
C BOOTCAMP

DAY 4

CS3600, Northeastern University

Alan Mislove

Slides adapted from Anandha Gopalan’s CS132 course at Univ. of Pittsburgh
and the CS240 course at Purdue

Alan Mislove C Bootcamp Day 3

C Debugging

Alan Mislove C Bootcamp Day 3

Debugging with gdb

GDB is a debugger that helps you debug your program
Time you spend learning gdb will save you days of debugging time

You need to compile with the -g option to use gdb

The -g option adds debugging information to your program
 gcc -g -o hello hello.c

Should be done automatically in all Makefiles we give you

Alan Mislove C Bootcamp Day 3

Running gdb

To run a program with gdb type
gdb exename
....
(gdb)

Then set a breakpoint in the main function

Marker in your program that will make the program stop
Return control back to gdb
(gdb) break main

Now run your program
If your program has arguments, you can pass them after run
(gdb) run arg1 arg2 ... argN

Alan Mislove C Bootcamp Day 3

Stepping through

Your program will start and will stop at main
gdb>

You have the following commands to run your program step by step
(gdb) step

It will run the next line of code and stop
If it is a function call, it will enter into it

(gdb) next
It will run the next line of code and stop
If it is a function call, it will go through it

If the program is running without stopping, regain control CTRL-C

Alan Mislove C Bootcamp Day 3

Setting breakpoints

You can set breakpoints in a program in multiple ways:
(gdb) break function

Set a breakpoint in a function

(gdb) break line
Set a break point at a line number in the current file

(gdb) break file:line
Set a break point at a line number in a specific file

Alan Mislove C Bootcamp Day 3

Inspecting the stack

The command
(gdb) where

Prints the current function being executed
And the chain of functions that are calling that function

This is also called the backtrace

Example:
(gdb) where
#0 main () at test_mystring.c:22
#1 test () at test_mystring.c:38
(gdb)

Alan Mislove C Bootcamp Day 3

Inspecting variables

To print the value of a variable
(gdb) print variable

Will automatically print char*s and arrays

(gdb) print i
$1 = 5
(gdb) print s1
$1 = 0x10740 "Hello"
(gdb) print stack[2]
$1 = 56
(gdb) print stack
$2 = {0, 0, 56, 0, 0, 0, 0, 0, 0, 0}
(gdb)

Alan Mislove C Bootcamp Day 3

Catching seg faults

If your program seg faults, gdb will catch it

(gdb) run
Starting program: /home/amislove/a.out
test string

Program received signal SIGSEGV, Segmentation fault.
0x4007fc13 in _IO_getline_info () from /lib/libc.so.6

(gdb) backtrace
#0 0x4007fc13 in _IO_getline_info () from /lib/libc.so.6
#1 0x4007fb6c in _IO_getline () from /lib/libc.so.6
#2 0x4007ef51 in fgets () from /lib/libc.so.6
#3 0x80484b2 in main (argc=1, argv=0xbffffaf4) at segfault.c:10
#4 0x40037f5c in __libc_start_main () from /lib/libc.so.6

Alan Mislove C Bootcamp Day 3

Other C debugging tools

Purify
Checks code at runtime
Looks for errors like buffer overflows, accessing unallocated memory

Valgrind
Tool to help find memory leaks
Tracks allocation, tells you where memory allocated but never freed

Shark, Performance Tools
OS X has many tools built into Developer Tools

Alan Mislove C Bootcamp Day 3

Using Makefiles

Alan Mislove C Bootcamp Day 3

Makefiles

make is an early precursor to ant
Uses a Makefile, which holds the build instructions

In this class, I’ll give you the Makefile
But, you may want/need to extend it

Basic idea: Dependency graph
make determines what requires what

Builds graph
Also determines what needs to be updated

Based on file timestamps
Executes commands, stops if error occurs

Alan Mislove C Bootcamp Day 3

Makefile format

Unfortunately, Makefiles have a somewhat archaic format

target: [dependency1] [dependency2] ... [dependencyN]
command1
command2
...
commandN

Basically, says target depends on targets dependency[1-N]
And, if those exist, build target by executing command[1-N]

Note that commands must be indented with <tab> characters
Otherwise, you’ll be debugging your Makefile

Alan Mislove C Bootcamp Day 3

Makefile variables

All variables are accessed with $(name)
Defined with =
Built-in variables include $(input) [$<], $(output) [$@], $(inputs) [$^]

A number of built-in functions
Use file wildcards with $(wildcard pattern)
Remove/add suffixes with $(addsuffix suffix paths), $(basename paths)

Can express patterns with the % character

CC = gcc

%.o: %.c
! $(CC) -c $< -o $@

Alan Mislove C Bootcamp Day 3

Example Makefile

CFILES = $(wildcard *.c)

cp%: cp%.c
 gcc -std=c99 -O0 -g -lm -Wall -pedantic -Werror -o $@ $<

all: $(basename $(CFILES))

test: all
 ./test $(basename $(CFILES))

clean:
 rm $(basename $(CFILES))

Alan Mislove C Bootcamp Day 3

Debugging Makefiles

Sometimes, make will use built-in rules
E.g., compile C files with gcc
Can disable these with make -r

Sometimes, make doesn’t do what you want
Executes different commands than you expect
Can debug with make -n

Just prints commands to be executed

Alan Mislove C Bootcamp Day 3

UNIX Shell

Alan Mislove C Bootcamp Day 3

Shell environment

Shell environment
Consists of a set of variables with values
Important for the shell and the programs that run from the shell
You can define new variables, change the values

Usually set up in .bashrc, .tshrc files

Examples
PATH determines where to look for executables
SHELL indicates the type of shell you are using

bash% echo $PATH
/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin

Alan Mislove C Bootcamp Day 3

Viewing/setting env variables

bash% export FOO=BAR
bash% echo $FOO
BAR
bash% unset FOO
bash% echo $FOO

bash% export
declare -x CLICOLOR="1"
declare -x COMMAND_MODE="unix2003"
declare -x HOSTNAME="joshua"
....

Alan Mislove C Bootcamp Day 3

Configuration files

When bash is executed, it reads and runs certain configuration files:
.profile, .bash_profile: runs when you log in

Contains one time initialization, like TERM, HOME etc

.bashrc: run each time another bash process is invoked
Sets lots of variables, like PATH, HISTORY etc

Only modify the lines that you fully understand!
Can cause very bad errors if not careful

E.g., Adding the line logout to the .profile file is bad
Will cause you to be logged out every time you log in
Probably not what you want

