CS3600 — SYSTEMS AN

D N

NORTHEASTERN UNIVERSITY

Lecture 5: Threads

- [WORKS

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

Motivation

- Threads run within application

- Multiple tasks with the application can be implemented by separate
threads

- Update display
- Fetch data
- Spell checking

- Answer a network request
- Process creation is heavy-weight while thread creation is light-weight

- Can simplify code, increase efficiency
- Kernels are generally multithreaded

CS3600 — Systems and Networks 2 Based on slides by Silbershatz, Galvin, and Gagne

Single and Multithreaded Processes

code

data

files

registers

stack

thread — g

single-threaded process

CS3600 — Systems and Networks

code data files
registers ||| registers ||| registers
stack stack stack
e

— thread

multithreaded process

Based on slides by Silbershatz, Galvin, and Gagne

Benefits

- Responsiveness
- Resource Sharing
- Economy

- Scalability

CS3600 — Systems and Networks 4 Based on slides by Silbershatz, Galvin, and Gagne

Motivation: Multicore Programming

- Multicore systems putting pressure on programmers,
challenges include:

- Dividing activities

- Balance

- Data splitting

- Data dependency

- Testing and debugging

CS3600 — Systems and Networks 5 Based on slides by Silbershatz, Galvin, and Gagne

Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

client » server » thread

U

(3) resume listening
for additional
client requests

CS3600 — Systems and Networks 6 Based on slides by Silbershatz, Galvin, and Gagne

Concurrent Execution on a
Single-core System

single core T4 Ts T3 Ty T4 To T3 Ty T4

time

CS3600 — Systems and Networks 7 Based on slides by Silbershatz, Galvin, and Gagne

Parallel Execution on a
Multicore System

core 1 T4 K T4 Ta T4

core 2 To T4 To Ty Ts

CS3600 — Systems and Networks 8 Based on slides by Silbershatz, Galvin, and Gagne

User Threads

- Thread management done by user-level threads library
- Kernel oblivious to thread existence, scheduling done at user level

- Advantages
- Can be implemented without kernel support
- Faster to context switch

- Disadvantage: Single thread can block entire process

- Three primary thread libraries:
- POSIX Pthreads
- Win32 threads
- Java threads

CS3600 — Systems and Networks 9 Based on slides by Silbershatz, Galvin, and Gagne

Kernel Threads
- Supported by the Kernel

- Kernel knows about thread, schedules it like a process

- Advantages
- Less user-level code
- (others from previous slide)

- Examples
- Windows XP/2000
- Solaris
- Linux
- Tru64 UNIX
- Mac OS X

CS3600 — Systems and Networks 10 Based on slides by Silbershatz, Galvin, and Gagne

Multithreading Models

- Many-to-One
- One-to-One

- Many-to-Many

CS3600 — Systems and Networks | | Based on slides by Silbershatz, Galvin, and Gagne

Many-to-One

- Many user-level threads mapped to single kernel thread
- Examples:

- Solaris Green Threads
- GNU Portable Threads

CS3600 — Systems and Networks 12 Based on slides by Silbershatz, Galvin, and Gagne

Many-to-One Model

«— |ser thread

«—— kernel thread

CS3600 — Systems and Networks |3 Based on slides by Silbershatz, Galvin, and Gagne

One-to-One

- Each user-level thread maps to kernel thread

- Examples
- Windows NT/XP/2000
. Linux

- Solaris 9 and later

CS3600 — Systems and Networks 2 Based on slides by Silbershatz, Galvin, and Gagne

One-to-one Model

«——— User thread

;¢
b & b

CS3600 — Systems and Networks |5 Based on slides by Silbershatz, Galvin, and Gagne

Many-to-Many Model

- Allows many user level threads to be mapped to many kernel
threads

- Allows the operating system to create a sufficient number of
kernel threads

- Solaris prior to version 9

- Windows NT/2000 with the ThreadFiber package

CS3600 — Systems and Networks |6 Based on slides by Silbershatz, Galvin, and Gagne

Many-to-Many Model

<«—— user thread

° ° <—kernelthread

CS3600 — Systems and Networks ¥ Based on slides by Silbershatz, Galvin, and Gagne

Two-level Model

- Similar to M:M, except that it allows a user thread to be
bound to kernel thread

- Examples
- [RIX
- HP-UX
- Tru64 UNIX
- Solaris 8 and earlier

CS3600 — Systems and Networks |8 Based on slides by Silbershatz, Galvin, and Gagne

