Systems challenges in online social media

Alan Mislove

College of Computer and Information Science
Northeastern University

December 6th, 2011, Top-IX Conference
Turin, Italy
A new way of organizing information

Web

Online social media
A new way of organizing information

Web

Online social media
A new way of organizing information

Web

Online social media
A new way of organizing information

Web

Online social media
A new way of organizing information

Web

Online social media
A new way of organizing information

Web

Online social media
A new way of organizing information

Web

Online social media
Leveraging social networks results in “better” systems
Due to the increasing integration of systems and social networks

Step 1: Understand social network properties

Step 2: Build systems and algorithms to address challenges

My group’s research is motivated by trends
Will give two examples today
Trend 1:

Changing patterns of content creation + exchange
Pre-2005 Web (a.k.a. Web 1.0)

Telvia

Telecom Italia

Fastweb

NGI
Pre-2005 Web (a.k.a. Web 1.0)
Change 1: Content popularity

Fraction of documents (ranked from most to least popular)

Fraction of requests

Change 1: Content popularity

Fraction of documents (ranked from most to least popular)

Fraction of requests

Change 1: Content popularity

![Graph showing the fraction of requests and documents](image)

- **Fraction of requests**
- **Fraction of documents** (ranked from most to least popular)

12.06.11 Top-IX Conference, Turin, Italy

Alan Mislove
Change 1: Content popularity

Fraction of documents (ranked from most to least popular)

CLASSIC WEB [1]

EVEN DISTRIBUTION

Fraction of requests

[37x31]12.06.11 Top-IX Conference, Turin, Italy

[365x31]Alan Mislove
Change 1: Content popularity

Fraction of documents (ranked from most to least popular)

Change 1: Content popularity

Fraction of documents (ranked from most to least popular)

Implication: Caches less effective

Popularity distribution much more even
Objects have more narrow scope

In classic Web:
Caching top 10% serves between 55% [1] and 95% [2] of requests
Success of CDNs, web caches, ...

In online social media:
Caching top 10% would only serve 27% [3] of requests

Change 2: Content generation
Change 2: Content generation

[Diagram showing connections between Telecom Italia, Telvia, Fastweb, and NGI]
Change 2: Content generation
Change 2: Content generation

- Telvia
- Telecom Italia
- Fastweb
- NGI
- Facebook
Implication: Workload change

Significant content creation at network’s edge
- Ease of digital content creation (photos, video)
- Ubiquity of Internet access (cell phone, iPad)

In classic Web:
- Workload was “center-to-edge”
- Caching, CDNs take load off origin server

In online social media:
- Workload is “edge-to-edge”
- Significant geographic locality
Implication: Workload change

Significant content creation at network’s edge
Ease of digital content creation (photos, video)
Ubiquity of Internet access (cell phone, iPad)

In classic Web:
Workload was “center-to-edge”
Caching, CDNs take load off origin server

In online social media:
Workload is “edge-to-edge”
Significant geographic locality
Implication: Workload change

Significant content creation at network’s edge
 Ease of digital content creation (photos, video)
 Ubiquity of Internet access (cell phone, iPad)

In classic Web:
 Workload was “center-to-edge”
 Caching, CDNs take load off origin server

In online social media:
 Workload is “edge-to-edge”
 Significant geographic locality
How is OSN content being delivered?

Web 1.0 “centralized” architectures dominate
 Akamai, Limelight, Clearway, ...
Facebook serves much of its own content

Mismatch between infrastructure, workload

Workload is naturally decentralized
 Every Facebook upload goes via CA

Can we build a workload-matching distribution system?
 Avoid unnecessary, expensive transfers
WebCloud: Decentralized delivery

WebCloud

First step towards decentralized Web content delivery
Challenge: Web doesn’t support decentralization
Browsers distinct from Web servers

Use novel techniques to allow browser to serve content
No client-side changes
Users help serve content they upload
Result: Scalable, workload-matching architecture

Don’t have time for technical discussion
Built, deployed prototype
WebCloud applied to real-world site

Top-50 U.S. web site
Simulation based on Akamai logs

Would dramatically reduce bandwidth required
Savings for both site and ISP
WebCloud applied to real-world site

Top-50 U.S. web site
Simulation based on Akamai logs

Would dramatically reduce bandwidth required
Savings for both site and ISP
WebCloud applied to real-world site

Top-50 U.S. web site
Simulation based on Akamai logs

Would dramatically reduce bandwidth required
Savings for both site and ISP
WebCloud applied to real-world site

