
Alan Mislove C Bootcamp Day 1

Work relative to other classes



Alan Mislove C Bootcamp Day 1

Hours/week on projects



C BOOTCAMP

DAY 1

CS3600, Northeastern University

Alan Mislove

Slides adapted from Anandha Gopalan’s CS132 course at Univ. of Pittsburgh

Alan Mislove C Bootcamp Day 1

Overview

C: A language written by Brian Kernighan and Dennis Ritchie. This was
to be the language that UNIX was written in to become the first
"portable" language

C is an typed, imperative, call-by-value language



Alan Mislove C Bootcamp Day 1

Programming in C

Four stages
Editing: Writing the source code by using some IDE or editor
Preprocessing: Already available routines
Compiling: Translates source to object code for a specific platform
Linking: Resolves external references and produces the executable module

For now, we reduce these to two
Editing (use your favorite editor)
Compiling (use make)

You will also use make to test your program



Alan Mislove C Bootcamp Day 1

Example C program



Alan Mislove C Bootcamp Day 1

Example: Hello World in C
1: #include <stdio.h>
2:
3: int main(int argc, char *argv[]) {
4: printf("Hello, world!\n");
5: return 0;
6: }



Alan Mislove C Bootcamp Day 1

Line 1
1: #include <stdio.h>

As part of compilation, the C compiler runs a program called the C
preprocessor. The preprocessor is able to add and remove code from
your source file.

In this case, the directive #include tells the preprocessor to include
code from the file stdio.h.

This file contains declarations for functions that the program needs to
use. A declaration for the printf function is in this file.



Alan Mislove C Bootcamp Day 1

Line 3
3: int main(int argc, char *argv[]) {

This statement declares the main function.

A C program can contain many functions but must have one main.

A function is a self-contained module of code that can accomplish
some task.

The int specifies the return type of main. By convention, a status code
is returned (0 represents success, any other value indicates an error).



Alan Mislove C Bootcamp Day 1

Line 4
4: printf("Hello, world!\n");

printf is a function from a standard C library that is used to print
strings to the standard output (normally the terminal).

The compiler links code from these standard libraries to the code you
have written to produce the final executable.

The \n is a special format modifier that tells the printf to put a line
feed (ASCII character 10) at the end of the line.

If there were another printf in this program, its string would print on
the next line.



Alan Mislove C Bootcamp Day 1

Line 5
5: return 0;

Returns 0 from the current function. For the main function, this is the
return status of the program.

The type of this value must match the function definition

No statements after the return will be executed



Alan Mislove C Bootcamp Day 1

Data types and operators



Alan Mislove C Bootcamp Day 1

Data types

Data type determines
How it is represented internally by the hardware
How it may be legally manipulated, (operations allowed on that data type)
What values it may take on

Constants and variables are classified into 4 basic types
Character: char (1 byte)
Integer: int (usually 4 bytes)
Floating Point: float (usually 4 bytes)
All other data objects are built up from these fundamental types



Alan Mislove C Bootcamp Day 1

char

What is a character
A member of the character set
ASCII: American Standard Code for Information Interchange (128
characters)
Each character is internally represented using a number (e.g: A is 65)

Recognized types, sizes and ranges:
char: 1 byte (0 ≤ x ≤ 255)

unsigned char: 1 byte (0 ≤ x ≤ 255)

signed char: 1 byte (-128 ≤ x ≤ 127)



Alan Mislove C Bootcamp Day 1

char (cont.)

ASCII character ‘2’ and the number 2 are not the same (2 != '2')
'2' is the character 2 (50 in ASCII)
2 is the number 2
As a result, '2' = 50

Escape Sequence
Special characters denoted by ‘\’ followed by characters or hexadecimal
code

Common sequences
\n new line \a alert
\t tab \\ backslash
\r carriage return \” double quote



Alan Mislove C Bootcamp Day 1

int, short, long
A whole or integral number, not containing a fractional part

Recognized types, size and ranges:
short int: 2 bytes (-215 ≤ x ≤ 215 –1)

int: 4 bytes (-231 ≤ x ≤ 231 – 1, signed by default)

unisgned int: 4 bytes (0 ≤ x ≤ 232-1)

long long int: 8 bytes (-263 ≤ x ≤ 263 – 1, signed by default)

Expressible as octal, decimal or hexadecimal
Integer starting with 0 will be interpreted in octal (e.g: 010 is 8)
Integer starting with 0x will be interpreted in hexadecimal (0x10 is 16)

Negative numbers typically represented using two’s complement
What does short a = -7 look like in machine representation?



Alan Mislove C Bootcamp Day 1

float, double

A number which may include a fractional part

Representation is an estimate (although at times, it may be exact)
2.13 can be represented exactly
1.23456789 x 1028 does not fit into a float

Hence number is truncated

Recognized types, sizes and ranges
float: 4 bytes (1 sign bit, 8 exponent bits, 24 fraction bits)

Range is -1e37 ≤ x ≤ 1e38

double: 8 bytes (1 sign bit, 11 exponent bits, 53 fraction bits)
Range is -1e307 ≤ x ≤ 1e308

long double: usually the same as double, sometimes 80 bits



Alan Mislove C Bootcamp Day 1

Arithmetic operators
Assignment (=) a = b Equal to a == b
Addition (+) a + b Not equal to a != b
Subtraction (-) a - b Less than a < b
Multiplication (*) a * b Less than or equal to a <= b
Division (/) a / b Increment a++
Modulus (%) a % b Decrement a--

Order of precedence (highest to lowest)
Parenthesis
Multiplication, division, modulus
Addition, subtraction
Comparisons
Assignment



Alan Mislove C Bootcamp Day 1

Bitwise operators
Ints can be viewed as collections of bits; C provides bitwise operations

Bitwise AND (&) a & b
Bitwise OR (|) a | b
Bitwise NOT (~) ~a
Bitwise XOR (^) a ^ b
Bitwise left shift (<<) a << b
Bitwise right shift (>>) a >> b

Examples:
unsigned int a = 9;
unsigned int b = 3;
printf("9 & 3 is: %d\n", (a & b)); // ?
printf("9 << 3 is: %d\n", (a << b)); // ?



