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Interprocess Communication

• Processes within a system may be independent or cooperating
• Cooperating process can affect or be affected by other processes, 

including sharing data
• Reasons for cooperating processes (instead of single process):

• Information sharing
• Computation speedup
• Modularity
• Convenience 

• Cooperating processes need interprocess communication (IPC)
• Two models of IPC

• Shared memory
• Message passing
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Communications Models 
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Producer-Consumer Problem

• Paradigm for cooperating processes, producer process 
produces information (repeatedly) that is consumed by a 
consumer process
• unbounded-buffer places no practical limit on the size of the 

buffer
• bounded-buffer assumes that there is a fixed buffer size

• How can we implement a producer and consumer using 
shared memory?
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Bounded-Buffer –  Shared-Memory Solution

• Shared data
#define BUFFER_SIZE 10

typedef struct {

	 . . .

} item;

item buffer[BUFFER_SIZE];

int produced = 0;

int consumed = 0;

• How to ensure that producer and consumer don’t overwrite each 
others’ updates?
• Following solution is correct, but can only have BUFFER_SIZE-1 

elements waiting to be consumed
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Bounded-Buffer – Producer

	 while (true) {
    /* do nothing -- no free buffers */

       while (produced - consumed == BUFFER_SIZE) {}   

	     
    buffer[produced % BUFFER_SIZE] = produceItem();

	     produced++;

     }

	 while (true) {

        while (produced - consumed == 0) {}

	      consumeItem(buffer[consumed % BUFFER_SIZE]);

	      consumed++;

     }
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Interprocess Communication – Message Passing

• Mechanism for processes to communicate and synchronize actions

• Message system – processes communicate with each other without 
resorting to shared variables

• IPC facility provides two operations:
• send(message) – message size fixed or variable 
• receive(message)

• If P and Q wish to communicate, they need to:
• establish a communication link between them
• exchange messages via send/receive

• Implementation of communication link
• physical (e.g., shared memory, hardware bus)
• logical (e.g., logical properties)
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Implementation Questions

• How are links established?
• Can a link be associated with more than two processes?
• How many links can there be between every pair of 

communicating processes?
• What is the capacity of a link?
• Is the size of a message that the link can accommodate fixed 

or variable?
• Is a link unidirectional or bi-directional?
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Direct Communication
• Processes must name each other explicitly:

• send (P, message) – send a message to process P
• receive(Q, message) – receive a message from process Q

• Properties of communication link
• Links are established automatically
• A link is associated with exactly one pair of communicating 

processes
• Between each pair there exists exactly one link
• The link may be unidirectional, but is usually bi-directional
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Indirect Communication
• Messages are directed and received from mailboxes (also 

referred to as ports)
• Each mailbox has a unique id
• Processes can communicate only if they share a mailbox

• Properties of communication link
• Link established only if processes share a common mailbox
• A link may be associated with many processes
• Each pair of processes may share several communication links
• Link may be unidirectional or bi-directional
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Indirect Communication
• Operations

• create a new mailbox
• send and receive messages through mailbox
• destroy a mailbox

• Primitives are defined as:
 send(A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A
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Synchronization
• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous
• Blocking send has the sender block until the message is 

received
• Blocking receive has the receiver block until a message is 

available

• Non-blocking is considered asynchronous
• Non-blocking send has the sender send the message and 

continue
• Non-blocking receive has the receiver receive a valid 

message or null
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Buffering
• Queue of messages attached to the link; implemented in one 

of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length 
Sender never waits
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Sockets
• A socket is defined as an endpoint for communication

• Concatenation of IP address and port

• The socket 161.25.19.8:1625 refers to port 1625 on 
host 161.25.19.8

• Communication consists between a pair of sockets

• Will talk more about the network later in the course
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Socket Communication
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Pipes
• Acts as a conduit allowing two processes to communicate

• Issues
• Is communication unidirectional or bidirectional?
• In the case of two-way communication, is it half or full-duplex?
• Must there exist a relationship (i.e. parent-child) between the 

communicating processes?
• Can the pipes be used over a network?
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Ordinary Pipes
• Ordinary Pipes allow communication in standard producer-

consumer style

• Producer writes to one end (the write-end of the pipe)

• Consumer reads from the other end (the read-end of the 
pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between communicating 
processes
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Ordinary Pipes
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Named Pipes
• Named Pipes are more powerful than ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary between the communicating 
processes

• Several processes can use the named pipe for communication

• Provided on both UNIX and Windows systems
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