
CS3600 — SYSTEMS AND NETWORKS
NORTHEASTERN UNIVERSITY

Lecture 14: Virtual Memory

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Background
• Code needs to be in memory to execute, but entire program

rarely used
• Error code, unusual routines, large data structures

• Entire program code not needed at same time
• Consider ability to execute partially-loaded program

• Program no longer constrained by limits of physical memory
• Program and programs could be larger than physical memory

2

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Background
• Virtual memory – separation of user logical memory from

physical memory
• Only part of the program needs to be in memory for execution
• Logical address space can therefore be much larger than

physical address space
• Allows address spaces to be shared by several processes
• Allows for more efficient process creation
• More programs running concurrently
• Less I/O needed to load or swap processes

• Virtual memory can be implemented via:
• Demand paging
• Demand segmentation

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Virtual Memory That is
Larger Than Physical Memory

4

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Virtual-address Space

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Virtual Address Space
• Enables sparse address spaces with holes left for growth, dynamically

linked libraries, etc
• System libraries shared via mapping into virtual address space
• Shared memory by mapping pages read-write into virtual address

space

• Pages can be shared during fork(), speeding process creation

6

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Shared Library Using Virtual Memory

7

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Demand Paging
• Could bring entire process into memory at load time
• Or bring a page into memory only when it is needed

• Less I/O needed, no unnecessary I/O
• Less memory needed
• Faster response
• More users

• Page is needed ⇒ reference to it
• invalid reference ⇒ abort
• not-in-memory ⇒ bring to memory

• Lazy swapper – never swaps a page into memory unless page
will be needed
• Swapper that deals with pages is a pager

8

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Transfer of a Paged Memory to
Contiguous Disk Space

9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(v ⇒ in-memory – memory resident, i ⇒ not-in-memory)
• Initially valid–invalid bit is set to i on all entries
• Example of a page table snapshot:

During address translation, if valid–invalid bit in page table entry
 is i ⇒ page fault

v
v
v
v
i

i
i

….

Frame # valid-invalid bit

page table

10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Page Table When Some Pages
Are Not in Main Memory

11

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Page Fault
• If there is a reference to a page, first reference to that page will

trap to operating system:
 page fault
1. Operating system looks at another table to decide:

• Invalid reference ⇒ abort
• Just not in memory

2. Get empty frame
3. Swap page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory

Set validation bit = v
5. Restart the instruction that caused the page fault

12

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Aspects of Demand Paging
• Extreme case – start process with no pages in memory

• OS sets instruction pointer to first instruction of process, non-memory-
resident -> page fault

• And for every other process pages on first access
• Pure demand paging

• Actually, a given instruction could access multiple pages -> multiple
page faults
• Pain decreased because of locality of reference

• Hardware support needed for demand paging
• Page table with valid / invalid bit
• Secondary memory (swap device with swap space)
• Instruction restart

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Instruction Restart
• Consider an instruction that could access several different locations

• block move

• auto increment/decrement location
• Restart the whole operation?

• What if source and destination overlap?

• Must make sure all pages are in-memory before starting operation
• May require “wiring” pages to ensure they aren’t kicked out

14

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Steps in Handling a Page Fault

15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

What Happens if There is no Free Frame?

• Used up by process pages
• Also in demand from the kernel, I/O buffers, etc
• How much to allocate to each?