Alan Mislove C Bootcamp Day 1

Constants



Alan Mislove C Bootcamp Day 1

Constants



Constants are values written directly into program statements
Not stored in variables
Can assign constant values to variables

unsigned int x = 122;

Constants never change value
Cannot assign value to any type of constant

Character constants
Represented in ‘’ (single quotes)

char x = 'c';

Alan Mislove C Bootcamp Day 1

Numerical constants

Integer constants
Default data type is int
If value exceeds int range, it then becomes long
Can force compiler to store value as long/unsigned using l/u suffixes

long c = 0x0304lu;

Floating point constants
Default type of floating point is double
Can force type float during compilation by using decimal (e.g., 1.0)
Can also use scientific notation

float x = 1.3e-20;



Alan Mislove C Bootcamp Day 1

Variables



Alan Mislove C Bootcamp Day 1

Variables



Variables are placeholders for values

Variable declaration (e.g., int x = 7;)
Associates data type with the variable name
Allocates memory of proper size and associates variable name with it
Cannot be re-declared within the scope of prior declaration
Variable memory space initially contains junk, unless initialized

Variable name
Set of characters starting with [A-Z] or [a-z] or underscore
Period (.) is not allowed; no leading numbers; no reserved keywords
Case sensitive

Convention is lowercase used for variables and UPPERCASE for constants

Alan Mislove C Bootcamp Day 1

Variable types

Character variables:
Declared using the char keyword

char first = 'c';
char second = 100;

 Integer variables
Declared using the int keyword, with modifiers

int a = 8;
short unsigned int c = 2;

Floating point variables

Declared using the float or double keyword
float g = 3.4;
double e = -2.773;



Alan Mislove C Bootcamp Day 1

Arrays



A “data structure” storing a collection of identical objects.
Allocated memory space is contiguous.
Identified using a single variable
The size is equal to the number of elements and is a “constant”.

E.g., create an array called test_array which has 10 integer elements
int test_array[10];
int my_array[2] = { 30, 10 };

Array Elements
Referenced by name ,index (0-indexed; 2nd element is test_array[1])
Array bounds not checked

test_array[123] = 7; // will compile and run, with unpleasant results

Alan Mislove C Bootcamp Day 1

Commonly used functions



Alan Mislove C Bootcamp Day 1

printf

Contained in the header file <stdio.h>
int printf (“string of chars and conversion specs”, arg1, arg2, ...);

The string is output to stdout with conversion specs substituted
Returns an int, which is the number of bytes written, or EOF on error

printf("Hello world\n");

[amislove@joshua]$./a.out
Hello World
[amislove@joshua]$

printf("Hello world");

[amislove@joshua]$./a.out
Hello World[amislove@joshua]$



Alan Mislove C Bootcamp Day 1

printf Conversion specification

Output conversion specification.
%[-][field_width_min][.][precision][qualifier]conv_character

Starts with the % character and ends with the conv_character
None or more options may appear between % and the conv_character

- left justification in field (default is right)
field width min specifies minimum field width, auto expanded
. field separator.
precision max num characters to right of decimal in float/double
qualifier allows us to specify more about the output
h for short, l for long, ll for long long



Alan Mislove C Bootcamp Day 1

printf conversion chars

Determines how printf prints the value
d, i integers
u unsigned integer
o unsigned octal integer
X, x unsigned hexadecimal integer
c single character
s string (more next lecture)
f floating point
E, e floating point in scientific notation

printf("%d, %x, %c\n", 78, 78, 78);

[amislove@joshua]$./a.out
78, 0x4e, N
[amislove@joshua]$



Alan Mislove C Bootcamp Day 1

casting

Ability to cast a datatype to look like another datatype

Operands converted to single type before expression evaluation
Generally converted to the longest type

char is converted to int
float is converted to double
int is converted to float

Problems with expressions
Compiler does not know what the user wants to do with that expression
Default behavior is to force expression to fit the target
When target is smaller size, then potential loss of accuracy/precision
When target is larger, then in general, no problem.



Alan Mislove C Bootcamp Day 1

Manual casting

Casting by placing desired type in (), preceding the item to be cast

y = (int) 3.14 * x;
z = (double) y;

Cannot cast everything, only comparable data types

y = (char*) 3.14 * x; //does not compile

Cant do this as structure of double and string are different
Casting is a unary operator with high precedence

Casting does not alter the cast variable or expression
Only alters the variable/expression value as it is assigned or manipulated



Alan Mislove C Bootcamp Day 1

sizeof

Returns number of bytes required to store a specific data type.
Usage: int x = sizeof(<argument>);

Works with types, variables, arrays, structures:
Size of an int sizeof(int)
Size of a structure sizeof(struct foo)

Size of an array element: sizeof(test_array[0]);

Size of the entire array: sizeof(test_array);

Size of int variable x: sizeof(x);



Alan Mislove C Bootcamp Day 1

Integer division

An integer function that returns an integer
NOTE: divisor cannot be zero
Result is always an integer.

30 / 2 = 15;
31 / 2 = 15;

Can force float division through casting

31 / (float) 2 = 15.5;

Modulus operator yields the integer remainder of an integer division

30 % 2 = 0;
31 % 2 = 1;



