
C BOOTCAMP

DAY 3

CS3600, Northeastern University

Alan Mislove

Slides adapted from Anandha Gopalan’s CS132 course at Univ. of Pittsburgh
and Pascal Meunier’s course at Purdue

Alan Mislove C Bootcamp Day 3

Memory management

Alan Mislove C Bootcamp Day 3

Memory management

Two different ways to look at memory allocation
Transparent to user

Done by the compiler, OS
User-defined

Memory allocated by the user

Why allocate memory?
Required by program for permanent variables
Reserve working space for program

Normally maintained using a stack and a heap

Alan Mislove C Bootcamp Day 3

Stack

A stack is an organized data structure
Follows the LIFO (Last In First Out) principle
A data item which enters the stack last is the first to be taken out

4

3

2

1

5

Pop
4

3

2

1

Push
4

3

2

1

Alan Mislove C Bootcamp Day 3

Stack variables

void foo(int i) {
 int j, k;
 char foo[] = "test";
}

Where are j, k, and foo allocated?
How long are they valid references? What is their scope?

struct mystruct *foo(int i) {
 struct mystruct;
 mystruct.i = 7

 return &mystruct;
}

What happens if you try the program above?
Can the caller access mystruct?

Alan Mislove C Bootcamp Day 3

Heap

A heap is a collection in memory manipulated by the user/system
No order specified for addition/removal

1 2 3 4 5 61 2 3 4 5 1 2 4 5 6
Add 6 Del 3

Alan Mislove C Bootcamp Day 3

Dynamic memory allocation

There are times when we don’t know how much memory is required
Employee data base doesn’t know how many employees will exist
Program accepting command line input of different sizes
User requests more records to be created

printf("Add a new record y/n ?");
scanf ("%c", &response);
if (response == 'y') {
 // we now have to allocate space
}

We use the heap to allocate memory dynamically

Alan Mislove C Bootcamp Day 3

malloc

void *malloc (size_t size)

Returns a pointer to a contiguous block in memory of size bytes
For example

int *x = malloc(sizeof(int));

Returns a valid address, or NULL if an error occurs
ALWAYS check the return value of malloc

Memory is allocated (automatically) on the heap
Allocated space is not initialized; contains garbage
Contained in the header file: <stdlib.h> (usually) or <alloc.h>

Alan Mislove C Bootcamp Day 3

A void *?

Why is void * returned?
malloc just allocates memory which consists of some number of bytes
Memory as such has no data type
Programmer must associate a data type with the block of memory

How to assign a data type to the memory just created?
Use type casting

double *x; // x is a pointer to double; malloc returns an address
x = (double *) malloc(100); // type casting the memory to be a double*

How many doubles can we store? 100/8 = 12
We can clearly see a pit falls of malloc here

x = (double *) malloc(100 * sizeof(double)); // better

Alan Mislove C Bootcamp Day 3

Variants of malloc

void *calloc (size_t count, size_t size)

Allocated space is automatically initialized to zero
Same as malloc, but is contained in <stdlib.h>
Still have to cast void pointer to correct type

Advantages over malloc
Allocated memory is automatically initialized
size and count are separated, making it easier to use

Less prone to making errors on the correct amount and/or count required

int *x;
x = (int *) calloc (10, sizeof (int));

Alan Mislove C Bootcamp Day 3

Freeing memory

You, the programmer, are in charge of freeing memory
Only dynamically allocated memory can be freed (i.e., via malloc() or calloc())

int x; // memory for x is statically assigned here, cannot be freed

When finished using dynamically allocated memory, free it

void free (void *blk);

Good practice to avoid memory leaks.
Growing loss of memory due to unreleased locations
Could prevent program from running properly, due to lack of memory
Can run out of memory

Alan Mislove C Bootcamp Day 3

Using free()

char *x;
x = (char *) malloc (10 * sizeof (char));
free (x); // frees the memory just assigned

Never free a memory block that is not dynamically allocated.
int *x;
free (x); // error

Never double-free
char *x = (char *) malloc (10 * sizeof (char));
free (x);
free (x); // error

Never access freed memory
char *x = (char *) malloc (10 * sizeof (char));
free (x);
strcpy(x, "welcome"); // error

Alan Mislove C Bootcamp Day 3

Keep track of your pointers!

Dangling pointers
char *x, *y;

x = (char *) malloc (10 * sizeof (int));
y = (char *) malloc (10 * sizeof (int));

x = y; // cannot access what was in x anymore

Can easily lead to memory leaks

Alan Mislove C Bootcamp Day 3

Writing safe code in unsafe languages (e.g., C)

Alan Mislove C Bootcamp Day 3

A few tips

C provides much less help to the programmer than others
You can get yourself into trouble easily
Much more liberal with types

Also, much harder to debug
Memory is just an array of bytes

Programmer has to assign meaning
You can overwrite memory, making the source of problems

A few tips will make your experience in this class easier

Alan Mislove C Bootcamp Day 3

Buffer/array overflows

char b[10];
b[10] = x;

Array starts at index zero
So [10] is 11th element
One byte outside buffer was referenced
Off-by-one errors are common and can be exploitable!

Real example:
int get_request (int d, char buffer[], u_short len) {
 u_short i;
 for (i=0; i< len; i++) {
 ...
 }
 buffer[i] = ‘\0’;
 return i;
}

Alan Mislove C Bootcamp Day 3

What happens with an overflow?

If memory doesn't exist:
Bus error

If memory protection denies access:
Segmentation fault
General protection fault

If access is allowed, memory next to the buffer can be accessed
Can overwrite the heap, stack
Worst of all options; won’t detect immediately
Can compromise your program

Alan Mislove C Bootcamp Day 3

Preventing buffer overflows
void foo(int *array, int len);

Always pass array/buffer length with array
Don’t assume you know the length
Many library functions require you to do this already

int foo[3];
for (i=0; i<=3; i++)
 foo[i] = 0;

Remember that last element of n-length array is n-1
Can happen to the best programmers

Alan Mislove C Bootcamp Day 3

Dealing with strings

Recall, strings in C are NULL-terminated char*s
Most C functions don't guarantee NULL-termination
No guarantee that the strings you get are properly NULL-terminated

Need to carefully read the function description to figure out
When it may not NULL-terminate a string
How to check for NULL-termination
Where to append a NULL character yourself

Alan Mislove C Bootcamp Day 3

A few string functions

char * strncpy(char * dst, const char * src, size_t len);

len is the maximum number of characters to copy
dst is NULL-terminated only if less than len characters were copied!
All calls to strncpy must be followed by a NULL-termination operation

int strlen(const char * str);

What happens when you call strlen on an improperly terminated string?
Strlen scans until a null character is found
Can scan outside buffer if string is not null-terminated

Strlen is not safe to call unless you know string is NULL-termined

Alan Mislove C Bootcamp Day 3

And a few more

char * strcpy(char * dst, const char * src);

How can you use strcpy safely?
Set the last character of src to NULL

Even if string is shorter than the entire buffer
Do not check according to strlen(src)!

Check that the src is smaller than or equal to dst
Or allocate dst to be at least equal to the size of src

