduced; 
  in = (in + 1) % BUFFER_SIZE; 
  counter++; 
}
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Consumer
out = 0; 
!
while (true)  { 
  while (counter == 0) {} // do nothing 
  nextConsumed =  buffer[out]; 
  out = (out + 1) % BUFFER_SIZE; 
  counter--; 
   
  /*  consume the item */ 
!
}

We have a shared integer counter that keeps track of the number of full buffer entries.  
Initially, counter is set to 0. It is incremented by the producer after it produces a new 
buffer and is decremented by the consumer after it consumes a buffer. 

!
Does this solution work?
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Race Condition
counter++ could be implemented as 
 
     load %eax counter  
     add %eax %eax 1         (%eax++)  
     store counter %eax !
counter-- could be implemented as 
 
     load %eax counter  
     add %eax %eax -1        (%eax--)  
     store counter %eax !
Consider this execution interleaving with “counter = 5” initially: 

       S0: producer execute load %eax counter   {producer’s %eax = 5} 
S1: producer execute add %eax %eax 1   {producer’s %eax = 6}  
S2: consumer execute load %eax counter   {consumer’s %eax = 5}  
S3: consumer execute add %eax %eax -1   {consumer’s %eax = 4}  
S4: producer execute store %eax counter   {counter = 6 }  
S5: consumer execute store %eax counter   {counter = 4}
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Generalization: Critical Section Problem
Consider system of n processes {p0, p1, … pn-1} 

Each process has critical section segment of code 

Process may be changing common variables, updating table, writing file, etc 

When one process in critical section, no other may be in its critical section 

Critical section problem is to design protocol to solve this 

Each process must ask permission to enter critical section in entry section, may follow 
critical section with exit section, then remainder section 

Especially challenging with preemptive kernels
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Critical Section
General structure of process pi is
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Reqs. for solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be executing in 
their critical sections 

!
2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter their 

critical section, then the selection of the processes that will enter the critical section next cannot be 
postponed indefinitely 

!
3. Bounded Waiting -  A bound must exist on the number of times that other processes are allowed to enter their 

critical sections after a process has made a request to enter its critical section and before that request is 
granted 

! Assume that each process executes at a nonzero speed  

! No assumption concerning relative speed of the n processes

8



CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Peterson’s Solution

Two process solution 

!
Assume that the LOAD and STORE instructions are atomic; that is, cannot be 
interrupted 

!
The two processes share two variables: 

int turn; !
Boolean flag[2]; !

!
The variable turn indicates whose turn it is to enter the critical section 

!
The flag array is used to indicate if a process is ready to enter the critical 
section. flag[i] = true implies that process Pi is ready!
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do { 
!
  flag[i] = TRUE; 
  turn = j; 
  while (flag[j] && turn == j) {} 
!
       critical section 
!
  flag[i] = FALSE; 
!
       remainder section 
!
} while (TRUE); !

!
Provable that  

!
1. Mutual exclusion is preserved 

2. Progress requirement is satisfied 

3. Bounded-waiting requirement is met

Algorithm for Process Pi
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Synchronization Hardware

Many systems provide hardware support for critical section code 

!
Uniprocessors – could disable interrupts 

Currently running code would execute without preemption 

Generally too inefficient on multiprocessor systems 

Operating systems using this not broadly scalable 

!
Modern machines provide special atomic hardware instructions 

Atomic = non-interruptable 

Either test memory word and set value 

Or swap contents of two memory words
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do { 
!
  acquire lock 
!
      critical section 
!
  release lock 
!
      remainder section 
!
} while (TRUE);

Solution to Critical-section  
Problem Using Locks
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TestAndSet Instruction 

boolean TestAndSet (boolean *target) { 
!
  boolean rv = *target; 
  *target = TRUE; 
  return rv: 
!
}
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Solution using TestAndSet

Shared boolean variable lock, initialized to FALSE 

Solution: 

!
lock = false; 
!
do { 
!
  // busy wait while lock is true 
  while ( TestAndSet (&lock )) {} 
  
//      critical section 
   
  lock = FALSE; 
   
//      remainder section 
   
} while (TRUE); 
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Swap Instruction

void Swap (boolean *a, boolean *b) { 
   
  boolean temp = *a; 
  *a = *b; 
  *b = temp: 
!
}
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Solution using Swap

Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable key 

Solution: 

!
lock = FALSE;	
do {	
  key = TRUE;	
!
  // try to grab the lock	
  while (key == TRUE)	
    Swap (&lock, &key );	
    	
//        critical section	
    	
    lock = FALSE;	
    	
