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What are (online) social networks?

• Social networks are graphs of people
• Graph edges connect friends

• Online social networking
• Social network hosted by a Web site
• Friendship represents shared 

interest or trust
• Online friends may have never met
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What are online social networks used for?

• Popular way to connect, share content
• Photos (Flickr), videos (YouTube), 

blogs (LiveJournal), profiles (Orkut)

• Orkut (60 M), LiveJournal (5 M)

• Content organized with user-user links
• Akin to Web’s page-page links
• Social network structure influences 

how content is shared
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This work
• Presents large-scale measurement study and analysis of the 

structure of multiple online social networks
• 11 M users, 328 M links

• Data from four diverse online social networks
• Flickr:   photo sharing
• LiveJournal:   blogging site
• Orkut:  social networking site
• YouTube:  video sharing

• Our goals are two-fold:
• Measure online social networks at scale
• Understand static structural properties
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Why study social network structure?

• Guide designers of future systems
• Trust relationships suggest new reasoning about trust
• Shared interest suggests new ways of structuring information

• Trust can be used to solve security problems
• Multiple identity attacks:  SybilGuard [SIGCOMM’06]

• Spam:  RE [NSDI’06]

• Shared interest can improve content location
• Web search: PeerSpective [HotNets’06]

• Understanding network structure is necessary first step
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Rest of the talk

• Measuring social networks at scale

• Analyzing structural properties
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• Sites reluctant to give out data
• Cannot enumerate user list
• Instead, performed crawls of user graph

• Picked known seed user
• Crawled all of his friends
• Added new users to list

• Continued until all known users crawled

• Effectively performed a BFS of graph

Overview:  Measuring online social networks
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Challenges faced

• Obtaining data using crawling presents unique challenges

• Crawling quickly
• Underlying social networks changing rapidly

• Consistent snapshot hard to get
• Need to complete the crawl quickly

• Crawling completely
• Social networks aren’t necessarily connected

• Some users have no links, or small clusters
• Need to estimate the crawl coverage
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How fast could we crawl?

• Crawled using cluster of 58 machines
• Used APIs where available
• Otherwise, used screen scraping

• Crawls took varying times
• Flickr, YouTube:  1 day
• LiveJournal:  3 days
• Orkut (partial):  39 days

• Crawls subject to rate-limiting
• Discovered appropriate rates

9
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How much could we crawl?

10

• Users don’t necessarily 
form single WCC
• Disconnected users

• Estimate coverage by 
selecting random users
• After crawl, determine 

fraction of users 
covered

• Networks tend to have 
one giant WCC
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Evaluating coverage: Flickr

• Obtained random users by guessing 
usernames (########@N00)

• Fraction of disconnected users is 73%

• But, disconnected users have very low degree
• 90% have no outgoing links, remaining 10% 

have few links

• Summary: 
• Covered 27% of user population, but 

remaining users have very few links
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Evaluating coverage: LiveJournal

• Obtained random users using special URL
• http://www.livejournal.com/random.bml

• Fraction of disconnected users is only 5%

• Summary:
• Crawl covered 95% of user population
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Evaluating coverage: Orkut

• At time of crawl, Orkut was fully connected
• But, we ended crawl early

• How representative is our sub-crawl?
• Performed multiple crawls from different seeds
• Obtained random seed users using maximum-

degree sampling

• Properties consistent across smaller crawls

• Summary:
• Sub-crawl of user population, but likely 

representative of similarly sized subcrawls
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Evaluating coverage: YouTube

• Could not obtain random users
• Usernames user-specified strings
• Not fully connected (could not use 

maximum-degree sampling)

• Unable to find estimate of user population

• Summary: 
• Unable to estimate fraction of users 

covered
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Outline

• Measuring social networks at scale

• Analyzing structural properties
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Network structure questions

• Want to examine structural properties

• Which users have the links?
• Even distribution of links, or is it skewed?

• Are there a few nodes holding the network together?
• Or, is the network robust?

• How do social networks differ from known networks?
• Such as the Web
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High-level data characteristics

• Able to crawl large portion of networks

• Node degrees vary by orders of magnitude
• However, networks share many key properties
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Are online social networks power-law?

• Estimated coefficients with maximum likelihood testing
• Flickr, LiveJournal, YouTube have good K-S goodness-of-fit
• Orkut deviates due to partial crawl

• Similar coefficients imply a similar distribution of in/outdegree
• Unlike Web [INFOCOMM’99]
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How are the links distributed?

• Distribution of indegree and outdegree is similar
• Underlying cause is link symmetry
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Link symmetry

• Social networks show high level of link symmetry
• Links in most networks are directed

• High symmetry increases network connectivity
• Reduces network diameter

20
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Implications of high symmetry

• High link symmetry implies indegree equals outdegree
• Users tend to receive as many links as the give

• Unlike other complex networks, such as the Web
• Sites like cnn.com receive much links more than they give 

• Implications is that ‘hubs’ become ‘authorities’
• May impact search algorithms (PageRank, HITS)

• So far, observed networks are power-law with high symmetry
• Take a closer look next
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Complex network structure

• What is the high-level structure of online 
social networks?
• A jellyfish, like the Internet? [JCN’06]

• A bowtie, like the Web? [WWW’00]

• In particular, is there a core of the network?
• Core is a (minimal) connected component
• Removing core disconnects remaining nodes

• Approximate core detection by removing 
high-degree nodes
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Does a core exist?

• Yes, networks contain core consisting of 1-10% of nodes
• Removing core disconnects other nodes

• What about remaining nodes (the fringe)?
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• Clustering coefficient C is a metric of cliquishness

• Online social networks are tightly clustered
• 10,000 times more clustered than random graphs
• 5-50 times more clustered than random power-law graphs

• How is the network clustered?

Clustering

24
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Are the fringes more clustered?

• Low-degree users show high degree of clustering
• Networks are small-world, may be scale-free
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Implications of network structure

• Network contains dense core of users
• Core necessary for connectivity of 90% of users
• Most short paths pass through core
• Could be used for quickly disseminating information

• Fringe is highly clustered
• Users with few friends form mini-cliques
• Similar to previously observed offline behavior
• Could be leveraged for sharing information of local interest
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Summary

• Presented first large-scale study of multiple online social networks

• Outlined challenges with crawling large networks
• Able to overcome challenges with multiple sites

• Analyzed and compared network structure
• Multiple networks have similar, unique characteristics

• Data sets are available to researchers
• Many already using data (12 research groups, including sociologists!)
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