
CS3600 — SYSTEMS AND NETWORKS

SPRING 2013

Lecture 13: Paging

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Paging
• Physical address space of a process can be noncontiguous; process

is allocated physical memory whenever the latter is available

• Divide physical memory into fixed-sized blocks called frames
• Size is power of 2, between 512 bytes and 16 Mbytes

• Keep track of all free frames

• Divide logical memory into blocks of same size called pages

• To run a program of size N pages, need to find N free frames and
load program

• Set up a page table to translate logical to physical addresses

• Backing store likewise split into pages

2

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Address Translation Scheme

• Address generated by CPU is divided into:
• Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

• Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit

• For given logical address space 2m and page size 2n

page number page offset

p d
m - n n

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Paging Hardware

4

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Paging Model of Logical and Physical Memory

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Paging Example

n=2 and m=4
32-byte memory and 4-byte pages

6

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Paging (Cont.)
• What is the internal fragmentation of paging?

• Page size = 2,048 bytes

• Process size = 72,766 bytes

• 35 pages + 1,086 bytes

• Internal fragmentation of 2,048 - 1,086 = 962 bytes

• Worst case fragmentation = 1 frame – 1 byte

• Average fragmentation = 1 / 2 frame size

• So small frame sizes desirable?

• But each page table entry takes memory to track

• Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

• Process view and physical memory now very different

• By implementation process can only access its own memory

7

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Free Frames

Before allocation After allocation
8

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Implementation of Page Table
• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table
• Page-table length register (PTLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory accesses
• One for the page table and one for the data / instruction

• The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative memory or translation look-
aside buffers (TLBs)

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry –
uniquely identifies each process to provide address-space protection for

that process
• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)
• On a TLB miss, value is loaded into the TLB for faster access next time

• Replacement policies must be considered
• Some entries can be wired down for permanent access

9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Associative Memory
• Associative memory – parallel search

• Address translation (p, d)
• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #

10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Paging Hardware With TLB

11

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Effective Access Time
• Associative Lookup = ε time unit

• Can be < 10% of memory access time

• Hit ratio = α
• Hit ratio – percentage of times that a page number is found in the

associative registers; ratio related to number of associative registers

• Effective Access Time (EAT) (expr in terms of memory access time)
 EAT = (1 + ε) α + (2 + ε)(1 – α)

 = 2 + ε – α

• Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access

• EAT = 0.80 x 120 + 0.20 x 220 = 140ns
• Consider slower memory but better hit ratio -> α = 98%, ε = 20ns for TLB

search, 140ns for memory access
• EAT = 0.98 x 160 + 0.02 x 300 = 162.8ns

12

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Memory Protection

• Memory protection implemented by associating protection bit
with each frame to indicate if read-only or read-write access is
allowed
• Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:
• “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page

• “invalid” indicates that the page is not in the process’ logical
address space

• Or use PTLR

• Any violations result in a trap to the kernel

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Valid (v) or Invalid (i) Bit In A Page Table

14

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Shared Pages

• Shared code
• One copy of read-only (reentrant) code shared among processes

(i.e., text editors, compilers, window systems)

• Similar to multiple threads sharing the same process space

• Also useful for interprocess communication if sharing of read-
write pages is allowed

• Private code and data
• Each process keeps a separate copy of the code and data

• The pages for the private code and data can appear anywhere in
the logical address space

15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Shared Pages Example

16

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Structure of the Page Table

• Memory structures for paging can get huge using straight-
forward methods
• Consider a 32-bit logical address space as on modern computers

• Page size of 4 KB (212)

• Page table would have 1 million entries (232 / 212)

• If each entry is 4 bytes -> 4 MB of physical address space / memory
for page table alone

• That amount of memory used to cost a lot

• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

17

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Hierarchical Page Tables

• Break up the logical address space into multiple page tables

• A simple technique is a two-level page table

• We then page the page table

18

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Two-Level Page-Table Scheme

19

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page size) is
divided into:

• a page number consisting of 22 bits
• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further
divided into:

• a 12-bit page number
• a 10-bit page offset

• Thus, a logical address is as follows:

page number page offset

p1 p2 d
12 10 10

20

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Address-Translation Scheme

21

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

64-bit Logical Address Space
• Even two-level paging scheme not sufficient

• If page size is 4 KB (212)
• Then page table has 252 entries

• If two level scheme, inner page tables could be 210 4-byte entries

• Outer page table has 242 entries or 244 bytes

• One solution is to add a 2nd outer page table

• But in the following example the 2nd outer page table is still 234 bytes in
size

• And possibly 4 memory access to get to one physical memory location

outer
page page offset

p1 p2 d
42 10 12

inner
page

22

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Three-level Paging Scheme

23

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Hashed Page Tables

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table
• This page table contains a chain of elements hashing to the same

location

• Each element contains (1) the virtual page number (2) the value
of the mapped page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for
a match
• If a match is found, the corresponding physical frame is extracted

24

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Hashed Page Table

25

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Segmentation
• Memory-management scheme that supports user view of memory

• A program is a collection of segments
• A segment is a logical unit such as:

 main program
 procedure
 function
 method
 object
 local variables, global variables
 common block
 stack
 symbol table
 arrays

26

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

User’s View of a Program

27

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

28

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Segmentation Architecture

• Logical address consists of a two tuple:

 <segment-number, offset>,

• Segment table – maps two-dimensional physical addresses;
each table entry has:
• base – contains the starting physical address where the

segments reside in memory

• limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment
table’s location in memory

• Segment-table length register (STLR) indicates number of
segments used by a program;

 segment number s is legal if s < STLR

29

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Segmentation Architecture (Cont.)

• Protection
• With each entry in segment table associate:

• validation bit = 0 ⇒ illegal segment

• read/write/execute privileges

• Protection bits associated with segments; code sharing occurs
at segment level

• Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

• A segmentation example is shown in the following diagram

30

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Segmentation Hardware

31

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Example of Segmentation

32