• Page replacement – find some page in memory, but not really
in use, page it out
• Algorithm – terminate? swap out? replace the page?
• Performance – want an algorithm which will result in minimum

number of page faults

• Same page may be brought into memory several times

16

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Page Replacement

• Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement

• Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk

• Page replacement completes separation between logical
memory and physical memory – large virtual memory can be
provided on a smaller physical memory

17

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Need For Page Replacement

18

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Basic Page Replacement
1. Find the location of the desired page on disk

2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement algorithm to
select a victim frame
 - Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page
and frame tables

4. Continue the process by restarting the instruction that caused the
trap

Note now potentially 2 page transfers for page fault – increasing EAT
19

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Page Replacement

20

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Page and Frame Replacement Algorithms

• Frame-allocation algorithm determines
• How many frames to give each process
• Which frames to replace

• Page-replacement algorithm
• Want lowest page-fault rate on both first access and re-access

• Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string
• String is just page numbers, not full addresses
• Repeated access to the same page does not cause a page fault

• In all our examples, the reference string is
 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

21

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Graph of Page Faults Versus
The Number of Frames

22

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

First-In-First-Out (FIFO) Algorithm

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per process)

• Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
• Adding more frames can cause more page faults!

• Belady’s Anomaly

• How to track ages of pages?
• Just use a FIFO queue

23

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

FIFO Page Replacement

24

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

FIFO Illustrating Belady’s Anomaly

25

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Optimal Algorithm

• Replace page that will not be used for longest period of time
• 9 is optimal for the example on the next slide

• How do you know this?

• Can’t read the future

• Used for measuring how well your algorithm performs

26

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Optimal Page Replacement

27

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future
• Replace page that has not been used in the most amount of time
• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT
• Generally good algorithm and frequently used
• But how to implement?

28

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

LRU Approximation Algorithms
• True LRU needs special hardware and still slow
• Reference bit

• With each page associate a bit, initially = 0
• When page is referenced bit set to 1
• Replace any with reference bit = 0 (if one exists)

• We do not know the order, however

• Second-chance algorithm
• Generally FIFO, plus hardware-provided reference bit
• Clock replacement
• If page to be replaced has

• Reference bit = 0 -> replace it
• reference bit = 1 then:

set reference bit 0, leave page in memory

replace next page, subject to same rules

29

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Second-Chance (clock) Page-Replacement Algorithm

30

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Performance of Demand Paging

• Stages in Demand Paging
1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the interrupted instruction

31

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Performance of Demand Paging (Cont.)

• Page Fault Rate 0 ≤ p ≤ 1
• if p = 0 no page faults
• if p = 1, every reference is a fault

• Effective Access Time (EAT)
 EAT = (1 – p) x memory access
 + p (page fault overhead
 + swap page out
 + swap page in
 + restart overhead)

32

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Demand Paging Example

• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds

EAT = (1 – p) x 200 + p (8 milliseconds)
 = (1 – p) x 200 + p x 8,000,000
 = 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then EAT is 8.2 us
• This is a slowdown by a factor of 40!!

• If want performance degradation < 10 percent
• 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p
• p < .0000025
• < one page fault in every 400,000 memory accesses

33

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Copy-on-Write
• Copy-on-Write (COW) allows both parent and child processes to

initially share the same pages in memory
• If either process modifies a shared page, only then is the page copied

• COW allows more efficient process creation as only modified pages
are copied

• In general, free pages are allocated from a pool of zero-fill-on-
demand pages
• Why zero-out a page before allocating it?

• vfork() variation on fork() system call has parent suspend
and child using copy-on-write address space of parent
• Designed to have child call exec()

• Very efficient

34

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Before Process 1 Modifies Page C

35

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

After Process 1 Modifies Page C

36

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Thrashing

• If a process does not have “enough” pages, the page-fault rate
is very high
• Page fault to get page
• Replace existing frame
• But quickly need replaced frame back
• This leads to:

• Low CPU utilization
• Operating system thinking that it needs to increase the degree of

multiprogramming
• Another process added to the system

• Thrashing ≡ a process is busy swapping pages in and out

37

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Thrashing (Cont.)

38

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Demand Paging and Thrashing

• Why does demand paging work?
Locality model
• Process migrates from one locality to another
• Localities may overlap

• Why does thrashing occur?
Σ size of locality > total memory size
• Limit effects by using local or priority page replacement

39

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Locality In A Memory-Reference Pattern

40

