CS3600 — Systems and Networks
FALL 2012

Lecture 25: Routing

Prof. Alan Mislove (amislove@ccs.neu.edu)

Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang
What is Routing?

• To ensure information is delivered to the correct destination at a reasonable level of performance

• Forwarding
 – Given a forwarding table, move information from input ports to output ports of a router
 – Local mechanical operations

• Routing
 – Acquires information in the forwarding tables
 – Requires knowledge of the network
 – Requires distributed coordination of routers
Viewing Routing as a Policy
Viewing Routing as a Policy

• Given multiple alternative paths, how to route information to destinations should be viewed as a policy decision
Viewing Routing as a Policy

- Given multiple alternative paths, how to route information to destinations should be viewed as a policy decision.
- What are some possible policies?
 - Shortest path (RIP, OSPF)
 - Most load-balanced
 - QoS routing (satisfies app requirements)
 - etc
Internet Routing

- Internet topology roughly organized as a two level hierarchy
- First lower level – autonomous systems (AS’s)
 - AS: region of network under a single administrative domain
- Each AS runs an intra-domain routing protocol
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
 - Possibly others

- Second level – inter-connected AS’s
- Between AS’s runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4
Example

AS-1

AS-2

AS-3

Interior router
BGP router
Why Need the Concept of AS or Domain?
Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal with the size of the entire Internet
Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal with the size of the entire Internet
• Different organizations may want different internal routing policies
Why Need the Concept of AS or Domain?

• Routing algorithms are not efficient enough to deal with the size of the entire Internet
• Different organizations may want different internal routing policies
• Allow organizations to hide their internal network configurations from outside
Why Need the Concept of AS or Domain?

- Routing algorithms are not efficient enough to deal with the size of the entire Internet
- Different organizations may want different internal routing policies
- Allow organizations to hide their internal network configurations from outside
- Allow organizations to choose how to route across multiple organizations (BGP)
Why Need the Concept of AS or Domain?

- Routing algorithms are not efficient enough to deal with the size of the entire Internet
- Different organizations may want different internal routing policies
- Allow organizations to hide their internal network configurations from outside
- Allow organizations to choose how to route across multiple organizations (BGP)
Why Need the Concept of AS or Domain?

- Routing algorithms are not efficient enough to deal with the size of the entire Internet.
- Different organizations may want different internal routing policies.
- Allow organizations to hide their internal network configurations from outside.
- Allow organizations to choose how to route across multiple organizations (BGP).
- Basically, easier to compute routes, more flexibility, more autonomy/independence.
Outline

• Two intra-domain routing protocols
• Both try to achieve the “shortest path” routing policy
• Quite commonly used

• OSPF: Based on Link-State routing algorithm
• RIP: Based on Distance-Vector routing algorithm
Intra-domain Routing Protocols

• Based on unreliable datagram delivery

• Distance vector
 – Routing Information Protocol (RIP), based on Bellman-Ford algorithm
 – Each neighbor periodically exchange reachability information to its neighbors
 – Minimal communication overhead, but it takes long to converge, i.e., in proportion to the maximum path length

• Link state
 – Will not cover; read book
Routing on a Graph

• Goal: determine a “good” path through the network from source to destination
 – Good often means the shortest path
• Network modeled as a graph
 – Routers → nodes
 – Link → edges
 • Edge cost: delay, congestion level,…
Distance Vector Routing (RIP)

- What is a distance vector?
 - Current best known cost to get to a destination
- Idea: Exchange distance vectors among neighbors to learn about lowest cost paths

<table>
<thead>
<tr>
<th>Node C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest.</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
</tbody>
</table>

Note no vector entry for C itself

At the beginning, distance vector only has information about directly attached neighbors, all other dests have cost ∞

Eventually the vector is filled
Distance Vector Routing Algorithm

- Iterative: continues until no nodes exchange info
- Asynchronous: nodes need *not* exchange info/iterate in lock steps
- Distributed: each node communicates *only* with directly-attached neighbors
- Each router maintains
 - Row for each possible destination
 - Column for each directly-attached neighbor to node
 - Entry in row Y and column Z of node X ➔ best known distance from X to Y, via Z as next hop
- Note: for simplicity in this lecture examples we show only the shortest distances to each destination
Distance Vector Routing

- Each local iteration caused by:
 - Local link cost change
 - Message from neighbor: its least cost path change from neighbor to destination

- Each node notifies neighbors only when its least cost path to any destination changes
 - Neighbors then notify their neighbors if necessary

Each node:

- **wait** for (change in local link cost or msg from neighbor)
- **recompute** distance table
- if least cost path to any dest has changed, **notify** neighbors
Distance Vector Algorithm (cont’d)

1 *Initialization:*
2 for all nodes \(V \) do
3 if \(V \) adjacent to \(A \)
4 \(D(A, V, V) = c(A, V); \) /* Distance from \(A \) to \(V \) via neighbor \(V \) */
5 else
6 \(D(A, V, *) = \infty; \)

loop:
8 wait (until \(A \) sees a link cost change to neighbor \(V \)
9 or until \(A \) receives update from neighbor \(V \))
10 if (\(c(A, V) \) changes by \(d \))
11 for all destinations \(Y \) through \(V \) do
12 \(D(A, Y, V) = D(A, Y, V) + d \)
13 else if (update \(D(V, Y) \) received from \(V \))
14 /* shortest path from \(V \) to some \(Y \) has changed */
15 \(D(A, Y, V) = c(A, V) + D(V, Y); \)
16 if (there is a new minimum for destination \(Y \))
17 send \(D(A, Y) \) to all neighbors /* \(D(A, Y) \) denotes the min \(D(A, Y,*) \) */
18 forever
Example: Distance Vector Algorithm

