
CS3600 — SYSTEMS AND NETWORKS

NORTHEASTERN UNIVERSITY

Lecture 4: Process communication

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Interprocess Communication

• Processes within a system may be independent or cooperating
• Cooperating process can affect or be affected by other processes,

including sharing data
• Reasons for cooperating processes (instead of single process):

• Information sharing
• Computation speedup
• Modularity
• Convenience

• Cooperating processes need interprocess communication (IPC)
• Two models of IPC

• Shared memory
• Message passing

2

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Communications Models

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Producer-Consumer Problem

• Paradigm for cooperating processes, producer process
produces information (repeatedly) that is consumed by a
consumer process
• unbounded-buffer places no practical limit on the size of the

buffer
• bounded-buffer assumes that there is a fixed buffer size

• How can we implement a producer and consumer using
shared memory?

4

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Bounded-Buffer – Shared-Memory Solution

• Shared data
#define BUFFER_SIZE 10

typedef struct {

	 . . .

} item;

item buffer[BUFFER_SIZE];

int produced = 0;

int consumed = 0;

• How to ensure that producer and consumer don’t overwrite each
others’ updates?
• Following solution is correct, but can only have BUFFER_SIZE-1

elements waiting to be consumed

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Bounded-Buffer – Producer

	 while (true) {
 /* do nothing -- no free buffers */

 while (produced - consumed == BUFFER_SIZE) {}

	
 buffer[produced % BUFFER_SIZE] = produceItem();

	 produced++;

 }

	 while (true) {

 while (produced - consumed == 0) {}

	 consumeItem(buffer[consumed % BUFFER_SIZE]);

	 consumed++;

 }
 6

Producer:

Consumer:

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Interprocess Communication – Message Passing

• Mechanism for processes to communicate and synchronize actions

• Message system – processes communicate with each other without
resorting to shared variables

• IPC facility provides two operations:
• send(message) – message size fixed or variable
• receive(message)

• If P and Q wish to communicate, they need to:
• establish a communication link between them
• exchange messages via send/receive

• Implementation of communication link
• physical (e.g., shared memory, hardware bus)
• logical (e.g., logical properties)

7

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Implementation Questions

• How are links established?
• Can a link be associated with more than two processes?
• How many links can there be between every pair of

communicating processes?
• What is the capacity of a link?
• Is the size of a message that the link can accommodate fixed

or variable?
• Is a link unidirectional or bi-directional?

8

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Direct Communication
• Processes must name each other explicitly:

• send (P, message) – send a message to process P
• receive(Q, message) – receive a message from process Q

• Properties of communication link
• Links are established automatically
• A link is associated with exactly one pair of communicating

processes
• Between each pair there exists exactly one link
• The link may be unidirectional, but is usually bi-directional

9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Indirect Communication
• Messages are directed and received from mailboxes (also

referred to as ports)
• Each mailbox has a unique id
• Processes can communicate only if they share a mailbox

• Properties of communication link
• Link established only if processes share a common mailbox
• A link may be associated with many processes
• Each pair of processes may share several communication links
• Link may be unidirectional or bi-directional

10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Indirect Communication
• Operations

• create a new mailbox
• send and receive messages through mailbox
• destroy a mailbox

• Primitives are defined as:
 send(A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A

11

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Synchronization
• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous
• Blocking send has the sender block until the message is

received
• Blocking receive has the receiver block until a message is

available

• Non-blocking is considered asynchronous
• Non-blocking send has the sender send the message and

continue
• Non-blocking receive has the receiver receive a valid

message or null

12

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Buffering
• Queue of messages attached to the link; implemented in one

of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Sockets
• A socket is defined as an endpoint for communication

• Concatenation of IP address and port

• The socket 161.25.19.8:1625 refers to port 1625 on
host 161.25.19.8

• Communication consists between a pair of sockets

• Will talk more about the network later in the course

14

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Socket Communication

15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Pipes
• Acts as a conduit allowing two processes to communicate

• Issues
• Is communication unidirectional or bidirectional?
• In the case of two-way communication, is it half or full-duplex?
• Must there exist a relationship (i.e. parent-child) between the

communicating processes?
• Can the pipes be used over a network?

16

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Ordinary Pipes
• Ordinary Pipes allow communication in standard producer-

consumer style

• Producer writes to one end (the write-end of the pipe)

• Consumer reads from the other end (the read-end of the
pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between communicating
processes

17

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Ordinary Pipes

18

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Named Pipes
• Named Pipes are more powerful than ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary between the communicating
processes

• Several processes can use the named pipe for communication

• Provided on both UNIX and Windows systems

19