//        remainder section	
    	
} while (TRUE);
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Bounded-waiting Mutual Exclusion  
with TestandSet()

do { 
  waiting[i] = TRUE; 
  key = TRUE; 
   
  while (waiting[i] && key) 
    key = TestAndSet(&lock); 
!
  waiting[i] = FALSE; 
     
//      critical section 
     
  j = (i + 1) % n; 
  while ((j != i) && !waiting[j]) 
    j = (j + 1) % n; 
   
  if (j == i) 
    lock = FALSE; 
  else 
    waiting[j] = FALSE; 
     
//      remainder section 
     
} while (TRUE);
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Semaphore
Synchronization tool that does not (necessarily) require busy waiting  

Semaphore S – integer variable 

Two standard operations modify S: wait() and signal() 

Originally called P() and V() 

Less complicated 

Can only be accessed via two indivisible (atomic) operations 
!
!
wait (S) { 
  while S <= 0 
    ; // no-op 
  S--; 
}  

!
signal (S) { 
  S++; 
}
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Semaphore as  
General Synchronization Tool

Counting semaphore – integer value can range over an unrestricted domain 

Binary semaphore – integer value can range only between 0  
and 1; can be simpler to implement 

Also known as mutex locks 

Can implement a counting semaphore S as a binary semaphore 

Provides mutual exclusion 

Semaphore mutex;    //  initialized to 1 
do { 
!
 wait (mutex);  
!
//     critical Section 
!
 signal (mutex); 
!
//     remainder section 
!
} while (TRUE);

19



CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Semaphore Implementation
Must guarantee that no two processes can execute wait () and signal () on the same semaphore at the same 
time 

!
Thus, implementation becomes the critical section problem where the wait and signal code are placed in the 
critical section 

Could now have busy waiting in critical section implementation 

But implementation code is short 

Little busy waiting if critical section rarely occupied 

!
Note that applications may spend lots of time in critical sections and therefore this is not a good solution 
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Semaphore Implementation without busy waiting 

With each semaphore there is an associated waiting queue 

Each entry in a waiting queue has two data items: 

 value (of type integer) 

 pointer to next record in the list 

!
Two operations: 

block – place the process invoking the operation on the appropriate waiting queue 

wakeup – remove one of processes in the waiting queue and place it in the ready queue 
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Semaphore Implementation without busy waiting 

Implementation of wait: 

!
wait(semaphore *S) { 
  S->value--; 
  if (S->value < 0) { 
    add this process to S->list; 
    block(); 
  } 
} !

Implementation of signal: 

!
signal(semaphore *S) { 
  S->value++; 
  if (S->value <= 0) { 
    remove a process P from S->list; 
    wakeup(P); 
  } 
} 
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Bounded-Buffer Problem

N buffers, each can hold one item 

!
Semaphore mutex initialized to the value 1 

!
Semaphore full initialized to the value 0 

!
Semaphore empty initialized to the value N
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Bounded Buffer Problem (Cont.)

The structure of the producer process 

!
do { 
  //   produce an item 
   
  wait (empty); 
  wait (mutex); 
   
  //  add the item to the  buffer 
   
  signal (mutex); 
  signal (full); 
!
} while (TRUE);
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Bounded Buffer Problem (Cont.)

The structure of the consumer process 

!
do { 
!
  wait (full); 
  wait (mutex); 
   
  //  remove an item from  buffer 
   
  signal (mutex); 
  signal (empty); 
   
  //  consume the item 
   
} while (TRUE);
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Monitors
A high-level abstraction that provides a convenient and effective mechanism for 
process synchronization 

Abstract data type, internal variables only accessible by code within the 
procedure 

Only one process may be active within the monitor at a time 

But not powerful enough to model some synchronization schemes 

!
monitor monitor-name 
{ 
 // shared variable declarations  
 procedure P1 (…) { …. }  
   
 procedure Pn (…) {……}  
   
 Initialization code (…) { … } 
   
}
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Problems with synchronization

Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of 
the waiting processes 

Let S and Q be two semaphores initialized to 1 

          P0                             P1                                                                                                     

       wait (S);                                     wait (Q);                                                                         

      wait (Q);                                     wait (S);                                                             

  .   .                         

  .   .                         

  .   .                         

       signal (S);                                    signal (Q);                                                         

       signal (Q);                                    signal (S);                                                        
Starvation – indefinite blocking   

A process may never be removed from the semaphore queue in which it is suspended 

Priority Inversion – Scheduling problem when lower-priority process holds a lock needed by higher-
priority process 

Solved via priority-inheritance protocol
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