1 Initialization:
2 for all nodes \(V \) do
3 if \(V \) adjacent to \(A \)
4 \(D(A, V, V) = c(A, V) \);
5 else
6 \(D(A, V, *) = \infty \);
7 \(\) else
8 \(D(A, V, *) = \infty \);
9 \(\)

Node A

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>(\infty)</td>
<td>-</td>
</tr>
</tbody>
</table>

Node B

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>D</td>
</tr>
</tbody>
</table>

Node C

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
</tbody>
</table>

Node D

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Cost</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\infty)</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>
Example: 1st Iteration (C \rightarrow A)

7 \textit{loop:}
...
13 \textbf{else if} (update D(V, Y) received from V)
14 \quad D(A, Y, V) = c(A, V) + D(V, Y);
15 \textbf{if} (there is a new min. for destination Y)
16 \quad \textbf{send} D(A, Y) to all neighbors
17 \textbf{forever}

\begin{align*}
D(A, D, C) &= c(A, C) + D(C, D) = 7 + 1 = 8 \\
(D(C, A), D(C, B), D(C, D))
\end{align*}
Example: 1st Iteration (B\rightarrow A, C\rightarrow A)

- **Node A**
 - Dest. | Cost | NextHop
 - --- | --- | ---
 - B | 2 | B
 - C | 3 | B
 - D | 5 | B

- **Node B**
 - Dest. | Cost | NextHop
 - --- | --- | ---
 - A | 2 | A
 - C | 1 | C
 - D | 3 | D

- **Node C**
 - Dest. | Cost | NextHop
 - --- | --- | ---
 - A | 7 | A
 - B | 1 | B
 - D | 1 | D

- **Node D**
 - Dest. | Cost | NextHop
 - --- | --- | ---
 - A | ∞ | -
 - B | 3 | B
 - C | 1 | C

\[D(A, D, B) = c(A, B) + D(B, D) = 2 + 3 = 5 \]
\[D(A, C, B) = c(A, B) + D(B, C) = 2 + 1 = 3 \]

7 **loop:**

- \(\ldots \)
- 13 \textbf{else if} (update \(D(V, Y) \) received from \(V \))
- 14 \(D(A, Y, V) = c(A, V) + D(V, Y) \)
- 15 \textbf{if} (there is a new min. for destination \(Y \))
- 16 \textbf{send} \(D(A, Y) \) to all neighbors
- 17 \textbf{forever}
Example: End of 1st Iteration

7 loop:

13 else if (update $D(V, Y)$ received from V)
14 $D(A, Y, V) = c(A, V) + D(V, Y)$;
15 if (there is a new min. for destination Y)
16 send $D(A, Y)$ to all neighbors
17 forever
Example: End of 2nd Iteration

7 \textit{loop}:

\begin{itemize}
 \item ...
 \item 13 \textbf{else if} (update $D(V, Y)$ received from V)
 \item 14 \hspace{1em} $D(A, Y, V) = c(A, V) + D(V, Y)$;
 \item 15 \hspace{1em} \textbf{if} (there is a new min. for destination Y)
 \item 16 \hspace{1em} \textbf{send} $D(A, Y)$ to all neighbors
 \item 17 \hspace{1em} \textit{forever}
\end{itemize}
Example: End of 3rd Iteration

7 loop:

...

13 else if (update $D(V, Y)$ received from V)
14 $D(A, Y, V) = c(A, V) + D(V, Y)$;
15 if (there is a new min. for destination Y)
16 send $D(A, Y)$ to all neighbors
17 forever

Nothing changes \rightarrow algorithm terminates
Distance Vector: Link Cost Changes

7 loop:
8 wait (until A sees a link cost change to neighbor V or until A receives update from neighbor V)
9 if (c(A,V) changes by d)
10 for all destinations Y through V do
11 \[D(A,Y,V) = D(A,Y,V) + d \]
12 else if (update D(V, Y) received from V)
13 \[D(A,Y,V) = c(A,V) + D(V, Y) \]
14 if (there is a new minimum for destination Y)
15 send D(A,Y) to all neighbors
16 forever

“good news travels fast”

Link cost changes here
Algorithm terminates

Node B:
- D(C,N) = A 4 A
- D(C,N) = A 1 A
- D(C,N) = A 1 A
- D(C,N) = A 1 A

Node C:
- D(C,N) = A 5 B
- D(C,N) = A 5 B
- D(C,N) = A 2 B
- D(C,N) = A 2 B
Distance Vector: Count to Infinity Problem

7 loop:
8 wait (until A sees a link cost change to neighbor V
9 or until A receives update from neighbor V)
10 if (c(A,V) changes by d)
11 for all destinations Y through V do
12 D(A, Y, V) = D(A, Y, V) + d;
13 else if (update D(V, Y) received from V)
14 D(A, Y, V) = c(A, V) + D(V, Y);
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors
17 forever

Link cost changes here; recall that B also maintains shortest distance to A through C, which is 6. Thus D(B, A) becomes 6!
Distance Vector: Poisoned Reverse

- If C routes through B to get to A:
 - C tells B its (C’s) distance to A is infinite (so B won’t route to A via C)
 - Will this completely solve count to infinity problem?

<table>
<thead>
<tr>
<th>Node B</th>
<th>D</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Node C</td>
<td>D</td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

Link cost changes here; B updates D(B, A) = 60 as C has advertised D(C, A) = ∞

Algorithm terminates