76% REDUCTION IN 95TH PERCENTILE BANDWIDTH

Top-50 U.S. web site
Simulation based on Akamai logs

Would dramatically reduce bandwidth required
Savings for both site and ISP
Summary

Beginnings of **shift in patterns of content creation + exchange**
Patterns changing from “center to edge” to “edge to edge”
Less biased popularity distribution

But, **still using centralized delivery architectures**

WebCloud: Step towards decentralized Web content delivery
Users help serve content they create
Implemented using existing browser features; no client changes

Evaluation demonstrated practicality, efficacy
Trend 2:
Changing notion of accounts/identity
User accounts

Account abstraction now **ubiquitous**
- Represents one or more people in a computer system
- Encapsulates privileges

Traditionally **verified by service operators**

Trend: Online services with **free accounts**
- Not verified by operators

Accounts come with **privileges**
- Send messages (Gmail)
- Upload content (Facebook)
- Vote (Digg)
Free accounts with privileges leading to Sybil attacks [IPTPS 2002]
Single person creates many accounts

Why?
Natural: Gain extra privileges
Incentives set up to encourage this

Examples in the wild
Maze [ICDCS 2007]
Digg [NSDI 2009]
TripAdvisor [NYT, 10/2011]
Facebook, Gmail [me, others]
Free accounts with privileges leading to Sybil attacks [IPTPS 2002]
Single person creates many accounts

Why?
Natural: Gain extra privileges
Incentives set up to encourage this

Examples in the wild
Maze [ICDCS 2007]
Digg [NSDI 2009]
TripAdvisor [NYT, 10/2011]
Facebook, Gmail [me, others]
Example: Online marketplaces

Among most successful Web sites
eBay alone: $62 billion in 2010

But, known to suffer from fraud
Identities and reputations

Feedback profile

Significant monetary losses
Recent arrest of user who stole $717k from 5,000 users
Used >250 accounts
Identities and reputations

Feedback profile

Significant monetary losses
Recent arrest of user who stole $717 k from 5,000 users
Used >250 accounts
Significant monetary losses
Recent arrest of user who stole $717 k from 5,000 users
Used >250 accounts
Bazaar: A new approach

New approach to strengthening user reputations
Leverages an (existing) risk network
Focuses on protecting buyers from malicious sellers

Works in conjunction with existing marketplace
Assumes same feedback system as today
No additional monetary cost
No strong identities

Insight: Successful transactions represent shared risk
Buyer and seller more likely to enter into future transactions
Bazaar’s risk network

Successful transaction → two identities linked
Weighted by amount of transaction

Risk network automatically generated
Users need not even know about it
Estimating risk

Bazaar calculates max-flow between buyer and seller. If max-flow lower than potential transaction, flag as fraudulent.
Bazaar calculates max-flow between buyer and seller. If max-flow lower than potential transaction, flag as fraudulent.
Bazaar calculates max-flow between buyer and seller. If max-flow lower than potential transaction, flag as fraudulent.
Estimating risk

Bazaar calculates max-flow between buyer and seller. If max-flow lower than potential transaction, flag as fraudulent.
Summary

Increasing trend of online services with free accounts
Opens new vector for attack

Focused on reputation manipulation in online marketplaces
Bazaar: A new approach to strengthening reputations

Evaluated on 10 million auctions from eBay UK
Would have prevented £164k of negative feedback
Only in five categories over 90 days

Currently looking to apply techniques to other domains
Conclusion

Social networks and computer systems increasingly integrated
New way of organizing information
Leading to new opportunities, challenges

My group’s goal: Leverage social networks in systems design

WebCloud: Addresses challenges with emerging workloads
Bazaar: Addresses challenges with free accounts
Questions?

Work done in collaboration with

Ben Adams (MPI-I), Bobby Bhattacharjee (University of Maryland), Meeyoung Cha (KAIST),
Peter Druschel (MPI-SWS), Krishna P. Gummadi (MPI-SWS),
Andreas Haeberlen (University of Pennsylvania), Ancsa Hannák (Northeastern University),
Jonathan Katz (University of Maryland), Hema Swetha Koppula (Yahoo Research India),
Sune Lehmann (TU Copenhagen), Yabing Liu (Northeastern University),
Arash Molavi (Northeastern University), Jukka-Pekka Onnela (Harvard University),
Ansley Post (Google), J. Niels Rosenquist (Harvard Medical School),
Neil Spring (University of Maryland), Ravi Sundaram (Northeastern University),
Malveeka Tewari (University of California, San Diego), Bimal Viswanath (MPI-SWS),
Liang Zhang (Northeastern University), Fangfei Zhou (Northeastern University)