Thread Libraries

- Thread library provides programmer with API for creating
and managing threads

- Two primary ways of implementing

- Library entirely in user space
- Kernel-level library supported by the OS

CS3600 — Systems and Networks = Based on slides by Silbershatz, Galvin, and Gagne

Pthreads

- May be provided either as user-level or kernel-level

- A POSIX standard (IEEE 1003.1¢) API for thread creation and
synchronization

- APl specifies behavior of the thread library, implementation is
up to development of the library

- Common in UNIX operating systems (Solaris, Linux, Mac OS X)

CS3600 — Systems and Networks LG, Based on slides by Silbershatz, Galvin, and Gagne

#include <pthread.h>
#include <stdio.h>

int sum; /#* this data is shared by the thread(s) =/
void *runner(void *param); /* the thread */

int main(int argc, char =*argv[])
{
pthread t tid; /* the thread identifier =*/
pthread attr t attr; /* set of thread attributes =/

if (arge !'= 2) {
fprintf(stderr, usage: a.ocut <integer wvalue>\n");
return -1;

if (atoi(argv(i]) < 0) {
fprintf(stderr,”¥d must be >= 0\n",atoi(argv(i]));
return -1;

}

/* get the default attributes =/
pthread.-attr-init(Zattr);

/* create the thread =/

pthread create(&tid,&attr ,runner,argv(1]);
/* wait for the thread to exit =*/

pthread join(tid ,NULL);

printf("sum = ¥d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{
int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1;

pthread exit (0);

Figure 4.9 Multthreaded C program usng the Pthreads APIL.

CS3600 — Systems and Networks 2| Based on slides by Silbershatz, Galvin, and Gagne

Java Threads
- Java threads are managed by the JVM

- Typically implemented using the threads model provided
by underlying OS

- Java threads may be created by:

- Extending Thread class
- Implementing the Runnable interface

CS3600 — Systems and Networks L) Based on slides by Silbershatz, Galvin, and Gagne

Java Multithreaded Program

public class Driver

_ {

public static void main(String[) args) {
if {args.length > ©0) {

public int getSum{) { if (Integer.parselnt{args{0]) < 0)
return sum; System.err.println(args[0] + * must be >« 0.%);
? else {
// create the object to be shared
public void setSum{int sum) { Sum sumObject « new Sum{);
this_.sum « sum; int upper « Integer.parselnt (args[0]);
: Thread thrd « new Thread(new Summation {upper, sumObject)):
} thrd.start () ;
ery {
class Summation implements Runnable thrd.joinl):
{ System.out.println
’ aba &) {*The sum of "supper+® is "esumObject.getSumi))
private int upper; , . . .
private Sum sumValue; } catch {(InterruptedException ie] { }

else
System.err.println("Usage: Summation <integer values*); }

public Summation(int upper, Sum sumValue) {
this upper « upper:
this_sumValue « sumValue; }

public void run{) {
int sum « 0;

for {(int i « O
SUmM 4= i;

sumValue.setSum(sum) ;

}

Figure 4.11 Java program for the summat.on of a non-negative integer.

i <= upper; i+s)

CS3600 — Systems and Networks e Based on slides by Silbershatz, Galvin, and Gagne

Threading Issues

- Semantics of fork() and exec() system calls

- Signal handling
- Synchronous and asynchronous

CS3600 — Systems and Networks e Based on slides by Silbershatz, Galvin, and Gagne

Signal Handling

- Signals are used in UNIX systems to notify a process that a

particular event has occurred.

- Asignal handler is used to process signals

1 Slelak!

2. Signha

3. Signa

- Options:
Deliver t
Deliver t
Deliver t

ne signa
ne signa

ne signa

Is generated by particular event

is delivered to a process
is handled

to the thread to which the signal applies

to every thread in the process

to certain threads in the process

Assign a specific thread to receive all signals for the process

CS3600 — Systems and Networks

25

Based on slides by Silbershatz, Galvin, and Gagne

Thread Pools

- Create a number of threads in a pool where they await work

- Advantages:
- Usually slightly faster to service a request with an existing thread
than create a new thread

- Allows the number of threads in the application(s) to be bound
to the size of the pool

CS3600 — Systems and Networks 26 Based on slides by Silbershatz, Galvin, and Gagne

Thread Specific Data

- Allows each thread to have its own copy of data

- Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

CS3600 — Systems and Networks Ly Based on slides by Silbershatz, Galvin, and Gagne

