Measurement and Analysis of Online Social Networks

Alan Mislove^{†‡} Massimiliano Marcon[†] Krishna Gummadi[†]
Peter Druschel[†] Bobby Bhattacharjee[§]

†Max Planck Institute for Software Systems ‡Rice University §University of Maryland

IMC 2007

What are (online) social networks?

- Social networks are graphs of people
 - Graph edges connect friends

- Online social networking
 - Social network hosted by a Web site
 - Friendship represents shared interest or trust
 - Online friends may have never met

Online Social Network

What are (online) social networks?

- Social networks are graphs of people
 - Graph edges connect friends

- Social network hosted by a Web site
- Friendship represents shared interest or trust
- Online friends may have never met

Social Network

Online Social Network

What are (online) social networks?

- Social networks are graphs of people
 - Graph edges connect friends

- Online social networking
 - Social network hosted by a Web site
 - Friendship represents shared interest or trust
 - Online friends may have never met

Social Network

Online Social Network

What are online social networks used for?

- Popular way to connect, share content
 - Photos (Flickr), videos (YouTube), blogs (LiveJournal), profiles (Orkut)
 - Orkut (60 M), LiveJournal (5 M)

- Content organized with user-user links
 - Akin to Web's page-page links
 - Social network structure influences how content is shared

This work

- Presents large-scale measurement study and analysis of the structure of multiple online social networks
 - 11 M users, 328 M links
- Data from four diverse online social networks
 - Flickr: photo sharing
 - LiveJournal: blogging site
 - Orkut: social networking site
 - YouTube: video sharing

- Our goals are two-fold:
 - Measure online social networks at scale
 - Understand static structural properties

Why study social network structure?

- Guide designers of future systems
 - Trust relationships suggest new reasoning about trust
 - Shared interest suggests new ways of structuring information
- Trust can be used to solve security problems
 - Multiple identity attacks: SybilGuard [SIGCOMM'06]
 - Spam: Re [NSDI'06]
- Shared interest can improve content location
 - Web search: PeerSpective [HotNets'06]
- Understanding network structure is necessary first step

Rest of the talk

- Measuring social networks at scale
- Analyzing structural properties

Overview: Measuring online social networks

- Sites reluctant to give out data
 - Cannot enumerate user list
 - Instead, performed crawls of user graph
- Picked known seed user
 - Crawled all of his friends
 - Added new users to list
- Continued until all known users crawled
- Effectively performed a BFS of graph

Overview: Measuring online social networks

- Sites reluctant to give out data
 - Cannot enumerate user list
 - Instead, performed crawls of user graph
- Picked known seed user
 - Crawled all of his friends
 - Added new users to list
- Continued until all known users crawled
- Effectively performed a BFS of graph

Challenges faced

- Obtaining data using crawling presents unique challenges
- Crawling quickly
 - Underlying social networks changing rapidly
 - Consistent snapshot hard to get
 - Need to complete the crawl quickly
- Crawling completely
 - Social networks aren't necessarily connected
 - Some users have no links, or small clusters
 - Need to estimate the crawl coverage

How fast could we crawl?

- Crawled using cluster of 58 machines
 - Used APIs where available
 - Otherwise, used screen scraping
- Crawls took varying times
 - Flickr, YouTube: I day
 - LiveJournal: 3 days
 - Orkut (partial): 39 days
- Crawls subject to rate-limiting
 - Discovered appropriate rates

How much could we crawl?

- Users don't necessarily form single WCC
 - Disconnected users
- Estimate coverage by selecting random users
 - After crawl, determine fraction of users covered
- Networks tend to have one giant WCC

How much could we crawl?

- Users don't necessarily form single WCC
 - Disconnected users
- Estimate coverage by selecting random users
 - After crawl, determine fraction of users covered
- Networks tend to have one giant WCC

Evaluating coverage: Flickr

 Obtained random users by guessing usernames (######@N00)

- Fraction of disconnected users is 73%
- But, disconnected users have very low degree
 - 90% have no outgoing links, remaining 10% have few links
- Summary:
 - Covered 27% of user population, but remaining users have very few links

Evaluating coverage: LiveJournal

- Obtained random users using special URL
 - http://www.livejournal.com/random.bml
- Fraction of disconnected users is only 5%

- Summary:
 - Crawl covered 95% of user population

Evaluating coverage: Orkut

- At time of crawl, Orkut was fully connected
 - But, we ended crawl early

- How representative is our sub-crawl?
 - Performed multiple crawls from different seeds
 - Obtained random seed users using maximumdegree sampling
- Properties consistent across smaller crawls
- Summary:
 - Sub-crawl of user population, but likely representative of similarly sized subcrawls

Evaluating coverage: YouTube

- Could not obtain random users
 - Usernames user-specified strings
 - Not fully connected (could not use maximum-degree sampling)

- Unable to find estimate of user population
- Summary:
 - Unable to estimate fraction of users covered

Outline

- Measuring social networks at scale
- Analyzing structural properties

Network structure questions

- Want to examine structural properties
- Which users have the links?
 - Even distribution of links, or is it skewed?
- Are there a few nodes holding the network together?
 - Or, is the network robust?
- How do social networks differ from known networks?
 - Such as the Web

High-level data characteristics

	Flickr	LiveJournal	Orkut	YouTube
Number of Users				
Avg. Friends per User				

- Able to crawl large portion of networks
- Node degrees vary by orders of magnitude
 - However, networks share many key properties

High-level data characteristics

	Flickr	LiveJournal	Orkut	YouTube
Number of Users	1.8 M	5.2 M	3.0 M	I.I M
Avg. Friends per User				

- Able to crawl large portion of networks
- Node degrees vary by orders of magnitude
 - However, networks share many key properties

High-level data characteristics

	Flickr	LiveJournal	Orkut	YouTube
Number of Users	1.8 M	5.2 M	3.0 M	I.I M
Avg. Friends per User	12.2	16.9	106.1	4.2

- Able to crawl large portion of networks
- Node degrees vary by orders of magnitude
 - However, networks share many key properties

Are online social networks power-law?

	Outdegree γ	Indegree γ	
Flickr	1.74	1.78	
LiveJournal	1.59	1.65	
Orkut	1.50	1.50	
YouTube	1.63	1.99	

- Estimated coefficients with maximum likelihood testing
 - Flickr, LiveJournal, YouTube have good K-S goodness-of-fit
 - Orkut deviates due to partial crawl
- Similar coefficients imply a similar distribution of in/outdegree
 - Unlike Web [INFOCOMM'99]

How are the links distributed?

- Distribution of indegree and outdegree is similar
 - Underlying cause is link symmetry

How are the links distributed?

- Distribution of indegree and outdegree is similar
 - Underlying cause is link symmetry

Link symmetry

- Social networks show high level of link symmetry
 - Links in most networks are directed

	Flickr	LiveJournal	Orkut	YouTube
Symmetric Links				

- High symmetry increases network connectivity
 - Reduces network diameter

Link symmetry

- Social networks show high level of link symmetry
 - Links in most networks are directed

	Flickr	LiveJournal	Orkut	YouTube
Symmetric Links	62%	73%	100%	79%

- High symmetry increases network connectivity
 - Reduces network diameter

Implications of high symmetry

- High link symmetry implies indegree equals outdegree
 - Users tend to receive as many links as the give
- Unlike other complex networks, such as the Web
 - Sites like cnn.com receive much links more than they give
- Implications is that 'hubs' become 'authorities'
 - May impact search algorithms (PageRank, HITS)

- So far, observed networks are power-law with high symmetry
 - Take a closer look next

Complex network structure

- What is the high-level structure of online social networks?
 - A jellyfish, like the Internet? [JCN'06]
 - A bowtie, like the Web? [WWW'00]
- In particular, is there a core of the network?
 - Core is a (minimal) connected component
 - Removing core disconnects remaining nodes
- Approximate core detection by removing high-degree nodes

Complex network structure

- What is the high-level structure of online social networks?
 - A jellyfish, like the Internet? [JCN'06]
 - A bowtie, like the Web? [WWW'00]
- In particular, is there a core of the network?
 - Core is a (minimal) connected component
 - Removing core disconnects remaining nodes
- Approximate core detection by removing high-degree nodes

Does a core exist?

- Yes, networks contain core consisting of I-10% of nodes
 - Removing core disconnects other nodes
- What about remaining nodes (the fringe)?

Clustering

Clustering coefficient C is a metric of cliquishness

 $C = \frac{\text{Number of links between friends}}{\text{Number of links that could exist}}$

- Online social networks are tightly clustered
 - 10,000 times more clustered than random graphs
 - 5-50 times more clustered than random power-law graphs
- How is the network clustered?

Clustering

Clustering coefficient C is a metric of cliquishness

 $C = \frac{\text{Number of links between friends}}{\text{Number of links that could exist}}$

- Online social networks are tightly clustered
 - 10,000 times more clustered than random graphs
 - 5-50 times more clustered than random power-law graphs
- How is the network clustered?

Clustering

• Clustering coefficient C is a metric of cliquishness

$$C = \frac{\text{Number of links between friends}}{\text{Number of links that could exist}}$$

- Online social networks are tightly clustered
 - 10,000 times more clustered than random graphs
 - 5-50 times more clustered than random power-law graphs
- How is the network clustered?

Are the fringes more clustered?

- Low-degree users show high degree of clustering
 - Networks are small-world, may be scale-free

Implications of network structure

- Network contains dense core of users
 - Core necessary for connectivity of 90% of users
 - Most short paths pass through core
 - Could be used for quickly disseminating information

- Fringe is highly clustered
 - Users with few friends form mini-cliques
 - Similar to previously observed offline behavior
 - Could be leveraged for sharing information of local interest

Summary

- Presented first large-scale study of multiple online social networks
- Outlined challenges with crawling large networks
 - Able to overcome challenges with multiple sites
- Analyzed and compared network structure
 - Multiple networks have similar, unique characteristics
- Data sets are available to researchers
 - Many already using data (12 research groups, including sociologists!)

http://socialnetworks.mpi-sws.org